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Abstract

It is proved that cosymplectic hypersurfaces of six-dimensional Hermi-
tian submanifolds of the Cayley algebra are totally umbilical if and only
if they are totally geodesic.
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1 Introduction

One of the most important properties of a hypersurface of an almost Hermitian
manifold is the existence on a such hypersurface determined in a natural way
an almost contact metric structure. This structure has been studied mainly
in the case of Kéhlerian [1], [2] and quasi-Ké&hlerian [3], [4] manifolds. In the
case the embedding manifold is Hermitian comparatively little is known about
the geometry of its hypersurfaces. In the present work a result obtained in this
direction by using the Cartan structure equations of such hypersurfaces is given.
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Let O = R® be the Cayley algebra. As it is well-known [5], two non-
isomorphic 3-vector cross products are defined on it by

P(X,Y,2)=-X(Y2Z2)+(X,Y)Z +(Y,2)X - (Z,X)Y,

Py(X,Y,2) = —~(XV)Z + (X,Y)Z + (Y, Z2)X — (2, X)Y,

where X,Y,Z € O, (-,-) is the scalar product in O and X — X is the operator
of conjugation. Moreover, any other 3-vector cross product in the octave algebra
is isomorphic to one of the above-mentioned.

If M® C O is a six-dimensional oriented submanifold, then the induced
almost Hermitian structure {Jo,g = (-,-)} is determined by the relation

Jo(X) = Po(X,e1,62), a=1,2,

where {ej,e2} is an arbitrary orthonormal basis of the normal space of M at
a point p, X € T,(MS) [5]. The submanifold M® C O is called Hermitian if
the almost Hermitian structure induced on it is integrable. The point p € M$
is called general [6], if

eo ¢ Tp(M®) and T,(ME) C L(ep)™,

where eg is the unit of Cayley algebra and L(eo)* is its orthogonal supplement.
A submanifold M® C O consisting only of general points is called a general-type
submanifold [6]. In what follows all the considered M°® are meant as general-type
submanifolds.

2 Cosymplectic hypersurfaces of Hermitian M% c O

Let N be an oriented hypersurface of a Hermitian M® C O and let o be the
second fundamental form of the immersion of NV into M®. As it is well-known
(2], [4], the almost Hermitian structure on M induces an almost contact metric
structure on N. We recall [3], [4] that an almost contact metric structure on
the manifold N is defined by the system {®,{,n,g} of tensor fields on this
manifold, where £ is a vector, 7 is a covector, @ is a tensor of a type (1,1) and
¢ is a Riemannian metric on /N such that

nE) =1, ®¢ =0, nod®=0, & =-id+{®m,
(X, Y) = (X,Y) = (X)y(Y), X,Y €R(N).
The almost contact metric structure is called cosymplectic [4] if
Vn=V®=0.

(Here V is the Riemannian connection of the metric g). The first group of the
Cartan structure equations of a hypersurface of a Hermitian manifold looks as
follows [8]:
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dw® = wi AW’ + B w Awy + (V2B®), +iol)w’ Aw

+ (-—LBGbg + anb)wb Nw,

V2

dw, = —wf’L Awp + BapCwe Aw® + (\/§Ba3b - iag)wb Aw
1 : .
+ (——,iBazf —i0ap)w’ A w, 1)
Vv

dw = (\/EBSH'b - \/inga - QiUﬂ)wb N wq + (B3b3 + i03b)w Awb
+ (B4 — iag)w A wyp.

Here B are Kirichencko structure tensors of the Hermitian manifold [9]; a,b,c =
1,2;a = a+3; 1= /—1. Taking into account that the first group of the Cartan
structure equations of the cosymplectic structure must look as follows [10]:

dw® = Wi AW,
dwy = —wb Awy, (2)
dw =0,

we get the conditions whose simultaneous fulfilment is a criterion for the hyper-
surface IV to be cosymplectic:

1
1) B®, =0, 2)V2B®,+0f =0, 3) — EB“”3 +iof =0,

4) B3, — V2B3® — 2i0f =0, 5) B3 —ioh =0 (3)

and the formulas of the comlpex conjugation (we leave out writing them down).
Now, we analyse the obtained conditions. From (3)3 it follows that

1 .
O,ab - Bab3 .

V2

By alternating of this relation we have

0= oletl — _* plat), _ ___

N R

Therefore B*3; = 0 and consequently ¢®® = 0. From (3)2 we get that

Bab _Bba :_LB‘I”_
(B3 3) 7

V2

We substitute this value in (3)4. As a result we have

a

3
Bab: [

0';)7' = i\/inga.
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Now, we use the relations for the Kirichenko structure tensors of six-dimensional
Hermitian submanifolds of Cayley algebra [9]:

1 1
BaB'y = EEQBMDM’ Bog? = —=€apu D",

V2

where

Dy = T8 +iT)

Y = Do~ = £T8 — 3T
iy s D*Y = Dw = iTu'y sz.

Here T,c“; are components of the configuration tensor (in A. Gray’s notation
[11], or the Euler curvature tensor [12]) of the Hermitian M% C O; o, B,v, 1 =
1,2,3; i = u+3; kj = 1,2,3,4,5,6; p = 7,8 €% = {04, eap, = €3] are
components of the third order Kronecker tensor [13].

From (3); we obtain

B®. =0& ——l—eab"Dw — 0 LDy, =0 Dy =0,

V2 V2

The similar reasoning can be applied in reference to the condition B®; = 0
obtained above:

B%, =0 & -1—6“(”D73 =0 —1—5”b3D33 =04 D33 =0.

V2 V2
So, D3, = D33 = 0, that is D3, = 0.
From (3)s we get

. 1
o'g =04 = —-1B3b3 = ~1,_.-\/—_2_—53MD73 =0.

We have o4 = 04 = 03p = 055 = 0. We shall compute the rest of the compo-

nents of the second fundamental form using (3)2:
. . 1 ;adc
Oab =0 = iV2B®, = 2\/_2-755‘137D~,b =1 Dyp.
Then
0jy = iElaCDcl = i6132D21 = —iDay;
01y = 613Dy = €132 Dgy = —1D22;
051 = iE?BCDcl = i5231D11 =1D11;

05y = 123Dy = ie?* Dy = 1D12;
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We obtian that the matrix of the second fundamental form of the immersion of
the cosymplectic hyperspace N into M% C O looks as follows:

0 0 0 4DY? —iDU

0 0 0 iD* —iD"?
g = 0 0 aJ33 0 0
—iDjys —tDss 0 0 0
1Dyy 1Dyy 0 0 0

3 The main result

Theorem The following statements are equivalent:

1. The cosymplectic hypersurface of a Hermitian M® C O is a totally um-
bilical submanifold.

2. The cosymplectic hypersurface of a Hermitian M® C O is a totally
geodesic submanifold.

Proof In accordance with the definition [10], a hypersurface of a manifold is
called totally umbilical if

o=M\g, A—const.

Knowing how the matrix of the Riemannian metric looks [4]:

00010
00001
g=|00 10 0],
10000
01000

we make the conclution that the conditions
Diy = Dy = D' =D** =0
are necessary for a cosymplectic hypersurface of Hermitian M¢ C O to be totally
umbilical. Using the identities from [9] v
D11 Doy = (D12)?, pY'D? = (D12)?,
we obtain that the matrix o of a totally umbilical hypersurface of a Hermitian
M8 C O looks as follows:

00 0 0O
00 0 0O
oc=10 0 o33 0 0
00 0 00
00 0 00O

Hence, A = 0, that is why o33 = 0. Therefore the matrix vanishes, and as a
result we have that the hypersurface is totally geodesic.

Of course, it is obvious that every totally geodesic cosymplectic hypersurface
of a Hermitian M% C O is totally umbilical. O
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