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Abstract 

It is proved that cosymplectic hypersurfaces of six-dimensional Hermi­
tian submanifolds of the Cayley algebra are totally umbilical if and only 
if they are totally geodesic. 
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1 Introduction 

One of the most important properties of a hypersurface of an almost Hermitian 
manifold is the existence on a such hypersurface determined in a natural way 
an almost contact metric structure. This structure has been studied mainly 
in the case of Kahlerian [1], [2] and quasi-Kahlerian [3], [4] manifolds. In the 
case the embedding manifold is Hermitian comparatively little is known about 
the geometry of its hypersurfaces. In the present work a result obtained in this 
direction by using the Cartan structure equations of such hypersurfaces is given. 
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Let O = it8 be the Cayley algebra. As it is well-known [5], two non-
isomorphic 3-vector cross products are defined on it by 

Pi(K ,Y,Z) = -X(YZ) + (X,Y)Z + (Y,Z)X - (Z,X)Y, 

P2{X)Y1Z) = ~(XY)Z + (X,Y)Z + (Y,Z)X - (Z,X)Y, 

where K, Y, Z G O, (•, •) is the scalar product in O and X -» A" is the operator 
of conjugation. Moreover, any other 3-vector cross product in the octave algebra 
is isomorphic to one of the above-mentioned. 

If M 6 C O is a six-dimensional oriented submanifold, then the induced 
almost Hermitian structure {Ja,g = (*, *)} is determined by the relation 

Ja(X) = Pa(X,eue2), a = 1 , 2 , 

where {e\,e2} is an arbitrary orthonormal basis of the normal space of M6 at 
a point p, X G TP{M6) [5]. The submanifold M 6 C O is called Hermitian if 
the almost Hermitian structure induced on it is integrable. The point p G M 6 

is called general [6], if 

eo g TP{M6) and TP(M6) C L ( e 0 ) \ 

where eo is the unit of Cayley algebra and L(eo)± is its orthogonal supplement. 
A submanifold M6 C O consisting only of general points is called a general-type 
submanifold [6]. In what follows all the considered M 6 are meant as general-type 
submanifolds. 

2 Cosymplec t ic hypersurfaces of Hermit ian M6 C O 

Let IV be an oriented hypersurface of a Hermitian M 6 C O and let a be the 
second fundamental form of the immersion of IV into M6. As it is well-known 
[2], [4], the almost Hermitian structure on M6 induces an almost contact metric 
structure on IV. We recall [3], [4] that an almost contact metric structure on 
the manifold IV is defined by the system {$,£,I?,g} of tensor fields on this 
manifold, where £ is a vector, rj is a covector, $ is a tensor of a type (1,1) and 
g is a Riemannian metric on IV such that 

77(f) = 1, $(f) = 0, 770$ = 0, $ 2 = -id + £ eg) 77, 

($K , $Y) - (X, Y) - r/(K)77(Y), X, Y G N(IV). ' 

The almost contact metric structure is called cosymplectic [4] if 

V77 = V $ = 0. 

(Here V is the Riemannian connection of the metric g). The first group of the 
Cartan structure equations of a hypersurface of a Hermitian manifold looks as 
follows [8]: 
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duja = ua A ujb + Bab
cujc A ujb + (V2Ha3

6 + iaa
b)ujb A UJ 

+ (--i-Bab
3+iaab)ujbAuj1 

v2 

dua = -uja A ujb + 13a/cjc Awfc + (V2Ba3
b - iaa)ujb A CJ 

+ ( - H a 6
3 - iaab)ujb A UJ, (1) 

V 2 

dw = (\/2B3a6 - V/2-936
a - 2iOa)a;5 A a;a + (H36

3 + ia3b)uj A ujb 

+ (B3b
3-ia

b
i)ujAujb. 

Here H are Kirichencko structure tensors of the Hermitian manifold [9]; a,b,c = 
ly2;a = a + 3;i = \f—l. Taking into account that the first group of the Cartan 
structure equations of the cosymplectic structure must look as follows [10]: 

duja =UJ% f\UJl\ 

duja = -ub
aAujb, (2) 

duj = 0, 

we get the conditions whose simultaneous fulfilment is a criterion for the hyper-
surface N to be cosymplectic: 

1) Ha6
c = 0, 2) V2Ba3

b + Oa = 0, 3) - ^=Bab
3 + iOa = 0, 

v 2 

4) H3a
6 - V2B3b

a - 2iaa
b = 0, 5) H36

3 - iO3
6 = 0 (3) 

and the formulas of the comlpex conjugation (we leave out writing them down). 
Now, we analyse the obtained conditions. From (3)3 it follows that 

_aò тoaò 
a — т~L? 

V2 

1 
3 -

By alternating of this relation we have 

0 = a[abì = — т = Б [ a 6 ]

3 = -7=(Яo6з - I^з) = — j = B эab 

V2 6 2v/2V y/2 

Therefore Ha6

3 = 0 and consequently aab = 0. From (3)2 we get that 

o3a __ l a 

B b - ^ a b . 

We substitute this value in (3)4. As a result we have 

a° = iV2B3b

a. 
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Now, we use the relations for the Kirichenko structure tensors of six-dimensional 
Hermitian submanifolds of Cayley algebra [9]: 

Ra/3 J L p ^ M E) U rTt = — - F o HM7 
7 — /Kc J-yfjt^'> •'-'ap — r ? c Oip n1*' ) 

I>„ 7 = ± 2 * + ťTL, £>Д7 = ű ~ = ± ï » - - ťTI.. 
P i Д 7 M 7 ' Д 7 Д 7 A-7 

where 

Here T£- are components of the configuration tensor (in A. Gray's notation 
[11], or the Euler curvature tensor [12]) of the Hermitian M 6 C O; a,/3,7,/i = 
1,2,3; /x = /i + 3; fc,j = 1,2,3,4,5,6; <D = 7,8; e"*" = eff§, e a / 3 / l = ea}l are 
components of the third order Kronecker tensor [13]. 

From (3)i we obtain 

Bab

c = 0& ~eablDlc = 0& -^=eab3D3c = 0&D3c = 0. 
y/2 \/2 

The similar reasoning can be applied in reference to the condition Bab

3 = 0 
obtained above: 

- ł ^ = „»-!. Bab

3 = 0& —є^D^ = 0 4Ф A^єabзDзз = 0 o D33 = 0. 

So, D 3 c = £33 = 0, that is D3a = 0. 
From (3)5 we get 

a\ = azi = -iB3\ = -il=e^D,z = Q. 

We have aab = ahh = a3b = a3b = 0. We shall compute the rest of the compo­
nents of the second fundamental form using (3)2' 

ahh = aa
b = iV2Ba3

b = i^2±=ea3lDlb = iea3cDcb. 
v 2 

Then 
an = iє13cDcl = iє132D21 = -«- ?ai; 

t т l a = ťє 1 3 c E» c 2 = ť Є 1 3 2 D 2 2 = ~ Ш 2 2 ! 

°"21 = iє23cDcl=iє231Du-iDiґ, 

°"22 = iє23cDc2 = iє231D12 = i-Diг; 

-r.12. 
a l î = °U = %U 1 

al2 = aÎ2 = %U ' 

a2Î = ^2І = - ^ ; 

Л-ПІ2 
a 22 = ^Ъ = ~%U ' 
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We obtian that the matrix of the second fundamental form of the immersion of 
the cosymplectic hyperspace N into M 6 C O looks as follows: 

O = 

0 
0 
0 

. ~iDl2 

V iDn 

0 
0 
0 

-iD22 

iD22 

0 
0 

øзз 
0 
0 

iD 12 ) 1 L 

ІD22 -ІĽ 
0 0 
0 0 
0 0 

iDxl\ 
1 2 » 

/! 

3 The main result 

Theorem The following statements are equivalent: 
1. The cosymplectic hypersurface of a Hermitian M6 C O is a totally um­

bilical submanifold. 
2. The cosymplectic hypersurface of a Hermitian M6 C O is a totally 

geodesic submanifold. 

Proo f In accordance with the definition [10], a hypersurface of a manifold is 
called totally umbilical if 

a = AO, A — const. 

Knowing how the matrix of the Riemannian metric looks [4]: 

'0 0 0 1 0\ 
0 0 0 0 1 
0 0 1 0 0 
1 0 0 0 0 

\0 1 0 0 0 / 

we make the conclution that the conditions 

Du =D22 = Dn = D22 = 0 

are necessary for a cosymplectic hypersurface of Hermitian M 6 C O to be totally 
umbilical. Using the identities from [9] 

DuD22 = (Dl2f, DnD22 = (Dr2)2, 

we obtain that the matrix O of a totally umbilical hypersurface of a Hermitian 
M 6 C O looks as follows: 

O = 

Hence, A = 0, that is why O33 = 0. Therefore the matrix vanishes, and as a 
result we have that the hypersurface is totally geodesic. 

Of course, it is obvious that every totally geodesic cosymplectic hypersurface 
of a Hermitian M 6 C O is totally umbilical. • 

Ѓ 
0 

0 
0 

0 
0 

0 
0 °ì 

0 0 033 0 0 
0 0 0 0 0 

Vo 0 0 0 0 / 
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