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Abstract

The natural splines of odd degree 2m — 1 interpolating given data are
known to have a minimal Lo-norm of its m-th derivative on the class
of interpolants from W3". Similarly the natural splines of even degree
2m interpolating mean values are known to have a minimal Lz-norm of
its m-th derivative on the class of interpolants from W3". In this paper
we will consider the class of interpolatory splines of degree k& > 0 only
and we will use free parameters of such interpolatory splines of degree
k > 0 to minimize some functionals with geometrical or physical meaning
(curvature, energy). To get this spline we shall use the B-spline basis and
a minimum N-(semi)norm g-inverse of sorme matrix.

Key words: Interpolatory spline, norm optimization, B-spline
basis, minimum N-(semi)norm g-inverse of matrix.

2000 Mathematics Subject Classification: 65F20, 65D05, 65D07

1 Introduction

Let the sequence of knots AX := X} < ...y, a < Aj <b,j=1,...,g and the
prescribed data (z;,yi), a <z; <b,i=1,...,n be given. In this paper we will
consider the vector space of splines of degree k£ > 0, defined on an interval [a, b]
with the sequence of knots AX. Our problem is to find a spline of degree k > 0
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106 Jitka MACHALOVA

interpolating data (z;,y;), ¢ = 1,...,n, and minimizing some functionals with
geometrical or physical meaning. In the following this spline will be referred as
an optimal interpolatory spline.

We shall give the conditions under which the optimal interpolatory spline of
degree k > 0 exists and it is unique.

The problem of the optimal interpolation Let the sequence of knots AX
and data (zi,y;), a < z; < b, ¢ = 1,...,n be given. The problem is to find
a spline sy (z) of degree k > 0, defined on interval [a,b], with the knots AM,
wterpolating data (x;,y;), 1 = 1,...,n for which

Ji (sk):/b [s" (m)]zdw, Le (0,1, k1) (1)

is minimal.
We will use the B-spline representation of the spline, which will be described
in the following section.

2 The B-spline representation

The vector space of splines of degree k > 0, defined on interval [a,b], with the
knots A, will be denoted by S [a,b]. Its dimension is

dim (Sk [a,b]) =g+ k+ 1.

Every spline si(z) € S [a,b] can be written as a unique linear combination of
some g + k + 1 basis function. We will consider the B-spline basis. To obtain
this basis we need additional knots

/\_kg...SAﬁlg/\():a and b:)‘g+1§/\g+25-~-s/\g+k+l~

9

With these additional knots we can construct the B-spline basis {B™'}/_ |

and every spline s (z) € S [a, b] has a unique representation

sk (@) = Y bBI (2), (2)

i=—k

where b; are called the B-spline coefficients of sy, ().
Now let M, », denotes a set of (m,n) matrices and Myn = M,, ,,. Further
we will use a collocation matriz Cy11(z) for a given vector T = (z1,...,7,)T.

The following definition was published in [1].

Definition 2.1 Let x € M, ;1. The collocation matriz Cri1(z) € Moy g4kt1
of B-splines B¥™ (z),i = —k,...,g for a vector z = (z1,..-,%n)7 is defined as
B¥ (z1) ... B (ay)
Cry1(z) = : . : 3)

BFt (zy) ... BETT (2)
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The following theorem states basic properties of the collocation matrix

Cror1 ().

Theorem 2.2 (Schoenberg-Whitney conditions, see [1], [3]) Let © € My1.
Then for the matriz Ci41(z) the following statements hold.

a) Cr+1(z) is of full column rank if and only if n > g+k+1 and there exists
{u—k, .. ug} C{z1,..., 2} with u; < wujp1, 1= —k,...,g — 1 such that

)‘i<ui<)‘i+k+ls Z:_kavg
b) Crt1(z) is regular if and only if
n=g+k+1 and Aick1 <z <Xy, 1=1,...,n

¢) Cry1(x) is of full row rank if and only if n < g+ k + 1 and there exists
{u1, - pn} C{Ak, o A} with pi < pigr, 1 =1,...,n—1 such that
/J/i<xi</-l‘i+k+11 1::1,...,77,

For | € {1,...,k — 1}, the I-th order derivative of a spline s (z) of degree
k > 0 is a spline of degree k — [ having the same knots. Its B-spline coefficients
can be easily computed from those of sy (z), i.e.

! g
=[Jk+1-5 > B (@), 4)
j=1 i=—(k—1)
with
by if j =0,
W_) ,
b= Y i s 0. (5)

Xitks1-j — Ag

For more details see in [3]. In matrix notation we can write

!
s (@) = [J(k+ 1= j)Crmrai()®, (6)
j=1
where
b = b, with Sp = DiL;... DLy € Myypsi—t,9+k+1, (7)
and with

, 1
Dj = diag (———) € Mg+k+1._]‘
Aitkt1=5 = A/ im(hj). g

.....

and bidiagonal matrix

-1 1

€ Mytht1—jg+k+2—5-
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3 g-inverse for a minimum norm solution of a consistent
system Az = z

Consider the system of linear equations
Az = 2. (8)

If A € M,, is nonsingular matrix and z € M,y 1, the unique solution of the
linear equation (8) is given by # = A~!z. In this section we consider a general
matrix A € My, » and vector z € M, ; and we want to describe all solutions
of the system of linear equations (8).

If there exists a matrix G such that z = Gz is a solution of (8) for any z such
that Az = z is a consistent equation, then G does the same job as the inverse
A~1 of A, hence may be called a generalized inverse (g-inverse) of A and it is
denoted by A~. For general matrix A € M, , the g-inverse A~ is not unique.
If A is nonsingular matrix, then A= = A~1.

Theorem 3.1 Let A~ be a g-inverse of A. Then it is necessary and sufficient
that
AATA = A

Proof See [9].
Lemma 3.2 A g-inverse A~ of A € My, exists and rank(A™) > rank(A).
Proof It is given in [9], pp. 21 and it is based on a rank factorization.

Theorem 3.3 Computation of A~. Let A € Mm,n be a matriz of rank r and
let it be possible to rearrange the columns of A in the form A = (By, By), where
By € Mur is of rank v and By € My, n—r. Then one choice of g-inverse of A
18

AT = <g> where P = (BI'B;)"'BT.
Proof See [9].

Remark 3.4 In programme system MATLAB we can compute one choice of
A~ by MATLAB command pinv. Another choice of A~ can be generated by

left division operator
A7 = A\L, = A\eye(m). - (9)

Theorem 3.5 Let A € M, ,, any g-inverse A~ of A and an arbitrary vector
u € My be given. Then

r=ATz+ (I —-A"Au (10)
is a general solution of a consistent nonhomogenous equation Az = 2.

Proof See in [9], pp- 24.
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Corollary 3.6 Let A € M, ,, with rank(4) = m, Z € My —m such that
AZ =0, rank([AT,Z])) = n and an arbitrary vector v € My, _ma be given.
Then

r=A"z2+Zv (11)

is a general solution of a consistent nonhomogenous equation Ax = z.

Proof a) Every z = A7z + Zv for an arbitrary vector v is solution of Ax = z
because Az = AA™z + AZv = AA™z = 2. The last equality is easy to verify.
Because Az = z is consistent, we have z = Aw for some vector w and AA~ Aw =
Aw = z.

b) Let w = Zwv, where v is an arbitrary vector. Then with respest to the
Theorem 3.5 vector z = A7z + (I — A~ A)u is a solution of Az = z and
r=A"z+(I—-A"A)Zv=A"z+ Zv. a

Let N € M,, be a p.d. (positive definite) or p.s.d. (positive semidefinite)
matrix. For a vector u € M, ; we define the N-norm or N-seminorm || u ||n
by ||lulln = VuTNu and denote the inner product of two vectors u,v € My,
by (u,v)y = vT Nu.

Now we inquire whether there exists a g-inverse G' such that Gz has the
smallest N-norm or N-seminorm in the class of all solutions of Az = z, that is,
we wish to find a solution of linear equations (8), such that

min flzlly = Gzlx

where N is p.d. or p.s.d. matrix. This solution is reffered to as a minimum
N-(semi)norm solution of Az = z.

Theorem 3.7 Let G be a g-inverse of A such that Gz is a minimum
N-(semi)norm solution of a consistent nonhomegenous equation Az = z. Then
it 1s necessary and sufficient that

AGA=A  (GA)TN = NGA.
Proof Sce in [9], pp. 44-46.

Remark 3.8 A matrix G which provides the minimum N-(semi)norm solution
of Az = zis denoted A7, or more explicitly by A () and reffered to as minimum
N-norm or N-seminorm g-inverse of A. We must note that AT'H(N) may not be

unique.

Theorem 3.9 Let A € M, be a matriz with rank(A) =m, Z € Mpn-m
be a matriz such that AZ = 0, rank([AT,Z]) = n and N € M, be p.d. or
p.s.d. matriz. Then there ezists just one minimum N -(semi)norm solution of a
consistent nonhomogenous equation Az = z if and only if ZTNZ is p.d.
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Proof a) Let zp = Gz be a minimum N-(semi)norm solution. Then using
Theorem 3.7. is AGA = A and (GA)TN = NGA. A general solution of Az = z
isz = Gz+ Zv, where v € Mp,_m 1 is an arbitrary vector, (see (11) in Corollary
3.6). Now

el = [1G2 + Zvlly = |Gzllx + 2(Gz, Zv)n + || 20|}
and
(Gz,Zv)Nn = (Gz,(I — GA)Zv)N.
Because Az = z is consistent, we have z = Aw for an arbitrary w € M, ; and
(Gz, Zv)n = (GAw, (I — GA)Zv)y = wT (GA)TN(I - GA)Zv
= wl(NGA - NGA)Zv =0.

Thus we have
el = IGzl1% + 1Zvll% = llzollx + 120l
So we can see that ||zo||n < ||z||n- Hence ||zo||n < ||z||n if and only if
1Zvl|y >0 & |lv]llzrnz >0 ZTNZ ispd.

b) Uniqueness: Let z9 = Goz and z; = Gz, where Gy and G; are both
AL (n) such that Go # Gy and ||zol|v = [|z1]|n. Then

I Nzy — 2T N2y = 0= 2TGINGoz — 2"GT NG,z = 0.
Because Az = z is consistent, we have z = Aw for an arbitrary w € M, ; and
0 = 2TGINGoz = 2TGTNG, 2z = wT ATGT NGy Aw — wT ATGT NG, Aw
= wT [(GoA)"NGoA — (G14)"NG 1Al w = w" [NGyA — NG1 A]w
& N(Go—G1)A=0

or GA is unique and hence Gy = GAw is unique and hence o = x;. Thus the
proof is finished. ]

Theorem 3.10

1. Let N be a p.d. matriz. Then one choice of A;(N) is

N7TAT(AN—1AT)~.
2. Let N be a p.s.d matriz. Then one choice of A;(N) s
(N + AT A)~ AT[A(N + ATA)~ AT|-.
3. Let N be a p.d. or p.s.d. matriz and let
(N AT>_ _ <Cl C’g)
A0 T \C5Cy )
Then Cy is minimum N -(semi)norm g-inverse of A.

Proof Proof is given in [9], pp. 45-47.
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4  Problem of the optimal interpolation

4.1 The interpolatory conditions

With the given sequence of knots A\ and given data (z;,v;), a < z; < b,
i = 1,...,n we want to find an interpolatory spline sx(z) of degree k > 0
defined on interval [a,b], which minimizes functional (1). Using the B-spline
representation (2) we can rewrite the interpolatory conditions si(z;) = y;,
1=1,...,n as

9
sk(zi) = Z biBy T (@) =wi, i=1,...,n. (12)
j=—k

Relation (12) can be written in matrix notation as
Crt1(@)b =y (13)

where b = (b_,...,09)T,y = (Y1,---,yn)T and Cry1(z) € My gik41 is collo-
cation matrix (see Definition 2.1).

Now let us discuss the system of linear equations (13) with respect to the
knots.

a) If the system (13) is inconsistent, then the optimal interpolatory spline
sk(z) does not exist.

b) If the system (13) is consistent and the matrix Cy41(z) is regular, i.e.
(using Theorem 2.2) n = g+ k+1and X\;_x_1 < z; < Aj, ¢ = 1,...,n, then
there exists just one solution of (13) and there are no free parameters which
could be used to the minimization of the functional (1).

c) If the system (13) is consistent and the matrix Cyy1(z) is of full row
rank, i.e. (using Theorem 2.2) n < g+ k + 1 and there exists {u1,...,un} C
{AZk, o, Ag} with py < pig1, @ =1,...,n — 1 such that

pi < i < fipkyr, T=1,...,m,

then there exists a solution of (13) and there are g + k + 1 — n free parameters
which we can use to the optimization purposes.

From now we will suppose that we have such sequence of knots A\ and such
data (z;,y;) ¢ = 1,...,n that the case c) holds.

4.2 Functional J;, as a seminorm of B-spline coefficients

In this section we rewrite functional J;(s;) as a (semi)norm of B-spline coeffi-
cients. If we use the B-spline representation (2) and relation (4) then

g 9

Ji(sk) = /b [sil)(g;)rdx =al /b< Z bgl)Bik+1~l(x) Z bg.”Bf““l(x))dz,

¢ i=—(k-l) j=—(k=1)
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where ay, = H§:1(k + 1 —j). Further we can write Ji(s;) as a function of

parameter b = (b_j,b_g41,-.-,bg)7

— au Z Z (t)b(l)/ Bf+1(m)B]l.°+l(z)da: :Qz[[b(l)]TMklb(”y
i=—(k=1) j=—(k-1)

where
k41—l pk+1—1 ct1—l pk+1-1
(BES BELY) - (ByTL BELY)
My = : : € Myyppr (14)
(Bfﬁrll’BHl 0oL (B:j“_‘,Bg““)
and
b
(B:i“l“lwl’ B;-{-l—l) = / B{C—i»l-‘l(x)B‘;H»l—l(x)dz'
Matrix My, is p.d. because B;"H_l >0 and Bf}'l_l, .. ,B;“*l are basis func-

tions (for more details see in [1], [3]). Using the relation (7) we get
i) = agy [$i6]" MiaSib = oy bl (15)

with matrices

Nlcl = SlTMlel € JMg+k+1, (16)

Si=DiL;y...D1L1 € Mgppp1-1,94k+1,

D; := diag | —— T EMyikii—i
J g </\i+k+l~j _ /\i)iZA(kvj) , g+k+1—j

and bidiagonal matrix
-1 1
Lj:= N € Myth+1-jgth+a—j-
-11
Matrix Ny, is p.s.d. because with respect to the definition of matrix S, there is .

rank(S;) = g+ k+1—1 and thus rank(Ny) = g+ k+ 1 —[. Let us remark
that if we choose | = 0 then Sg = I and Nyg = My is p.d.

4.3 Unique solution of the optimal interpolatory problem

Owing to precedent two sections 4.1 and 4.2 we can rewrite our optimal inter-
polatory problem, which was described in section 1, as a following problem:
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Problem Our problem is to find a solution b* of a consistent nonhomogenous
equation
Cer(@)b =y (17)

for which
Ji(b) = aglIblly,,

s minimal.

In other words we wish to find a minimum Ny-(semi)norm solution of (17).
The corresponding technique was described in the section 3. Let us remind that
Cii1(z) € My g1k+41 is the matrix with the rank(Cr41(x)) = n and the matrix
Nyt € Myqpq1 is p.d. for [ = 0 and p.s.d. for I # 0. Let Z € Mgqpi1,g+bt1-n
be such a matrix that

Crir(z)Z =0

and
rank([Cly, (2), 2)) = g+ k +1,

then we can use for solving this problem the Theorem 3.9.

The important property of the matrix Z is that it has linearly independent
columns z1,...,2Zg4+k+1—n Which are in the null space of Cyy, (), i.e.

zi € Ker(Cpt1(z)) :={0 : Cr41(2)d =0}, i=1,...,9+k+1-n

and therefore these vectors are basis vectors for the null space.

Owing to the Theorem 3.9. there is just one minimum Nj;-(semi)norm
solution of (17) if and only if ZT Ny, Z is p.d.

If I # 0 then with respect to the relation (16) the matrix Ny € Mgqpq1
with the rank(Ny) = g+ k+ 1 — 1 is p.s.d. Then it is easily verifed that
the matrix ZTNy Z € Mgipti—n is p.d. if and only if n > I. If | = 0, the
matrix Nig € Mgqg41 is p.d. and therefore ZTNioZ € Mgtrs1-n is p.d. The
condition n > [ is fulfilled.

In such a way we have proved the following Theorem.

Theorem 4.1 Let Ciy1(z) € My grrt1 be a matriz with rank(Clryq () = n,
Z € Myit1,g+k+1-n be such a matriz that rank([CiL,(2),Z]) = g+ k+ 1,
Ci+1(2)Z = 0 and the matriz Ny € Mgiry be defined as in relation (16).
Then there exists just one minimum Ny -(semi)norm solution b* of a consistent
system (17) if and only if n > 1. This solution is given as

b* = [Chs1(@)] o (ven) V- (18)

Now we can state the Theorem which describes necessary and sufficient
condition under which there exists just one solution of our optimal interpolatory
problem.
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Theorem 4.2 Let us have given sequence of knots a < A\ < ... < Ay < b and

data (z;,y;), a <x; <b,i=1,...,n. Then there exists just one spline sx(z) of
degree k > 0, defined on interval [a,b], with the given sequence of knots which
interpolates data (x;,y;), © = 1,...,n and minimizes functional

1.0
J,(sk):/ [sk] dz, 1€{0,1,....k—1}

if and only if | <n < g+ k and there exists {u1,...,pn} C{A_k,...,Ag} with
i < piv1, ©=1,...,n such that

Hi < Ti < fPitkt1, T=1,..0,m.

Proof Owing to the Theorem 2.2 and the section 4.1 we can see that the
spline sg(z) of order k£ > 0 interpolating data (z;,¥:), ¢ = 1,...,n exists. The
uniqueness follows from the Theorem 3.7 and the Theorem 4.1. 0O

Remark 4.3 If in the precedent Theorem the necessary and sufficient condi-
tions hold then the optimal interpolatory spline has a unique representation

g
se(z) = Y b}Bf!(x), (19)

i=—k
with the B-spline coefficients b* = (b*,, ... ,b;)T, which are given by the formula

(18).

9 Calculation of the optimal interpolatory spline

In this section we describe an algorithm for computing spline s (z) defined on
interval [a,b], with the given sequence of knots, interpolating given data and
minimizing the functional (1).

Algorithm 5.1.

Input:

interval [a, b]

k > 0 degree of spline,

1€{0,1,...,k — 1} degree of derivative in functional J;(s),

sequence of knots a < A\; < ... <Ay <b

additional knots A_p < ... < Ao =a,b=Agy1 < ... < Agypa

and data z = (z1,...,20) T, ¥y = (Y1, -, yn) T

such that a < z; <b,fori=1,...,n,l <n < g+ k and there exists
{1, pn} C{A g, -, Ag} with g < piyr1, ©=1,...,n — 1 such that
pi < T < fivkt1, 1=1,...,m.
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Steps:

1. Compute collocation matrix
B¥ (zy) ... BEY (1)
Cr1(z) = : - :
B (z,,) ... B (x,)
We can use MATLAB command spcol to compute this matrix.
2. Fori=—-k+1,...,gand j = -k +1,...,g calculate
b
(Bf L BEFI) = /Bf“’l(;n)B;’“‘l(m)dx.
a

For computing these integrals we can use MATLAB commands spmak, fncmb,
fnint, fnval.

(BELATBEEA) o (B BELY)
3. Put My, = :
(BELY BEFISY) L (BEHISL BRI

. If I = 0 then by using the Remark 3.4 and the Theorem 3.10 calculate
b* = [Ch+1(@)] 1 (ar,,) ¥ Otherwise go on to the next steps.

5. For i =1,...,l compute
1
D; = diag (—_)
Njtkti=i = A3/ o (ki) g

-1 1

-11
L;:= € Mgyphi1—i,grhr2—i-

1
6. Put S, = D,L;---D, L.
7. Put Ny = Sf My S;.
8. In view of the Remark 3.4 and the Theorem 3.10 compute
bt = [Ck-kl(x)]:n(]\/,c,) Y-
The unique optimal interpolatory spline si(z) is given as

sk(z) = ng by Bt (), (20)

i=—k

with b* = (b%,...,b5)7T.
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Example 5.1 For x = —1 : 2 : 11, values of the function y = (5 — z) cos(z)
and knots = x we have computed the natural cubic interpolatory spline and
the cubic interpolatory splines which minimize functional J;(s3) for | = 0,1, 2.
These splines are plotted on Fig. 1. The natural cubic interpolatory spline
and the optimal interpolatory spline which minimizes J,(s3) are identical (solid
line). The optimal interpolatory spline for [ = 1 is plotted by dashed line and for
! = 0 by dash-dotted line. The minimal values of the functional are J; = 326.09,
Jy =112.5, Jy = 31.38.

-2+

-2 0 2 4 6 8 10 12

Fig.1

Example 5.2 Let us have given x = —1:2: 11, values y = (5 — z) cos(z) and
knots = [-1,0:2:10,11]. There are plotted the function f(z) = (5—z) cos(z)
(solid line), the natural cubic interpolatory spline with knots in z; (dashed line)
and the cubic interpolatory spline with given sequence of knots which minimizes
Ja(s3) (dash-dotted line) on Fig. 2. The minimal values of the functional are
326.09 for the natural cubic interpolatory spline and 864.71 for the optimal cubic
interpolatory spline. We can see that the value of functional for the optimal .
cubic interpolatory spline is greater than for the natural cubic interpolatory
spline, but this spline approximates given function better than the other.

Example 5.3 On Fig. 3 we can see optimal splines of degree k = 1,2,3 with
knots = —2: 2 : 12 which interpolate given data x = =1 :2:11,y = (5 —
z) cos(z) and minimize the functional Jo(sx). The minimal values of functional
are Jo(s1) = 213.35, Jo(s2) = 56.82 and Jy(s3) = 87.54.
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-4 ‘ k =1 solid line ]
k = 2 dashed line
k = 3 dash—dotted line

-2 0 2 4 6 8 10 12
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6 Conclusion

We know that if there are given data (z;,v;), a < x; < b, i = 1,...,n then
there exists unique cubic spline with knots z; which interpolates data (x;,y;),
satiesfies natural conditions (i.e. zero second derivative at points a and b) and
which minimizes functional Jy(s3) on the class of function W (a,b). This spline
is called the natural cubic interpolatory spline. Similar variational properties
were generalized for spline of odd degree and latter too for spline of even degree.
More information we can find for example in [1], [6].

In practise we need not know all values y; in knots z; or some values may not
be exact so that there is no sence to require their interpolation. Under certain
conditions, which are described in the Theorem 4.2, we can separate knots and
interpolatory points. That way we have free parameters, which we can use to
the minimization of the functional J;(sg). If we consider only the class of splines
of degree k > 0 with the given sequence of knots, we can solve this problem as
the problem of optimal interpolation, which is described in this paper.
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