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Abstract 

We introduce the concept of a convex set in universal algebra. It 
is shown that convex sets generalize some well-known concepts like con­
gruence class or convex sublattice. We study some natural properties of 
convex sets and outline some problems connected with the new concept. 
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1 The concept of convex set 

Several special subsets play special roles in classical algebras. For example, 
subgroups, normal subgroups or cosets of groups, ideals in rings and lattices 
etc. A considerable part of universal algebra deals with general approaches to 
various subsets of algebras like those above. Typical examples are subalgebras 
or congruence classes. In the following we are going to propose a definition of 
another type of subset of a general algebra. These subsets will be called convex 
sets. 

As we will see, the concept of convex set generalizes some important special 
subsets. For example: (1) each congruence class is a convex set (thus, e.g. cosets 
of groups are convex sets); (2) moreover, in permutable varieties, the concepts 
of a convex set and that of a congruence class coincide (thus, e.g. each convex 

* Supported by project Aktion 30p4 "Dependence and algebraic properties of congruence 
classes." 
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set of a group is, conversely, a coset); (3) in case of lattices, convex subsets are 
precisely convex sublattices. 

We will deal with terms whose variables will be divided into two groups. We 
will handle this by writing p(x\,... , .x n ,u i , . . . ,H m ) , denoting the variables of 
the first group by Xi and the variables of the second group by yj. We will also 
use the abbreviations x and y for (x\,..., xn) (or x\,..., xn) and (Hi,..., ym) 
(or Hi,..., ym), respectively (if n and m are obvious from context). 

Definition 1 Let JC be a class of algebras of the same type. An (n + m)-a,ry 
term p(x\,..., x n , Hi,..., ym) (n, m > 0) is called a JC-convex term in y\,..., ym 

if the identity p(x\,..., xn, u,..., H) « H holds in rC. For A G /C, a subset CCA 
is called a JC-convex set (in A) if for each term p(x\,..., xn, y\.,..., Hm) which 
is a rC-convex term in y\,..., ym and every a i , . . . , a n G .4, Ci , . . . , cm G C, it 
holds p ( a i , . . . , a n , c i , . . . , c m ) G C 

Remark 1 (1) If JC is obvious from context (or is not important), we omit the 
prefix "/C-" (e.g. we use only "convex term" instead of "/C-convex term"). In 
similar way we omit any subscripts, superscripts, e t c referring to JC. 

(2) Note that the fact that p(x\,..., x n , y,..., y) « y holds in rC means that 
for each A G JC and every a i , . . . , a n , c G .4 it holds p(a\,..., a n , c , . . . , c) = c. If 
for every a x , . . . , a n G A, c x , . . . , c m G C, it holds p(a1}... , a n , C i , . . . , c m ) G C7, 
we say that C is H-closed under p. Therefore, convex sets are just sets which 
are H-closed under all convex terms. 

(3) The set of all rC-convex terms in Hi,..., ym will be denoted by 
CT^(H i , . . . ,H m ). The set of all /C-convex sets in A G rC will be denoted by 
CS/c(A). If there is no danger of confusion we write only CT/c instead of 
GT}c(y\,..., Hm). Thus e.g. p(x, y) G CT/c means that p is a convex term in y. 
Also, CT/c will denote the set of all rC-convex terms. 

(4) The notions of a convex term and a convex set are inspired by the notions 
of an ideal term and an ideal (see e.g. [1, 2, 8]): Let the class JC contain an 
equationally definable constant 0. A term p(x, y) is called a JC-ideal term in y if 
j;(x, 0 , . . . , 0) ^ 0 holds in JC. For A G /C, a subset I C A is called a rC-ideal if it 
is H-closed under all rC-ideal terms. Symbols IT/c(Hi,..., ym) and I/c(A) denote 
the set of all rC-ideal terms in Hi,..., um, and the set of all /C-ideals in A. 

(5) Some remarks are now in order. First, the notion of an ideal is not 
applicable in algebras without (equationally definable) constants. For example, 
lattice ideals are defined without the need of existence of 0, they are therefore 
not approachable via the universal algebraic notion of ideal. On "the other hand, 
as we will see, the notion of a convex set, when applied to lattices, yields the 
notion of a convex (in the sense of order convexity) subuniverse. Therefore, 
lattice ideals (since they are convex subuniverses) are special cases of convex 
sets. In lattices with 0, however, a subset is a lattice ideal iff it is an ideal (in 
the universal algebraic sense). In this case, lattice ideals are precisely convex 
sets containing 0. Second, even in algebras with 0, other subsets than those 
with 0 may exhibit behaviour similar to that of ideals. The notion of a convex 
set seems appropriate in this respect. Moreover, although we come to convex 
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terms by replacing "0" by "u" in the definition of ideal term, the constants 0 
play usually some specific role in classical algebras. This leads to the fact that 
not each ideal term is a convex term. In this respect, convex sets are to be 
expected to behave as "ideals unaffected by the special role of 0". Third, there 
are points of departure from the line pursued in the study of ideals, i.e. there 
are phenomena which do not exist in the case of ideals (we will see more on this 
topic later). 

As we will see, in several cases the condition "being u-closed under all convex 
terms" is equivalent to "being u-closed under certain convex terms". This leads 
to the following definition. 

Definition 2 A subset B C CT/c is called a basis of CTJC if for each A £ /C 
and any C C A it holds that if C is u-closed under all terms of B then it is 
/C-convex. 

2 Relations to other subsets and examples 

First, we give some examples of convex terms. 

Example 1 

1- P(y) = 2/ is a /C-convex term (a trivial one) in y for any /C. 

2. If /C is any class of lattices then 

p(j/i,2/2) =yi VH2, p(xuyuy2) = Hi V (y2 A i i ) 

are /C-convex terms (in u's). 

3- p(2/i 5 2/2? 2/3) — yiy~iXy?> ls a ^-convex term for any class /C of groups. 

Except for a trivial case, there is an infinite number of convex terms. 

P ropos i t i on 1 CT/c is closed under y-composition in that if p(x,Hi,... , Hm)> 
Pj(xjlyj), for j = 1 , . . . , ra, are from CTJC then 

p ( x , p i ( x i , y i ) , . . . , p m ( x m , y m ) ) e C T K . 

Therefore, if CTJC contains at least one non-trivial term (i.e. different from y) 
then CT;c is infinite. 

Proo f Let yj = (y , . . . , y) (for all j = 1 , . . . , ra). Then Pj(£j,yj) ~ y holds in 
/C and since also p(x, u,..., y) « u holds in rC, we have that 

p ( x , P i ( x i , y i ) . . . , p m ( x m , y m ) ) « p ( x , j / , . . . ,u) « u 

holds in /C. The rest is clear. • 
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Propos it ion 2 For any K and each A € K, 0, {a} (for any a G A), and A are 
convex sets. 

Proof The fact that 0 is a convex set follows directly from the definition 
(this is easier seen if the condition to be satisfied by convex sets is rewrit­
ten as (Va, c)(a G An,c E C7m => p(a, c) G C)). Any {a} is convex since 
p(ai,..., an , a,... ,a) = a e {a} holds for every convex term p (by definition). 
The last statement is clear. • 

Recall that an algebra A of type (F, a) is called idempotent if f(x,..., x) « x 
holds in A for each / G F. A class /C of algebras is idempotent if each A G K 
has this property 

Proposit ion 3 Let K be a nonempty class of algebras of the same type. Then 
K is idempotent iff CSAC(A) C Sub(A) for each A G K. 

Proo f Let K be idempotent, A G K,C G C S K ( A ) . Idempotency of K yields 
that for each / G F ((F,a) denotes the type), f(yi,... ,Hm) is a convex term. 
As a convex set, C7 is, by definition, closed under / . Thus, C7 G Sub(A). 
Conversely, if CS^(A) C Sub(A), then since {a} G CS/c(A), we have {a} G 
Sub(A). Therefore, for each / G F, / ( a , . . . , a) G {a}, i.e. / ( a , . . . , a) = a, thus 
/ ( x , . . . , x) » x holds in each A G /C which means that /C is idempotent. • 

Remark 2 In general, neither C S K ( A ) C Sub(A) nor Sub(A) C CSA: (A) 
holds. Groups serve as a counterexample: As we will see later on, in the case 
of groups, convex sets coincide with congruence classes. Now, neither each 
subgroup is a congruence class, nor each congruence class is a subgroup. 

Let 0 be a binary relation on a set A. For any C7 C A we put 

Ce = {a e A \ (a,c) e0 for some c G C} 

and call C7̂  a 0-closure of C7. If C = {c}, C7̂  is usually denoted by [c]e and 
called the class of 9 determined by c. 

Propos it ion 4 Let 0 be a reflexive compatible binary relation on an algebra 
A G K. For any C G C S K ; ( A ) , Ce G CS/c(A). In particular, each relational 
class [a]o is a convex set. 

Proof Let p(xi,... ,xn,yi,... ,ym) G CT/c, a i , . . . , a n G A, cu...,cm G C°. 
Then there are Cj G C7 such that (cj,c'j) G 6 (j ~ l , . . . , r a ) . Reflexivity and 
compatibility of 0 yields (p(ai , . . . , a n ,c i . . . , c m ) , p ( a i , . . . , a n , c i . . . , c m ) ) G <9. 
Furthermore, p(ai, • . . , a n , Ci . . . , cm) G C by convexity of C7. Hence, 
p(ai,.. •, an , ci . . . , cm) G C761, proving the convexity of C7̂ . The rest follows 
by Proposition 2. • 
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Next we describe the basic relation to ideals. 

Proposit ion 5 Let JC have an equationally definable constant 0. Then each 
convex term is an ideal term, i.e. CT/c C IT/c, and each ideal is a convex set, 
i.e. IK (A) C OS* (A). 

Proof Clearly, validity of p(x\,... , x n , u , . . . ,y) « y implies validity of 
p(x\,..., xn, 0 , . . . , 0) « 0. The rest is obvious. • 

The converse to Proposition 5 (i.e. each ideal term is a convex term, and 
each convex set containing 0 is an ideal) does not hold. The following is a 
counterexample. 

Example 2 Let F = {0,O} where 0 is miliary and g is unary. Consider an 
algebra A = (A, F), where A — {0, a, b} and g is given by 

0 
0 0 
a b 
b a 

and put JC = {A}. The terms are of the form gk(y) or ^ ( 0 ) for k = 0,1, 2 , 3 , . . . 
(where g°(y) — y). Clearly, each gk(y) is an ideal term in y (gk(0) « 0 holds in 
A). A moment reflection shows that gk(y) is a convex term in y iff k is even. 
Therefore, IT/c £ CT/c- Moreover, {0,a} is a convex set containing 0 which is 
not an ideal (in fact, g(a) — b $ {0,a}, i.e. {0,a} is not closed under the ideal 
term g). 

Convex sets in "classical algebras" We are now going to show examples 
of convex sets in some classical algebras. 

The first interesting case is that of algebras from permutable varieties: con­
vex sets coincide with congruence classes in algebras from permutable varieties. 
We will see this (and more) in Section 3. 

Let us focus on lattices. Denote by C the variety of all lattices. If L = 
(L, A, V) is a lattice, a subset C C L will be called o-convex if for every c\, c2 € C 
and each a E L we have a E C whenever c\ < a < c2. Denote 

Pi(xuyuy2) = 2/ iV(y 2Axi) (1) 

£2(2/1,2/2) = 2/i A1/2. (2) 

Clearly, both pi and p2 are £-convex terms. 

Propos it ion 6 Let L be a lattice, C C L. Then C is an C-convex set iff C is 
an o-convex subuniverse. Moreover, terms (1) and (2) form a basis of CTc. 

Proof First, we prove (*): a subset C C L is an o-convex subuniverse of L iff 
it is H-closed under (1) and (2). 



26 Radim BĚLOHLÁVEK 

Let C7 be an o-convex subuniverse, a € L, Ci,c2 G C Since C is a sub-
universe, we have Ci A c2 £ (7, cxVc2 G C Clearly, cjAc2 < pi(o,Ci, c2),p2(ci, c2) 
and pi(a,ci,c2),p2(ci,c2) < Ci V c2. o-convexity of (7 then yields 
pi(a,Ci,c2),p2(ci,c2) G C7. Thus, (7 is u-closed under both p\ andp 2 . 

Let, on the other hand, C7 be u-closed under p\ and p2 . Putting X\ = u2, we 
get that C is u-closed under Pi (2/2,2/1,1/2)- Since p\ (u2,2/1,2/2) « l / i V 2/2 holds 
in £ and p2(2/1,2/2) = 2/1 A u2 we get that C7 is a subuniverse. Now, let a £ L, 
c\,c<2 G C7 be such that ci < a < c2. Then since C7 is u-closed under p1? we get 
a = Pi(a,ci ,c2) G C7, i.e. (7 is o-convex, provin (*). 

Now, let C7 be an /2-convex subset. By definition, it is u-closed under all 
£-convex terms, thus also under (1) and (2). By (*), (7 is an o-convex sub-
universe. 

Conversely, let C7 be an o-convex subuniverse. Let p(x\,..., xn, y\,..., ym) 
be an £-convex term. Take any O i , . . . , o n G L, c i , . . . , c m G C7. Put cA = 
CiA- • -Acm, cv = CiV- • -Vcm. Since C7 is a subuniverse, we have cA ,cv G C7. Fur­
thermore, since p is £-convex in y\,..., ym we have p(a\,..., an, c A , . . . , cA) = cA 

and p ( a i , . . . , an , c v , . . . , cv) = c v . It is well-known that each term function in 
a lattice is monotonic, we get from cA < c i , . . . , cm and c i , . . . , cm < cv that 

p ( O i , . . . , O n , CA , . . . , CA) < p(0i, . . . , O n , Ci, . . . , C m ) < p ( o X , . . . , O n , CV , . . . , C V ) . 

Since C7 is o-convex, we finally get p(a\,..., on , C\,..., cm) G C7, i.e. C7 is an 
£-convex set. • 

Remark 3 (1) A direct consequence of Proposition 4 and Proposition 6 is the 
well-known fact that each congruence class in a lattice is an o-convex sublattice. 

(2) We will see later on that in the case of algebras from permutable and 
regular varieties there is always a finite basis of convex terms. Note that the 
variety of all lattices is neither permutable nor regular. 

(3) Recall that an ideal in a lattice L is a (nonempty) subset / C L such that 
ii V i<i £ I for any ii,i2 G I, and a G / whenever a < i for some i G / . Clearly, 
each lattice ideal is an o-convex subuniverse of L, hence by Proposition 6, an 
£-convex set. It is also clear that if L has the least element 0 then lattice ideals 
in L are precisely £-convex sets containing 0. 

3 Convex sets in permutable and regular varieties 

Since each congruence class is a convex set, it is natural to ask about the con­
verse: Under what conditions is each convex set a class of at least one congru­
ence? It will turn out that a sufficient condition is that the algebra in question 
is from a so-called permutable variety Recall that an algebra A is called per­
mutable (or congruence permutable) if 

holds for all 8,(p G Con(A). A variety V is called permutable if each A G 
V is permutable. The following characterization of permutable varieties was 
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obtained by Mal'cev [6]: A variety V is permutable iff there is a ternary term 
p(x,y,z) such that x « p(x,z,z) and p(x,x,z) « 2 hold in V. The term p is 
called a Mal'cev term of V. The following is another result from [6]: A nonempty 
subset C C A of an algebra A is a congruence class of A (i.e. there are 6 G 
Con(A) and a G A such that C = [a]51) iff for each unary algebraic function r 
it holds T(C) C C or T(C) H C = 0. 

Denote by CC(A) the system of all congruence classes of the algebra A plus 
the empty set, i.e. 

CC(A) - {0} U {[a]e \ a e A, 6 e Con(A)}. 

For term t(x\,... ,xn,y) and a Mal'cev term p of a permutable variety V, put 

pt(xi,..., xn, yi, 2/2,2/3) = p(yi, t(xi,..., xn, y2),t(xi,..., xn,y3)) 

and 
B = {pt(xi,...,xn,y1,y2ly3) \ t(xi,... ,xn,y2) is a term}. 

L e m m a 7 Be£ V be a permutable variety, A e V, and 0 7̂  C C A. F/ien C zs 
a congruence class of A iff it is y-closed under all terms of B. 

Proof Let C be H-closed under the terms of B. To prove that C is a congruence 
class, we use the above Mal'cev characterization of congeuence classes. Let 
T(X) = t(a\,... ,an,x) be a unary algebraic function, c e C, and T(C) G C. We 
have to check that for any d G C it holds T(d) G C. Since C is y-closed under 
pt, we get r(d) = p(T(c),T(c),T(O!)) = p*(a i , . . . , a n , r ( c ) , c ,d ) G C. 

Conversely, if C is a congruence class then it is, by Proposition 4, u-closed 
under all V-convex terms. A moment reflection shows that all terms of B are 
V-convex in y. The conclusion therefore follows. • 

P ropos i t i on 8 Let V be a permutable variety. Then B is a basis of CTy and 
each V-convex set of any algebra A G V is a congruence class. 

Proof If a subset C of an algebra A G V is u-closed under all terms from 
B, then, by Lemma 7, it is a congruence class and thus, by Proposition 4, a 
V-convex set. Therefore, B is a basis of CTy. The rest immediately follows. 

• 
Another question we ask is: Under what conditions is each convex set a 

class of at most one congruence? A sufficient condition is that of regularity. 
Recall that an algebra A is called regular if [a]0 = [a]^ implies 9 — (ft for all 
6, (ft e Con(A) and each a G A, i.e. two congruences are the same whenever 
they have a common class. A variety V is called regular if each A G V is regular. 
The following claim is immediate. 

P ropos i t i on 9 An algebra A is regular iff each convex set in A is a class of 
at most one congruence of A. 
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A combination of the two above questions is: Under what conditions is each 
non-empty convex set a class of exactly one congruence? We say that an algebra 
A has congruences determined by convex sets (CDCS for short) , if each non­
empty convex set of A is a class of exactly one congruence of A. A variety V 
has CDCS if each A G V has CDCS. 

If A has CDCS, then we denote the congruence determined by a convex set 
C by 9c (i.e. 9c is the unique congruence satisfying [c]ec = C for some c £ C). 
For a fixed a G A we denote by CSa(A) the set of all convex sets of a given 
algebra A, i.e. 

CSft(A) = { C 7 G C S ( A ) I aeC}. 

Lemma 10 If A has CDCS, then CSa(A) and Con(A) are (under set inclu­
sion) isomorphic algebraic lattices for any a £ A. 

Proo f Since A has CDCS, the mapping sending C to 9c is clearly bijective. 
Furthermore, it is also order-preserving, i.e. C C D implies 9c Q 6D- Indeed, 
suppose 9c 2 @D- Put 9 = 9c H 0/> Then C is a class of 9 (since C is both 
a class of 9c and a subset of D which is a class of 9Q), but 9 ^ 9c (since 
we assumed 9c 2 &D)- Therefore, C is a class of two different congruences, a 
contradiction to CDCS. • 

Proposit ion 11 Any algebra with CDCS is permutable. 

Proo f Let 9, (f) G Con(A), A be an algebra with CDCS. We have to show that 
(9 o 0 r= 0 o 0, i.e. that ({a}0)* = ({a}*)9 for any a G A. Since {a}6', {a}* C 
({a}*)*, we have {a}* V {a}* C ({a}*)*. Conversely, if b G ({a}*)* then for 
some c G {a}^ it holds (b,c) 6 0 = #{a}tf> C 0{a}^V{a}^ ( w e u s e Lemma 10), 
i.e. b G {c}Wv{«>* = {a}9 V {a}^. To sum up, ( { a } Y = W * V {a}^. 
We therefore infer ({a}9)^ = {a}* V {a}^ = {a}^ V {a}* = ({a}*)0, i.e. A is 
permutable. • 

Propos i t ion 12 4̂ variety V /ms CDCS iffV is both permutable and regular. 

Proof If V has CDCS then it is permutable (by Proposition 11) and regular 
(by Proposition 9). Conversely, permutability and regularity of V implies (by 
Proposition 8 and Proposition 9) CDCS. • 

By well-known Mal'cev type characterizations of permutability and regular­
ity [4, 6, 9] we get the following corollary. 

Corollary 13 For a variety V, the following conditions are equivalent: 

(1) V has CDCS. 

(2) There exist a ternary termp, an integer n > 1, and ternary terms ti,...,tn, 
such that 

p(x, z, z) « x, p(x, xrz) » z 

[ti{x,y>z) « z,...,tn(x,y,z) » z) iff x^y 

are valid in V. 
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(3) There exist an integer n > 1, a (S-hn)-ary term q, and ternary terms 
£ i , . . . , tn, such that 

ti(x,x,z) « z,...,tn(x,x,z) « z 

x » o(x, y, z, ti (x, 2/, 2 ) , . . . , *n(x, 2/, 2:)) 

V &qfay,z,z,...,z) 

are valid in V. 

The following proposition has been obtained in [3] (£1, . . . ,tnyq denote the 
terms of Proposition 13 (3)). 

Propos i t ion 14 LetV be a regular and permutable variety, let A — (A,F) £ V 
and 0 7̂  C C A. Then C is a congruence class of some 0 G Con(A) if and only 
if C is y-closed under the following terms: 

(0) U(f(q(xi, x[, 2/,2/11,..., 2/i„),.. . , g(xm , x*;n, u, y m X , . . . , y m n ) ) , 

/Or eac/i m-ary f E F and every i = 1 , . . . , n; 

(b) q(x,y,y',yu...,yn) 

(c) r<(2/1,2/2) =*i(2/i,2/2,2/2) M i = l , . . . , n . 

As a corollary, we get that the following. 

Propos i t ion 15 if V is a regular and permutable variety of a finite type then 
the terms in (a)-(c) of Proposition 14 form, a finite basis O/CT/c. 

Proof Clearly, the terms of Proposition 14 are V-convex in u's. Each V-convex 
set is therefore H-closed under those terms. Conversely, every subset y-closed 
under those terms is, by Proposition 14 a congruence class, and therefore, by 
Proposition 4 a V-convex set. • 

4 Some further properties and directions 

The la t t ice of convex se ts 

Propos i t ion 16 For any class K of algebras of the same type and any A G /C 

(1) CSK; (A) is an algebraic closure system, the closure operator (sending X 
to [X]) is given by 

[X] = {p(a,c) I p(x,y) G CTjc(y), a e A,c e X}. 

(2) CS/c(A) is under set inclusion an atomic algebraic lattice. The least and 
the greatest elements are 0 and A, the atoms are just the singletons {a} 
(a e A). 
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Proof (1) It is routine to check that C S K ( A ) is closed under arbitrary inter­
sections, and hence, that it is a closure system. Take any X C A and denote 

(X) = {p(a,c) | p(x,y) € CT^(y) , a G A,c G X}. 

Since p(y) = u is a convex term, it holds Â  C (AT). Clearly, any convex set in A 
which contains X contains also (X). Furthermore, (X) itself is a convex set. In­
deed, if p(xi,..., x n , Hi,..., Hm) is a convex term, a x , . . . , an G A, c i , . . . , cm G 
(AT), i.e. Q = Pi(a^, c^) for some convex term pi, and some a; G A, c?; G K (i = 
1 , . . . ,ra), then since p ( x i , . . . ,-Cn>Pi(xi,yi), . . - , p m ( x m , y m ) ) is a convex term 
(by Proposition 1), we get p ( a L , . . . , an , c j . , . . . , cm) = p(ax,..., a n , p i (a x , c i ) , . . . , 
pm(am,cm)) G (AT), i.e. (AT) is y-closed under convex terms. To sum up, (X) is 
the least convex set containing AT, i.e. [X] = (N). Algebraicity follows directly 
from the description of the closure operator []: each element c G [AT] is in the 
form c = p(O i , . . . , a n , C i , . . . ,cm) (p a convex term, a i , . . . , a n G A, c x , . . . , c m G 
AT), hence c G [{c l 5 . . . , cm}], therefore [AT] = l j{[^ ' ] | N' C X, X' finite} which 
means algebraicity of [ ]. 

(2) Follows directly from (1) and Proposition 2. • 

Remark 4 Although CC(A) (the system of all congruence classes plus 0) is a 
subset of CS(A), it is in general not a sublattice. For example, take the five 
element lattice L called diamond (i.e. one of the prototypical non-distributive 
lattices), denote its elements by 0,a, b, c, 1 (0 < a^b^c < 1, every two of a, b, 
and c are non-comparable). Now, {a},{b} G CC(L) C CS(L). Since {0,a, b, 1} 
is an o-convex subuniverse, we get by Proposition 6 that {a} V {b} = {0, a, b, 1} 
in CS(L). However, {0,a,b, 1} is not a congruence class: in CC(L) we have 
{a}V{b} = {0 ,a ,b , c , l} . 

Closure operators offer a general approach to geometry (the following is due 
to Maeda, see e.g. [9]): The primitive notions are the set of points and the 
operator assigning to each set of points a subspace of points determined by the 
set. A geometry is a pair (G, C) where 

(1) G is a nonempty set (of so called points), 

(2) C is a closure operator on (7, 

(3) C({p}) = {p} for each p G G (a subspace determined by a point consists 
just of the point), 

(4) C(0) = 0, 

(5) C(Ar) = U{C(Y0 | ^ is a finite subset of X} (the closure operator is 
algebraic). 

As one may easily see, CC(A) (precisely: A as the set of points and the clo­
sure operator induced by CC(A)) forms a geometry in the above sense. This 
geometry has been investigated by Wille in [9] (Wille calls it "Kongruenzklassen-
geometrie", i.e. the geometry of congruence classes). The following proposition 
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which is a direct corollary of Proposition 16 shows that convex sets offer a more 
general approach. 

Corollary 17 For any class /C of algebras of the same type and any A G rC, 
(A, [ ]) (where [ ] is the closure operator induced by CS/c(A)J is a geometry. 

Therefore, the geometry of congruence classes is a special case of the "geom­
etry of convex sets". It seems to be an interesting problem to ask whether the 
converse is true: is each geometry a geometry of convex sets of some algebra? 
For the case of geometry of congruence classes the answer is negative [9, p. 28]. 

Convex equivalences 

Defin i t ion 3 Let A be an algebra of a class /C of algebras of the same type, 0 
be an equivalence on A. 0 is called a JC-convex equivalence on A if each class 
of 0 is a /C-convex set, i.e. [a]e G CS/c(A) for any a G A. 

Remark 5 (1) We denote by CEqvA:(A) the set of all /C-convex equivalences 
on A. 

(2) Since each congruence class is a convex set, each congruence is a convex 
equivalence, i.e. Con(A) C CEqv^(A). 

(3) Clearly, there is no counterpart of the notion of convex equivalence in 
the theory of ideals. Namely, each ideal contains 0, so ideals are located by 
around 0. 

Example 3 Lattices provide non-trivial examples of convex equivalences that 
are not congruences. By Proposition 6, an equivalence on a lattice is convex 
iff each of its classes is an o-convex subuniverse. Therefore, the equivalence on 
a four-element Boolean lattice with precisely one non-singleton class contain­
ing one atom and the least element 0 is a convex equivalence which is not a 
congruence. 

Propos it ion 18 For any K and A G /C. CEqv^(A) is under set inclusion a 
complete lattice with the least element u (identity) and the greatest element i 
(the full relation A x A). 

Proof Consider the intersection of any family of convex equivalences. Each 
class of the intersection (the intersection is an equivalence) is an intersection of 
classes of the equivalence relations of the family, thus, an intersection of convex 
sets. The claim therefore follows from Proposition 16. • 

Although Con(A) is a sublattice of Eqv(A), CEqv(A) is not. The following 
is a counterexample. 

Example 4 Let L be the four-element Boolean lattice, i.e. L = {0,a,b, 1}, 
0 < a, b < 1, a and b are mutually non-comparable. The partitions 

7 n = { { 0 , a}, {&},{!}} and «2 = {{0}, {&}, {a, 1}} 
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represent convex equivalences 67Tl, 61X2 from CEqv(L). Clearly, the join 6ni V6n2 

in Eqv(L) is represented by {{0,a, 1}, {b}}. However, in CEqv(L), the join is 
the full relation L x L. 

However, the following is true. 

Proposit ion 19 For any A, Con(A) is a (complete) sublattice ofCEqv(A). 

Proo f The join \fieJ 0{ in Con(A) of 6i G Con(A) coincides with the join in 
Eqv(A). Since \fieJ0i G CEqv(A), the conclusion follows. • 

The concepts of a convex set and a convex equivalence naturally generate 
problems studied for congruence classes and congruence relations. As an exam­
ple, we focus on the problem of direct decomposability. 

Let /C be a class of algebras of the same type. It is easy to see that if CA 
and CB are /C-convex sets in A G /C and B G /C, respectively, then CA X CB 
is a /C-convex set in A x B. Therefore, if 6A and 9B are /C-convex equivalences 
on algebras A and B from /C, respectively, then the relation 6A X 6B on A x B 
defined by ((Oi,bi), (a2,b2)) G 6A X 6B iff (aua2) G 6A and (61,62) G 6B, is 
a convex equivalence. We say that a class /C of algebras has directly decom­
posable convex equivalences (DDCE) if for any A, B G /C, the algebra A x B 
has DDCE in that for any 6 G CEqv^(A x B) there are 6A G CEqv x :(A) and 
6B G CEqv x :(B) such that 6 = 6A X 6B- Unlike direct decomposability of con­
gruences (see [5]), DDCE is too strong for varieties: no variety V except for 
the trivial one given by the identity x w y has DDCE (in fact, we may re­
place "variety" by "class closed w.r.t. direct products"). Indeed, let A G V, 
\A\ > 1, and take a G A. The equivalence on A x A given by the partition 
{{a} x A} U {(b, c) I b 7-= a} is convex but cannot be decomposed into a direct 
product of convex equivalences on A. Hence V does not have DDCE. 

However, there is a weaker condition: We say that a class /C of algebras 
has directly decomposable convex sets (DDCS) if for any A , B G /C, the algebra 
A x B has DDCS, i.e. each C G CS,c(A x B) is of the form C = CA x CB for 
some CA G C S K ; ( A ) and CB G CS/c(B). 

Proposit ion 20 The following conditions are equivalent for any variety V: 

1. (1) V has DDCS. 

2. (2) There is an (n + 2)-ary term p and binary terms r\, S i , . . . , r n , sn such 
that 

У r « p(xi,...,жn,2/,y) 

X Гr з p(ri(x,u),.. .,r n(ж,u),.т,H) 

У r Ö p(s i(ж,y), . . . ,s n (ж,y),x 5 y) 

holds in V. 
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Proof Observe first the following Claim: For algebras A, B G V and C C AxB, 
C is directly decomposable iff (a, b) G C implies (a, b') G C7 for any b' G pr B (C) . 

"(1) =-> (2):" Take Fv(x,y) (the free algebra in V generated by x and 
u) and consider the V-convex set [(x,x), (H,u)] generated by {(x,x), (y,y)} in 
Fv(x,y) x Fv(x,y). By Claim we have (x,u) G [(x,x), (;//,u)]. Therefore, by 
Proposition 16 we infer that there is a V-convex term p ( x i , . . . , x n , 2/1,7/2) and 
elements (r^si) = (ri(x,y),Si(x,y)) G Fy(x,u) x Fy(x,u) such that (x,H) = 
p ( ( r i , 5 i ) , . . . , (rn,sn), (x, x), (y,y)). Rewriting this identity coordinatewise and 
the fact that p is V-convex yields (2). 

"(2) =r> (1):" Let A , B G V, C G CSV(A x B). By Claim, we have to prove 
that if (a, b), (a', 6') G C then (a, b;) G C By (2) and the fact that C is V-convex 
we have (O,b') = p((r1(a,a,),Si(b,b')),..., (rn(a,a'),sn(b,b')),(a,b),(a',b1)) G 
(7, completing the proof. D 

Example 5 (1) Rings with unit have DDCS: Put n = 1, p(-Ci,2/1,3/2) = 2/2 + 
a?i(jli ™2/2), r i (x,y) - 1, si(x,y) = 0. 

(2) Lattices have DDCS: Put n = 1, p(xuyuy2) = (2/1 A (2/2 V x)) V (H2 A 
(Hi Vx)), n(x,H) = x, 5i(x,H) =y. 
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