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A b s t r a c t 

Linear estimators in nonlinear regression models with nonlinear con­
straints can suffer more or less mainly by bias. The quadratic corrections 
can help however not in every situation. Some numerical studies of the 
problem are presented in the paper. 

K e y w o r d s : Nonlinear regression model, nonlinear constra ints , 
linearization, quadrat iza t ion. 

2000 M a t h e m a t i c s Subjec t Classi f ication: 62J05, 62F10 

0 Introduction 

Nonlinear regression models with nonlinear constra ints crea te problems in a 
construct ion of e s t imators . S t a n d a r d m e t h o d of a l inearization can lead to non-
negligible bias a n d can also worsen other propert ies of es t imators . It seems t h a t 
q u a d r a t i c corrections should make es t imators b e t t e r . I t is really so as far as 
t h e bias is concerned . However a q u a d r a t i c t e r m can produce a large dispersion 

"Supported by the grant No. 201/99/0327 of the Grant Agency of the Czech Republic and 
by the Council of the Czech Government J 14/98: 153 100011. 
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68 L. KUBÁČEK, E. TESARÍKOVÁ 

such that the mean square error characterization of the linear estimator can be 
better than the mean square error of the quadratic estimator. A theoretical 
basis for such an investigation is given in [3], however no numerical results are 
given there. Therefore a follow-up to that paper from the numerical viewpoint 
is presented here.1 

1 Notation 

The considered model is given in the form 

Y ~ A t n ( f ( / 3 ) , £ ) , (3 € V = {/3 : g(/3) = 0} . (1) 

Here Y is a normally distributed ?i-dimensional random vector with the mean 
value equal to f(/3) = ( f i(/3), . . . , fn(/3))' and with the covariance matrix !£. 
The k-dimensional vector /3 is unknown and the parameter space is V. The 
(/-dimensional function g(-) can be expressed as g(/3^0y) + G5(3 + |7((5/3), where 
/jr°) is an approximate value of the actual value f3* of the vector /3 and 5/3 — (3 — 
/5 (0 ). The qxk matrix G is <9g(u)/du'|u=l3<°) > 7 ^ ) = (60'GiSfi . . . , SP'GgSP)', 
Gi = d2gi(u)/dudur\u=j3(o), i = 1 , . . . , q. Further it is assumed that the function 
f(-) can be expressed analogously, i.e. 

f(/3) = f(/3<0)) + F50 + ^K(S0), K(S0) = 05/3'FK5/3, . . . , 6(3'Fn50)'. 

Here 

F = df (u)/0u'| t t=/3(O), Fi = d2fi(u)/dudu'\u=pio), i = 1 , . . . , n. 

In the following the vector g(/3^) is assumed to be zero vector (in more 

detail cf. [2])-
The linearized version of the model (1) is 

Y - f 0 ~ N n ( F o 7 3 , E ) , Go73 = 0, (2) 

where f0 = f (P^) a n ( i the quadratized version of the model (1) is 

Y - f0 - Nn(F5(3 + \K(5(3), E) , G5/3 + \i(5p\ = 0. (3) 

2 Linear estimator and its bias 

In what follows it is assumed that the rank r(F) of the matrix F is k < n, 
r(G) — q < k and the matrix X) is positive definite. Under these assumptions 
the following statements are valid. 

1A special software Tesafikova, E. and Kubacek, L: Properties of estimators in models with 
constraints of the type I (in Czech), prepared for the purpose was utilized here. 
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Statement 2.1 The best linear unbiased estimator 5$ in (2) is 

5& = [I-C-1G ,(GC-1G ,)"1G]5/3 

~ Nk(S(3yC~l - C ^ G ' C G C ^ G O ^ G C r 1 ) , (4) 

where C = F ' E ^ F , 6J3 = C ^ F ' I T ^ Y - f0) (the best linear unbiased esti­
mator in the model (2) when the constraints GSf3 = 0 are neglected). 

Proof cf. [2]. D 

Statement 2.2 The bias of the estimator (4) in the model (3) is 

E(sh) - S0 = b = ^C-1G'(GC-1G')-1j(S0) 

+ hl-C-1G'{GC-1G')-1G]C-1FrE-lK(8l3). (5) 

Proof cf. [2]. • 

It is quite clear from the relationship (5) how the nonlinearity of the con­
straints influences the bias of the linear estimator. 

The bias from Statement 2.2, i.e. the nonlinear terms in (3) can be neglected, 
if it is known that the shift S/3* = 0* — J5-' (/3* is an actual value of the param­
eter /3 in the experiment) is so small that it leads to the inequality x/b'Cb < £ 
for sufficiently small e > 0. 

Statement 2.3 The set 

{/3 G Rk : | |P^;}[Y - tmWl-t < Xl(l ~ a)} 

ғ(ß) 
is a (1 — a)-confidence region in the model Y ~ Nn[f(/3),S l]. Here P 

the projection matrix in the Mahalanobis norm ||x||s-i = vx'E~1x. x G Rn, 
on the column space of the matrix F(/3) = 3f(u)/9u|n=/g. 

Proof cf. Proposition 2.6.1 in [4]. • 

Statement 2.4 In the model 

Y~iVn(f(/3),£), g(/3) = 0 (6) 

the (1 — a)-confidence region is 

{/3 : g(/3) = 0, [Y - f(/3)]'U[Y - f(/3)] < X\-q(l - <*)}, 

where 

U = S-1F(/3)Var(3)F'(/3)S~1, 

F(/3) = <?f(/3)/d/3\ 

C(/3) = F ' ^ S - ' F ^ ) , 

Var(Ji) = C-1(/3)-C-1(/3)G'(/3)[G(/3)C-1(/3)G'(^)]-1G(/9)C-1(/3), 
G(/3) = 3g(/3)/0/3'. 
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Proof The projection matrix on the tangential space at the point f (/3) of the 
mean value manifold {f (/3) : g(/3) = 0} of the model (6) is 

P F ^ ) M G , ( / 3 ) = F( /3)M G / ^[M G , ( ^ ) C(/9)M G / ( / 3 ) ]
+ M G t ( / 3 ) F

/ ( /3)S- 1 

= F(l3)Vzr(fr)F'(P)ir\ 

where Mc>(0) = I - PG'(/3) a n d PG'(/3) is the projection matrix in the Euclidean 
norm on the column space of the matrix G'(/3) and [M G ' ( ^ )C(^)M G t^^] + is 
the Moore-Penrose generalized inverse of the matrix MG '(^)C(/3)MGt(^) (cf. 
[5]). Now it is sufficient to use Statement 2.3. Q 

Thus if 

[Y - f(/3W)]'S-xF VarfjOF'S-^Y - f(p^)} < xf_,(l - a), (7) 

then / 3 ^ is covered by the (1 — cr)-confidence region for /3*. The actual value 
/3* is covered by the (1 — a)-confidence ellipsoid 

S = {u : (u - ^'[Var(/5)]-(u - k < X 2 ^ ^ - a ) } 

(if the linearization is possible)). Since the matrix C is one version of the 

g-inverse of the matrix Var(/3) and r[Var(/3)] = fc — g, 

£ =- | u : (U - £)'C(u - /I) < xi-,(l - a)}. 

In an addition the following statement is valid. 

Statement 2.5 Let KG be a fc x (fc — a) matrix with the property 

M(KG) = { K G u : u G it fc"g} = /Cer(G) = { v : G v = 0} 

and let 

where 

if 

then 

C{par) - SUD I VA + B . .. p p fc- , \ 
W , « - S U P \ U ' K G C K G U - U € i î } ' 

A = ^ ( K G U J S - ' P ^ ^ K G U ) , 

B = 7 ' ( K G u ) ( G C - 1 G ' ) - 1 7 ( K G u ) , 

Pfifo = F K G ( K G C K G ) ~ K'GF T, (projection matrix on 

M(FKG) in the norm | | u | | s - , = \ / u ' £ _ 1 u ) . 

2e 1 5/3 G { K G u : u 'K G CK G u < -
ç(par) í 

V{h € ň*} | h ' b | < ex/íťC^Th. 
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Proo f cf. in [2]. • 

Now if xi_q(l - a) < 2e/C7/
P

5
a
/3

r), the model (6) can be linearized (with 
respect to the bias) at the point /3 ( 0 ) . However we need the linearization at 
the point /3* which is unknown. If /3<°) is chosen in such a way that (7) is 
satisfied, then /3* is in the neighbourhood of the point /3 ( 0 . It can be assumed 
that the property "can be linearized" does not change in a small neighbourhood 
of a point of the parametric space V. It would be better to investigate such a 
neighbourhood in more detail, however in practice it is sufficient to fulfil two 
conditions 

x t , ( l - « ) < < - ^ y and (7). (8) 
C'I,5(3 

Since h ' b = E(b!Sp) ~ h!S0 and 

Var(h'c5l3) = h ' fC" 1 - C ^ G ' t G C ^ G ' ^ G C T 1 ] ! ! < h 'C" 1 ! ! , 

Statement 2.3 enables us to choose for a given, vector 

h G M(C~l - C ^ G ^ G C - ^ G ' ^ G C - 1 ) 

the value of e in such a way that 

|h 'b | < ^ v / h ' f C - 1 - C - i G ^ G C - ^ O " 1 ^ ^ 1 1 ] ! ! , 

i.e. e = £ ix /h ' fC- 1 - C - ^ ^ G C - i G O - ^ C - ^ h / v ^ r i ^ 1 1 ^ . A comparison 
of the bias with the standard deviation is of no sense in the case 

h _L M(C~l - C ^ G ^ G C ^ G ' ^ G C - 1 ) , 

since in this case h' Var(<5/3)h = 0. Thus, for practical purposes, a comparison 
with \ / h / C ~ 1 h seems to be reasonable. 

Remark 2.6 The model (3) can be, in some sense, represented by the model 
without constraints 

Y - f0 ~ Nn(FKGSu + ~[K(K9SU) - FG?; (C)7(KG(5u)],s), Su e Rk~*. 

Then the Bates and Watts measures of nonlinearity (cf. [1]) are 

f JlťE^k - к'(KGón)J:-]-pf-lк{KG5u) 

ÒVĽKQKJKGÒU 
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and 

K{PT) = sup 

sup 

k'S- x P^ в k 
Su'K'GCKGSu 

: ðu Є Rk~q 

^K'(KG6U)-Z-1V^G K(KG6U) 

<5u'K rCKG<5u 
: 5n Є Д*-« У , 

where k = K(KGSU) - F G m ( c ) 7 ( K G u u ) . 

These measures can be used in an investigation of other statistical properties 
of the model (3). In more detail cf. [2]. 

3 A quadratic correction of the linear estimator 

If the two conditions (8) from the end of the preceding section are not satisfied, 
the bias can be eliminated by a quadratic correction, i.e. the estimator 

8& = 8$ - - [I - C - " 1 G / ( G C " 1 G / ) ~ 1 G ] C ^ F ' E " 1 * ^ ) 

- - C - ^ G ^ G C - ^ G ' ) - 1 ^ ^ ) 

+ - [I - C ^ G Í G C ^ G ' ) - ^ ] C _ 1 F ' S -

/ TrpFi Var(o/3)] \ 

\Tr [F n Var(o /§) ] / 

/Tr [GiVar (o /§ ) ] \ 

+ - C - 1 G ' ( G C " 1 G ' ) - 1 (9) 

\Tr[GgVar(o/3)]y 

can be used. Some caution is necessary, since quadratic terms in the estimator 
can produce a nonnegligible enlargement of the variance. Some comments to it 
are given in the following text. 

Since 

G5h + \l(5h = -\l(é) + \ 
/ T r [ G i V a r ( o ^ ) ] \ 

+ ^l(бß) 

( Tr[Gi Var( j | ) ] \ 

\Tx[GqVzx(sh]J 

VTr[G9Var(o/3)]/ 

-I- terms of the 3th and higher order, 
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the estimator S/3 does not satisfy the constraints as far as the terms 

Tr[G ? ;Var(^)], z = l , . ..,<?, 

are concerned. (It is to be said that the mean value of the estimator r)/3 from 
(9) satisfies the constraints GS/3 -f ^(S/3) = 0.) 

Now it is to be decided whether satisfying the constraints is more impor­

tant than the bias due to the terms Tr[G? Var(<5/3)], i = 1 , . . . , q. In practice 

satisfying the constraints is preferred. Thus in the following, the estimator 

sjj = sfc - i [i - C-1G'{GC-~1G')-1G] C ^ F ' E - 1 * ^ ) 

- -C-lG'(GC-lG')-ll{Sß) 

+ \{l- C^CCGC^G')-^] C-^ '2- 1 
/ Tr[Fi Var(<5/3)] \ 

\Tr [F n Var(ó /3) ] / 

will be also considered. 

Let h(S/3) — h'Sfi, where h G Rk be given vector. Then the notation 

n .. 

* V ) = X!{ h 2[ I - c ~ l G ' ( G C " l G ' )~ l G ] c ~ l F ' s - 1 } F i ' 
i=\ 

Gft(.) = J2{ti\C~lG'{GC~iG')~1} Gi, 
i=l 

will be used. Let e^ G Rk and {ej}? = Sij (the Kronecker delta). Then 

'S(3'ALS/3\ 

E(Sß) -Sß = Ъ = 

where 

Thus 

and 

Jß'AkSßJ 

A ť = F e j(.) + G e.(.), i = l,...,k. 

k 

\E(tiSß) - h'Sß\ = \Sß'Ah(.)Sß\, A/i(.) = X>)* A *> 
4 = 1 

\E(tislß) - h'Sß\ = | lr[Gfc(.) Var(^)] + 2b'Ah{.)Sß + b'Afc(.)b| 

MSE(tiSß) = ti Var(ój3> + [^(h'ijl) - h'i/3 
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MSE(h'Sp) = h' Var(o/3)h + \E(b!80) - h'<5/3] , 

h'Var(o|)h = h'Var(oy§)+2Tr{[Aft(.)Var(o/§)]2} 

- 4h' V&i(6J3)Ah(.)60 - 4h' Var(o/3)A/l(.)b 

+ 4o/a'A ; i(.)Var(^)A/l(.)o/a 

+ 8b'AM.)Var(o/§)AM.)oy3 

+ 4b'Ah(.) Var(o£)Aft(.)b. 

If the estimator h'5/3 is used, it is necessary to check whether the ratio 

Tr[GM.) Var{6&)]/y/h'[C-1 - C-iG' tGC-iGO^GC-- 1]!! (10) 

is sufficiently small. 

4 Numerical examples 

Example 4.1 Let 

h(x;fa,fa)=0x+02x, 
f(x) = 

x < 0 , 
h(x;/3i,P3) = Piexp(p3x), x > 0, ' 

9(01,^2,03) = dl2(x;fa,03)/dx\x=o - dh(x;pu fa)/dx\x=Q = ft/33 - ft = 0, 

ft = 5, ft = - 4 , & = -0 .8 . 

The values fa, 02 and 03 are chosen as 0\ ,02 and /?3 , respectively. 

X -3 -2 -1 1 2 3 
h(x) 17 13 9 
h(x) 2.247 1.009 0.454 

У 17.1 12.8 8.9 2.3 1.1 0.4 

Var(Y) = a 2 I 6 , 6 , 0^ = 5, ftl0) = - 4 , 0^ = -0 .8, 

dll(x,fa,02,03)/d(fa,02,03) = (1,-5,0). 

dl2(x,0i,fa,03)/d(0i,02,03) = (exp(/33.c),0,/5ia;exp(j83.e)), 

dg(0i,02,03)/d(fa,02,03) = (ft,-l,ft). 

Let a = 0.2, h = (1,0,0)'. Then we obtain 

/ 0.98791, 0.00000 \ 
K G = -0.03040, 0.98058 , 

I 0.15199,0.19612/ 
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5/3 = (-0.23583,-0.086786,0.053987)', 

/ 0.086383, 0.037021, -0.012123 \ 
C 1 = 0.037021, 0.018723, -0.005196 , 

\ -0.012123, -0.005196, 0.005345/ 

dh ^ (-0.01713,0.010692,-0.000602)', 

/ 0.019518, 0.007219, 0.004567 \ 
Var(ájS) = 0.007219, 0.005440, 0.002243 , 

\ 0.004567, 0.002243, 0.001178/ 

d = (0.1397,0.0738,0.0343)', 

60 - (-0.01524,0.01154,0.00078)'. 

Here 

Further 

In this case 

d = ív/var(^i),\/VarWÍ2),\/var((5/;}3)j . (11) 

KÝar) = 0104963, C{jp$ = 0.105101. 

X
2
2(0.95) = 5.99 < -£-r = — i — = 9.515 

C(pflr) 0A05101 \őß 

Thus the linearization is possible. 
The relationship (10) is 

T r [ G W 0 Var(íj8)l 
— l ) --0.013108 ^ ' [ C - 1 - C - Í G ^ G C - Í G O ^ G C - 1 ] ! ! 

thus the term Tr[G;.(.) Vax(50)} can be neglerted. Further 

h'Var(<5/3)h = 0.019518, MSE(\i'5J3) = 0.019527, 

h' Var((5/9)h = 0.018197, MSE(h'5J3) = 0.018199. 

Since fa = (4.982870, -3.989308, -0.800602)', 

/i (0,1) = dh(x,h)/dx\ = -3.989308, 
lx=0 

I£(0,j8) = dl2(x,Í3)/dx\ = -3.989296 
\x=0 

and (3 = (4.984760, -3.988460, -0.799220)', 

l[(O,0) = -3.988460, l'2(0,fi) = -3.983920. 
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As far as the constraints are concerned the linear estimator seems to be a 
little better. 

It can be of some interest to give the UBMSE (upper bounds for single terms 
of MSE). They are given in the following table for 

Æsi = 0.283 
0.000 

60 = KG6Sl = 
0.280 

-0.009 
0.043 

and 

ős2 = 0.000 
0.150 

/ 0.000N 

Sß = KGSs2 = 0.147 
\ 0.029 

compare d (11). 

term UBMSE(SSl) UBMSE(Ss2) 

Sß'Ah{.)6ß \ 0.073 296 0.067 076 

~4tíVar(öß)Ah{.)6ß 0.014 021 0.013 413 

46ß'Ah(.)Vи(fi)Aн.)6ß 0.002 518 0.002 304 

- 4 h ' V a r ( j Д ) A м . ) b 0.002 152 0.001 970 

8Ъ'Aћ{.)Vи(8h)Aћ{.)6ß 0.000 773 0.000 677 

4Tr[Gh{.)Var(6ß)]Ъ'Ah{.)8ß 0.000 168 0.000 147 

4Ъ'Aћ(.)Vax(6ß)Aћ(.)Ъ 0.000 059 0.000 050 

2Tr{Gh(.)Vм(ðk}Ъ'Ah{.)Ъ 0.000 013 0.000 011 

4(Ъ'Ah{.)Sß)2 0.000 506 0.000 388 

4Ъ'Ah{.)6ßЪ'Ah{.)Ъ 0.000 078 0.000 057 

(VA^Ъ)2 j 0.000 003 0.000 002 

In the case O = 0.2 the linearization gives satisfactory results, even the 
quadratic estimator seems to be a little better. For h = (0,1,0)' and h = 
(0,0,1)' we obtain similar results. 

In the case O = 0.5 

r(par 
KY ' = 0.262407 and C) 

(par) 
oß 0.262752. 

Thus 

X2(0.95) = 5.99> 
2c 

^i(par) 
^I,ôß 

í 

0.262752 
3.806 

and linearization cannot be recomended. Thus a decision must be made whether 
a more precise measurement can be organized or it is less tedious to investigate 
whether a utilization of quadratic corrections is reasonable with respect to MSE. 
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Example 4.2 Let 

m = 

ffi(ft,ft,ft) = h(4;Px) - l2(4;ft,ft) = exp(4ft) - ft exp[-(4 - ft)2] = o, 

lx(x;ßi)=exp(ßxx), x<4, 

h(x;ß2,ßз)= ß2 exp[-(.x - ft )2], x > 4, ' 

(httfufalh) =l'1(4;0x)-l'2(4;02,03) 

= dlx(x,0x)/dx\x=i - dl2(x,02,03)/dx\x=4 

= 0x exp(4ft) + 2/?2(4 - ft) exp[-(4 - ft)2] = (), 

ft = 0.5, ft = 7.865609, ft = 4.25 . 

The values ft , ft and ft are chosen as 0\, ft and ft, respectively. 

X 1 2 3 5 6 7 
/ ] . ( * ) 1.649 2.718 4.482 

h{x) 4.482 0.368 Ңшӣ~ 
У 1.8 2.5 4.3 4.6 0.3 0 

Var(Y) = o-2I6,6, ft(0) = 0.5, ft(n) = 7.865609, ft(0) = 4.25, 

дh(x,Øi) 
;exp(ftx),0,o), 

д(Øi,ß2,ßз) 

дamX,Я2'я3l = (0.exp[-(x-Ã)2],2Ä( a :-/?з)exp[-(a:-Ä)-]), 
0\Pl,P2,Pз) 

дgx(0i,02,0з) (4exp(4ft),-exp[-(4-ft) 2], 
ftft,ft,ft) 

- 2 f t ( 4 - f t ) e x p [ - ( 4 - f t ) 2 ] ) , 

^W^TY = ( ( l+4f t)ex P (4f t ) ,2(4-f t )exp[-(4-f t ) 2 ] , 
0(Pl,P2,P3) 

[-2/Í2 + 4/52(4 - /53)
2] exp[-(4 - /?3)

2]). 

Let S = O2I, O = 0.2, h = (1,0,0)'. Then we obtain 

KG = (0.029898, 0.999440,0.014949)/, 

I<Ýar) = 0.984855, Cjf;;} = 1.945840, 

/ 0.029898 \ 
r5s = 1 =4> J/3 = K^ťJs = 0.999440 , 

\ 0.014949/ 

6/3 = (-0.015880,0.313440,-0.064269)', 
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í 0.000188, 0.000000, 0.000000 \ 
C~l = 0.000000, 0.495600, -0.125430 , 

\ 0.000000, -0.125430, 0.000916/ 

60 = (0.000931,0.031125,0.000466)', 

/ 0.000009839, 0.000328900, 0.000004919 \ 
Var(<5/3) = 0.000328900, 0.010995000, 0.000164470 , 

\ 0.000004919, 0.000164470, 0.000002458/ 

d = (0.003136,0.104857,0.001568)', 

60 = (0.000951,0.031146,0.000476)', 

In this čase 

Xi (0.95) = 3.84 > -p— = - - j — - = 0.5139. A 1 V J Mpar) 1.945840 
°/,(5/3 

Thus the linearization cannot be recomended. 
Further 

Tr[G f t f 0 Var(o73)l 
-0.006137. ^/h'fC-1 - C - i G ^ G C - i G O - ^ C - 1 ] ! ! 

The term Tr[G/.(.) Var(J/3)] can be neglected. Further 

h'Var(oj§)h = 0.000009839, MSE(h'S$) = 0.000013894, 

h' Var(<5/3)h = 0.000007214, MSE(h'6(3) = 0.000007304, 

b = (0.002014,0.002061,0.001007)'. 

Since /3 = (0.500931, 7.896734,4.250476)', 

k(4,0) = 7.416624, h{4,0) = 7.400493 

l[(4,(3) = 3.715217, ^(4,y§) = 3.715325 

and 0 = (0.500951, 7.896755,4.250476)', 

Ji(4,£) = 7.417218, /2(4,3) = 7.416548, 

/i(4,3) = 3.715663, ^(4,1) = 3.715334. 

In the cases h = (0,1,0)' and h = (0,0,1)' similar results are obtained. The 
model is nonlinear, however not weakly, mainly due to the constraints. The 
linearization is not suitable, however the quadratic estimation can be satisfac­
tory. Also the constraints are satisfied a little better in the case of quadratic 
estimators than in the case of linear estimators. 
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E x a m p l e 4.3 Let 

/(*) = 
hfaßJ^ßìX, x < 5, 

. 2 ( z ; f t , f t ) = f t e x p ( f t x ) , x > 5, ' 

<?(ft,ft,ft) = A (5; ft) - / 2 (5 ; f t , f t ) = 5ft - ft exp(ft5), 

ft = 1.473, ft = 33, ft = -0.299954. 

The values ft , ft a n d ft a r e chosen as ft,ft and ft, respectively. 

X 1 2 3 6 7 8 

h(x) 1.473 2.945 4.418 

h(x) 5.455 4.041 2.994 

У 1.2 3.2 4.9 5.1 3.8 2.5 

3(0) (0) _ î (0) Var(Y) = a%fi, p\u> = 1.473, ftu; = 33, ftUj = -0.299954 

dhixjó/difc.fafo) = (.c.0,0), 

5 . 2 ( x , f t , f t ) / a ( f t , f t , f t ) = (o,exp(ftx), a :f teXp(ftx-) , 

ft?(ft,ft,ft)/ftft,ft,ftj = ( 5 , - e x p ( 5 f t ) , - 5 f t e x p ( 5 f t ) ) . 

Let £ = <r2I, CT = 0.5, h = (0,1,0)'. Then we obtain 

/ 0.990910, 0 \ 
K G = 0.000815, -0.999980 , 

\ 0.134540, 0.006061 / 

r(pаr) i(pаr 
K\"UI > = 5.262598, CJ<S 

<5s 

5.5672, 

č/3 = K~ás = 
0" 

-9.9998 
0.0606 

Ó73 = (0.119860,5.86137, -0.0389)', 

/ 0.017857, 0.000000, 0.000000 \ 
C " 1 = 0.000000, 391.52, -1.769 , 

\ 0.000000, -1.769, 0.008095/ 

S(3 = (0.084899,14.569, -0.076767)', 

/ 0.013544, 1.0744, -0.004672 \ 
Vax(áj8) = 1.0744, 123.93, -0.6052 

\ -0.004672, -0.6052, 0.003034 / 

d = (0.11638,11.132385,0.05508)', 

S(3 = (0.086411,16.4085,-0.079310)', 
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In this case 

xi(0.95) = 5.99 > - ^ - r = —?— = 0.17962. A ^ v ' n(Par) 5.5672 
W,(5/3 

Thus the linearization is impossible. The value Cj ™ indicates an extremaly 
high nonlinearity, which is due to the large value of a. 

Further 

T r [ G / ? n V a r ( ( ^ ) l 
- = -0.428117. 

The term Tr[G/l(.) Var(O~/3)] is not sufficiently small and also other characteristics 
of nonlinearity are bad. Further 

h' Var((5/S)h = 123.93, MSE(tiS(3) = 129.511, 

h'Var(5/3)h = 51.0987, MSE(h'5/3) = 77.7384, 

b = (-0.001942,-2.263,0.004875)'. 

Since <$£ = (0.084899,14.569, -0.076767)', 

h(59fr) = 7.789495, /2(5,/3) = 7.232 

and <$ = (0.086411,16.4085, -0.079310), 

h(5,k = 7.797055, l2(5,/§) - 7.417206, 

what is a terrible result and thus the calculation cannot be used. 
Let in this example a = 0.01,5s = (0,0.1)' and the measured data be 

Then 

1.5, 2.95, 4.4, 5.46, 4.03, 2.98. 

K(par) = 0.105251, C?$ = 0.107389, 

S0 = (-0.001571,0.608090,-0.002987)', 

j | = (-0.000051,0.203970,-0.001229)', 

d = (0.002328,0.222645,0.001102)', 

8$ = (0.000049,0.204640,-0.001233)', 

In this case 

2c 1 
Xi(0.95) = 5.99 < ^ = 5 I ^ = 9-312-

W,<5/3 
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In this case the linearization is possible. However the value o = 0.01 is now 
essentially smaller than the preceding value 0.5. 

Further 

h' Var((5/3)h = 0.000001213 MSE(ti5J3) = 0.000001213, 

h' Var((5/3)h = 0.000001237, MSE(ti6p) = 0.000001237, 

b = (-0.00000258,0.00035817, -0.000002098)'. 

Since 0 = (1.473051,33.203970,-0.301183)', 

Zi(5,/3) = 7.365255, /2(5,j§) = 7.365113 

a 0 = (1.473049,33.204640, -0.301187)', 

/i(5,/§) = 7.365245, /2(5,/3) = 7.365115. 

In this case the linearization is sufficient. 
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