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A b s t r a c t 

Oscillatory properties of the fourth order linear differential equation 

(*) y{w) - ~y = q(t)y 

are investigated. Equation (*) is viewed as a perturbation of the (nonoscil-
latory) equation 

and integral conditions on the difference q{t) — 8 4 ^ a are given which 
guarantee that (*) is (non)oscillatory. Some general aspects of this ap­
proach to the oscillation theory of higher order Sturm-Liouville equations 
are discussed. 
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1 Introduction 

It is a well known fact that the second order linear differential equation with 
the iterated logarithms 

y" + T^ 1 1 + - 9 - + • • • + - 9 9 9 + —9 9 9— 1 2/ = 0, (1) 
4*2 v lg 2* lg2tig2,...ig

2„^ i g 2 H g ^ . - - i g 2 t ; J w 

where lg2 £ = lg(lgt), lgn t = lg(lgn_i t) and lg denotes the natural logarithm, 
is nonoscillatory if and only if A < 1. This result can be proved applying 
successively the transformation 

z(t) = Vty(\gt) (2) 

to the equation y" ~ 0, then to the resulting equation y" + ~^y — 0, e t c , see 
[3, 12, 16, 17, 19], where also a general background of the transformation theory 
of second order equations and its application in the oscillation theory of these 
equations can be found. 

However, if we want to study the two-term fourth order equation 

y{w) = g(t)y (3) 

using the transformation 
z(t)=t§y(\gt) (4) 

(which is a fourth order analogue of (2)), this approach cannot be used since 
that transformation (4) applied to the equation y(lv^ = 0 gives an equation with 
middle terms involving y" and y\ so the resulting equation is no longer of the 
form (3), see [1] and [17] for more details concerning transformations of higher 
order differential equations. 

For this reason, we use here a somewhat different approach, based on the 
factorization of disconjugate differential operators coupled with the so-called 
variational principle. This method enables to "detect" the first logarithmic 
term, namely the fact that the equation 

is nonoscillatory if and only if 7 < | . A subject of the present investigation is 
to find what is the situation with iterated logarithmic terms, a more detailed 
remark concerning this problem is given in the last section. Nonoscillation of 
equation (5) with 7 = | enables to study the equation 

» ( I V ) - - | j V = ?(*)» (6) 

as a perturbation of (5) and to obtain a more refined (non)oscillation criteria 
than known until now. Note that this approach can be regarded as a continua­
tion of the research of [8, 10, 11], where the equation 

/ / \\ (n) 
(-l)n (tay{n)) =q(t)y, a 2 { l , 3 . . . . , 2 n - l } (7) 
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is regarded as a perturbation of the Euler-type equation 

(-l)"(fyW) ( n ) + -fe=ry = 0> 

7n,a := (-1)" n;Co(A - i)(A + a - ; - n) | A = ^ 
(8) 

The paper is organized as follows. In the next section we recall the rela­
tionship between higher order Sturm-Liouville differential equations and linear 
Hamiltonian systems. We also give a statement concerning factorization, of dis-
conjugate differential operators and two variational lemmas. Section 3 contains 
the main results of the paper, oscillation and nonoscillation criterion for (6), 
where this equation is viewed as a perturbation of (5) with 7 = | . The last 
section is devoted some remarks and comments concerning the results of the 
paper. 

2 Auxiliary results 

We start this section with basic oscillatory properties of higher order Sturm-
Liouville differential equations 

(t) 
L(y)~J2(-l)k(rk(t)y(k)) =0, r n (í)>0. (9) 

k=0 

Oscillatory properties of these equations can be investigated within the scope 
of the oscillation theory of linear Hamiltonian systems (further LHS) 

x' = A(t)x + B(ť)u, u' = C(ť)x - Áг(t)u, (10) 

where A, D, C are n x n matrices with B, C symmetric. Indeed, if y is a solution 
of (9) and we set 

( v. \ /(-l)n'1(rny(n))(n-1)+--- + riy'\ 

u — 

\ 

-(rny
(n))'+rn-iУ(n-l) 

(n) 
rny

K \yin-Dj 

then (x,u) solves (10) with A,B,C given by 

B(t) = diag{0,...,0, r " 1 (t)}, C(t) = diag{r0(i) . , Г n - i ( í )} , 

A = A- • = { 1 ' if J = * + 1 ' z = ^ • • • 5
n ~ !» ?'J \ 0, elsewhere. 

In this case we say that the solution (x, u) of (10) is generated by the solution y 
of (9). Moreover, if Hi,..., yn are solutions of (9) and the columns of the matrix 
solution (K, U) of (10) are generated by the solutions Hi,...,Hn, we say that 
the solution (K, U) is generated by the solutions Hi,..., yn. 
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Recall that two different points Li, 2̂ are said to be conjugate relative to 
system (10) if there exists a nontrivial solution (x,u) of this system such that 
x(ti) = 0 = x(t2). Consequently, by the above mentioned relationship between 
(9) and (10), these points are conjugate relative to (9) if there exists a nontrivial 
solution y of this equation such that y^(ti) = 0 = y^(t2), i = 0,1, . . . , n — 1. 
System (10) (and hence also equation (9)) is said to be oscillatory if for every T G 
E there exists a pair of points t\, t2 G [T, 00) which are conjugate relative to (10) 
(relative to (9)), in the opposite case (10) (or (9)) is said to be nonosdilatory. 
If w is a positive function, the equation 

L(y) = w(t)y (11) 

with the nonoscillatory operator L given by (9) is said to be conditionally os­
cillatory if there exists Ao > 0 such that (11) with Xw(t) instead of w(t) is 
oscillatory for A > Ao and nonoscillatory for A < Ao- The constant A0 is called 
the oscillation constant of (11). 

A conjoined basis (X,U) of (10) (i.e. a matrix solution of this system with 
nxn matrices X, U satisfying XT(t)U(t) = UT(t)X(t) and r a n k ( K T , UT)T = 
n) is said to be the principal solution of (10) if X(t) is nonsingular for large 
t and for any other conjoined basis (X, U) such that the (constant) matrix 
XTU - UTX is nonsingular l im^oo X~l(t)X(t) = 0 holds. The last limit 
equals zero if and only if 

Urn (f X~l(s)B(s)XT~l(s)ds\ = 0 , (12) 

see [18]. A principal solution of (10) is determined uniquely up to a right multiple 
by a constant nonsingular nxn matrix. If (A ,̂ U) is the principal solution, any 
conjoined basis (N, U) such that the matrix XTU — UTX is nonsingular is said 
to be a nonprincipal solution of (10). Solutions ui,...,Hn of (9) are said to 
form the principal (nonprincipal) system of solutions if the solution (AT, U) of 
the associated linear Hamiltonian system generated by y\,..., yn is a principal 
(nonprincipal) solution. 

Using the relation between (9), (10) and the so-called Roundabout Theorem 
for linear Hamiltonian systems (see e.g. [18]), one can easily prove the following 
variational lemma which plays a crucial role in our investigation of oscillatory 
properties of (9). 

L e m m a 1 ([13]) Equation (9) is nonoscillatory if and only if there exists T G E 
such that 

?(y;T,oo):= J Y,rk(t)(У{k)(t))2 

k=0 

n,2( 

dt>0 

for any nontrivial y G W n , ( T , 00) with compact support in (T, 00). 

We also use the following Wirtinger-type inequality. 
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Lemma 2 ([14]) Let y G VV1,2(T, oo) have compact support in (T, oo) and let 
M be a positive differentiable function such that M'(t) ^ 0 for t G [T, oo). Then 

We finish this section with a statement concerning factorization of a class of 
(formally) self-adjoint operators. 

Lemma 3 ([4]) Suppose that equation (9) possesses a system of positive solu­
tions | / i , . . . , jj2n satisfying iji = o(yi+1), _ = _.,. . . , 2n — 1, as £ —. oo. Then the 
operator L given by (9) admits for large t the factorization 

m i rn(t) 1 

ao(í) l o i ( í ) V " o 2 ( í ) \ a„_i(í) ' " o i ( ř ) V"o(t) 

where 

fy2\' W(yu...,yi+1)W(yu...,yi-1) . 
a0 = y i , ai = — , a; = — , % = l , . . . , n - 1 

\ y i / W 2 (u i , . . . ,y i ) 

andan — (a0 - - • a n _ i ) _ 1 , PV(-) &ezn</ ./ie Wronskian of the functions in brackets. 

Lemma 4 For any y sufficiently smooth 

w(iv) _ 9 _ 1 J ři+-_-
y ш 4 Í / «§ ì 

Ѓ 1 _ У Ï Õ ( Í 1 + 4 S / ^ 
(13) 

and/or any y Є Wo'2(т>°°)> T ЄЖ, 

í Ш 4 ' 
= / ŕ- /io/[íi+_j_ ly. dí. (14) 

P r o o f The formula (13) follows immediately from Lemma 3 since the funda­
mental system of solutions of 

У 
IV) 

Ш 4 y = 0 (15) 

3-VT0 3 3 3 + vTo 

_/l = * 2 , 2/2 = t2 , 2/3 = * 2 lg*, 2/4 = t 2 

and satisfies the assumptions of this lemma. Formula (14) we prove using the 
integration by parts 

f 
Jт 

>'" - ш'1 
* = lт ' {'J"V' - 1 5 1 " ' 
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/>oo 

^ l ^ f í 

t* 

т 2 ' 

dí. 

ťil 

D 

3 Main results 

Our main result reeds as follows. 

T h e o r e m 1 (%) Suppose that q(t) > 0 for large t and 

я(t) t3 Igt dt = oo. 
St4 lg 2 £ 

ITien equation (6) is oscillatory. 

(ii) If the second order linear differential equation 

2 
(tu')' + -t3q(t)u = 0 

5 

is nonosdilatory, then equation (6) is also nonosdilatory. 

(ìб) 

(17) 

P r o o f (i) Let T G l b e arbitrary. According to Lemma 1, we need to construct 
, 2 , 2 / a function 0 ^ y G WQ' (T, oo) such that 

F(y>t,oo) := / ""ЧÏ^+"Є> <Ä< 0. (18) 

This function we construct as follows. Let h(t) = t^^/lgi and T < t0 < t\ < 
h < h (these quantities will be specified later). Further, let / £ C2\t0,t\) be 
any function satisfying f(t0) =0 = f'(t0), f(h) = h(h), f'(tx) = ft'^) and let 
3 be the solution of the (15) satisfying 

g(h) = h(h), g'(t2) = h'(t2), g(h) = 0 = g'(t3). 

Now define the function y 6 W,j' (T, oo) as follows 

' 0 , t < t0, 

f(t), t0<t<tu 

V = I h(t), h<t< t2, 
g(t), h<t< t3, 

. 0, t > h. 

(19) 

Denote 

K 
JtQ L -{ +iЏ) dt. 
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We have 

and hence 

ft 2 

л'м = r M ^ i g t + í + 
1 1 
-yт + 

9 . , 
h"' -tí dt = - l g 

lб í 4 

2 ' 81gí 21g2í ' 161g3í 

5 Ґ2 dt 

^ìľщ+L+0(]ťU)' 
where L is a real constant. Using the fact that q(t) > 0 for large l, if ^2^3 are 
sufficiently large, then 

JГ2 (Љ+. - t e + ? ( ř ) l 5 cřř < í/2 J 2 
3 - Ï 6 ? 5 (//. 

To estimate the last integral we use the relationship between (9) and (10). 

Denote x = {9
g,),u= (""*'"), ft = (*) and let A,H, C be 2 x 2 matrices of LHS 

(10) associated with (15). Then 

//2 " 2 
g - ^ čЙ [HTH(*)H + xтC(t)x] dt 

rtз 
= / [uт(x' - Ax) + xтC(t)x] dt 

Jt2 

= uтx\ť
tl + f3 xт [-u' - Aтu + C(t)x] dt 

= -uT(t2)x(t2). 

Let (X, U) be the principal solution of the LHS associated with (15), i.e., 

this solution is generated by Hi = t 2 ? ^2 = I 2. Using the fact that 

X(t) = X(t) / X~lBXт l ds, 

U{t) = U(t) / X-'BX1 ~l ds - X1 ~\t) 

is also a conjoined basis of LHS associated with (15), according to boundary 
conditions (19) 

x(t) = X(t) J"X-lBXT-1ds( f3 X-1BXT-1ds) X'1 (t2)h(t2), 

u(t) = 
h 

u(t) I x-^вx^-Ыs-x^-қt) X-lBXт~lds 

xX-Ҷt2)Һ(t2) 
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and hence 

-uT(t2)x(t2) - hT(t2)XT~l(t2) (f 3 X~lBXT~l ds\ X~l(t2)h(t2) 

- hT(t2)U(t2)XT-l(t2)h(t2). 

Since (K, U) is the principal solution, the first term on the right-hand-side of 
the last expression tends to zero as £3 —» 00 (t2 being fixed). Concerning the 
second term, since 

X(t) 
3-л/ÏÏÏ 

t 2 

^ tЧ^ џh 

h=\ ti 

^ = ( 13-4,/io t-±±fŽ lt-\ 

ťл/lgí 

Igí + 

we have by a direct computation 

2-Уlg* 

f т r r ^ i ľ . ч 2 ЗOл/Ю-90, З0-9VЮ/ O 1 hтUX-ľh(t) = — j — ^ lgí+ -^_(зlgг + l) 

cfó 

4 V T 0 - 1 0 / 9 , 3 1 \ | 3 , 3 4 - A / 1 0 
+ — T — U l g i + 2 + 41glj) = 2 l s i + 4 + -i6lgT-

Summarizing the above computations 

Q ^ f*2 dl l'*2 

HVMM) <K + -lgt2 + - / — - + L + 0 ( l g - 1 t 2 ) - / g(i)i3lgt 

+ hT (t2)X
T-\t2) (f*X-1BXT-lds\ X~\t2)h(t2) 

- \^t2 + \ + 0(\g~H2) . 

Now, let t2 > t\ be such that the following conditions are satisfied: 
(a) Jl2 (q(t) - 5-^--) *3lgidi > tf + /, + 1, 

(b) The sum of all terms 0(lg_112) is less than 1, 

and let £3 > t2 be such that 

ft(t2)X
T-1(t2) ( / 3 X~lBXT-1 ds) X-\t2)h(t2) < ~. 

For t2, £3 chosen in this way we have 

HVI Ti 00) < K - (K + L + 1) + L - » + J + 1 < 0. 
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Therefore, by Lemma 1 equation (6) is oscillatory 
(ii) Let T G i and y G W0' (T, oo) be arbitrary. According to Lemma 4 and 

the Wirtinger inequality (Lemma 2) 

yf° 
^ 2 

( * ) ' 

> ^ ! J » Г i - ^ U ^ Щ л - f p (ł)' 

tй 

( 

dí > 0 

Denote u = yt 2. Since the second order equation (17) is nonoscillatory, by 
Lemma 1 we have 

2 
£H'2 - -t3q(t)u2 dt>0 

D 

if T is sufficiently large. Consequently, 

IT [y"2 - (ifc + «(')) 2/2] * > I /r°° {* [( j ) ' ] 2 - I'M-) (£ f 

and this means, again by Lemma 1, that equation (6) is nonoscillatory. • 

Corollary 1 The equation 

^-(w+.-fr)'-0 <20» 
is nonoscillatory if and only if j < | . 

Proof The statement follows immediately from Theorem 1. Indeed, if 7 > | , 

condition (16) reads f jr^ dt = 00. Since the second order equation (tu1)' + 

^u = 0 is nonoscillatory for 7 < \, we have nonoscillation of (20) for 7 < | . 

• 
tig2y 

4 Remarks 

(i) Recall that the equation 
L{y) = ш(ť)ÿ (21) 

with w > 0 and the operator L given by (9) is said to be conditionally oscillatory 
if there exists An > 0 such that (21) with Auj instead of w is oscillatory for 
A > Ao and nonoscillatory for A < Ao- Equation (20) is a typical example 
of conditionally oscillatory equation with L(y) = y(lv^ — —^u, w(t) = f4 ~ a -
and Ao = | . Conditionally oscillatory equations play an important role in 
the spectral theory of differential operators generated by symmetric differential 
expressions, see [2, 5, 6, 8]. 
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(ii) The second part of Theorem 1 claims that (6) is nonoscillatory pro­
vided the second order differential equation (17) has this property. To examine 
nonoscillation of (17), one can use various nonoscillation criteria. For example, 
it is possible to see this equation as a perturbation of the nonoscillatory second 
order equation 

(tu'y + *-u = 0, (22) 
V ; At\g2t V ; 

i.e., we rewrite (17) into the form 

1 /2 
(tu'y + — V - ^ + ( 7t3q(t) 9~ U = o. (23) 
V J 4t\g2t V5 4 L l g 2 L y V J 

Principal and nonprincipal solutions of (22) are ^/\gt and ^J\g\g(\gt)1 respec­
tively, and according to the Nehari nonoscillation criterion applied to (23) equa­
tion (17) is nonocillatory if 

i_(igř) / (fл . j83q(s) - ) \gsds < -
t-*00 Jt V5 4slg sj+ 4 

where (•)+ denotes the nonnegative part (maxJO,-}) of the function indicated. 
In particular, if 

t*\g2t\ lg^(lgt), 

with 7 < 5/8 then equation (24) is^nonoscillatory (for 7 = 5/8 it follows from 
the fact that (1) with n = 2 is nonoscillatory for A < 1). Consequently, the 
equation 

»< , v ,-[^+^( i +i?y]-0 ,25) 

is nonoscillatory for 7 < 5/8. This statement suggests two open problems: 

• Is (25) oscillatory for 7 > 5/8? 

• Can one continue with addition of the terms with iterated logarithmic 
terms to get a conditionally oscillatory equation like (1) in case of second 
order equations? 

(iii) In our paper we investigate fourth order equations since we are able to 
compute explicitly solutions of (15). It is an open problem whether our approach 
extends to the higher order equation ( —l) n n( 2 n ) = q(t)y. In particular, we 
conjecture that there exists a positive constant un such that the equation 

( _ 1 ) V 2 n ) _ f [ ( 2 n - l ) ! ! ] 2

+ _ _ A _ U = 0 

is oscillatory if and only if X > un. This problem, including the computation of 
the exact value of the constant jin is a subject of the present investigation. 
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