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Abstract

This paper is the second part of [5]. We examine special incidence
structures of type (p,n) in which the conditions R* = R**! and a} ¥ m|
are valid for a certain 7 € {0,...,n — 1}.
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2000 Mathematics Subject Classification: 06B05, 08A35

This paper is a continuation of [5]. Thus we use the denotation, the num-
bering of propositions, theorems, figures and enclosures from [5]. We examine
special incidence structures of type (p,n) in which the conditions R* = Ri+!
and a} £ m! are valid for certain ¢ € {0,...,n — 1}. Such incidence structures
satisfy the conditions either from Proposition 4 or from Proposition 5 of [5]. In
[5] there are all special incidence structures of type (p,n) of the first kind de-
scribed. In what follows we consider special incidence structures J of type (p, n)
satisfying the conditions from Proposition 5. Hence, accepting the denotation
from [5), we assume that k = [, a},a;+2 I b and B*% = {b,m;11}U(Q" — {nk}),
Bt = {b,ml} U (Q' — {re}).
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161



162 Frantisek MACHALA

Let 7> = (G3, M2, I>) be a substructure of J where G, = Gy, My = M;U{b}.
If we put Bj = {b,mj, mi11}U(Q" — {nk,n;}) for each j € {1,...,p—1} — {k},
then the graph of the incidence structure J2 has a form

i—l 1 Bz+1 Bz+2 X]BJ k
i A1+1 Az+2 Ck

Since J is of type (p,n) there exist Ai+3.’ A*~1 € GP such that A*+3 [P Bi+2
and Ai~! I? Bi~1. Furthermore, A3, A*~1 ¢ G% and there exist elements
de A3, e € A" ! such that d,e € G — G;.

Proposition 6 A% = {d,a; 2} U(R' — {g.}), A = {e,a}} U(R' - {gu'}).

Proof From A**? = {a;42} U R* and |A*"2 N A3 = p — 1 we get either
A3 = {d}UR or A" = {d, a; ;2 }U(R' —{g,}) for a certain v € {1,...,p—1}.
Similarly, from A* = {a}} U R! and |A*~! N A*| = p — 1 we obtain either A"~! =
{e}UR or A"t = {e,a}} U(R* - {gu})-

First let us suppose that A*3 = {d} U R'. Because of A""® I? Bi*? there
exists a norming mapping « : A**3 — B**? in which a(d) = miy1,a(gr) = b
and a(g;) = n; for j # k. If d I ny, then A" [P B**! which is a contradiction.
Thus d £ ny. If d X m}, then A**3 [P Bi~1 which is a contradiction. If d I m!,
then A’ I”? Bt where A’ = {d,a'} U (R' — {gx}). This is a contradiction again.

In a similar way one can show that A*~! = {e} U R does not hold. Hence
A9 = {d, 0,12} U (R — {ga)), A1 = {e,al} U (R — {gur}) o

Proposition 7 Let A3, A*=1 be given according to Proposition 6. Thenu =k
if and only if v' = k. Ifu = k, then d = e and for a substructure J3 =
(Gs, M3, I3) of J where G3 = G,U{d}, M3 = MyU{b} the J§ has the following
graph:

1—1 Bz BH—l Bz+2 k

VWL

Ai-1 1 Az+1 Az+2 Az+3 C] E]
Furthermore, Ej = {d,a}, ait1} U (R* — {gk,g;}) for all j # k.

Proof Let u = k. There exists a norming mapping § : Bit? — A3 in
which B(b) = d, B(mit1) = aiy2 and B(n;) = g; for j # k. If d I ny, then
A*3 P Bi+1 which is a contradiction. Thus d I ng. If d.Z m], then A’ I” Bt
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where A’ = {d} U R'. This is a contradiction again. Hence d I m/. It means
that A’ I? B! where A’ = {d, ag} U (R* — {gx})- Since A" # A* we get
At ={d,a} U (R - {gx}) = {e,ai} U (R! — {gu'}) and thus v’ = k, d = e. If
we put E; = {d,a},a; 42} U (R — {gk, g;}) for j # k, then E; I” B;. O

Enclosure 11 shows the described situation in the case of p =5 and k = 2.

1. First assume that u = k. Thus A™*® = {d,ai42} U (R — {gk}) and
Al = {d,al} U (R — {gx}). From b # m!,m;;1 we have B1+2 # X7 and
B! # XJ forallj € {1,...,p—1}. Since J is of type (p,n) there exists either
Bi+3 or Bi-2.

Proposition 8 If B'+3 egists, then B = {2,b,mit+1}U(Q* — {nk, nq}) where
z € M — (My U{b}). Let Js = (G4, M4, 1) be a substructure of J with G4 =
Gy uU{d}, My = M;U{b,z}. Then J} has a graph

Bi-1 pBi pitl pi+2 pi+3 q

- WX

Ai-l gi AL git2 4it3 By CIEI

Proof Let Bit3 exist. Then Bi*® ¢ M; U {b} and there exists z € B*+3,
x ¢ My U{b}. Since B*? = {b,m;41} U(Q" — {nx}) and |B*2N B3| =p -1
we get either Bit3 = {z,b} U (Q' — {ni}) or B3 = {z,m;1} U (Q* — {nx})
or B3 = {z b,miy1} U (Q' — {nk,ng}). There exists a norming mapping
a: A3 5 Bit3 pecause A3 [P B3,

a) Assume that B3 = {z,b} U (Q* — {n«}). Then a(a;+2) =z, a(d) = b
and a(g;) = n; for j # k. If g I z, then A**? P B’ where B' = {z} U R,
a contradiction. Thus gi £ z. If at the same time a4 z, then A*~! IP B’+3
which is a contradiction. In the case a] I = we have A’ I? B’ where B’ =
{z,m}} U(Q* — {nk}) and this is a contra.dlctlon again.

b) Assume that B3 = {z,m;11} U (Q* — {nk}). Then a(ait2) = mit1,
a(d) = z and a(gj) = nj for j # k. If gx £ x, then A2 JP Bit3 which is a
contradiction. Thus gk I z. If a}Z z, then A* Ip B’ where B’ = {z} UQ* which
is a contradiction. Thus a; I z. Ifa,+1,1":c then A**! I? B’ where B’ = {z}UQ*
and this is a contradiction. Let a;41 I z. This implies A*~! JP {z,mi} U (Q* -
{nk}) whence Bi~2 = {z,m}} U (Q* — {nx}). Therefore, A’ I? Bi*+3 Bi=2 for

= {d, a;42} U (R' — {gx}) which is a contradiction again.

¢) According to a), b) we have B'*3 = {z,b,m;11} U (Q* — {ny,ng}). Then
a(aiy2) = mit1, a(d) = b, a(gg) = z and a(g]) =n; for j # k,q. If g I =,
then Ai+2 [P Bi+3 which is a contradiction. Thus gx £ z. Let a) I 2. Then
C9 IP B’ where B' = {z,m},miy1} U (Q" — {n,n,}) which is a contradiction
because B’ # X9, By. Thus a; 4 z. It means that E, I” B*** and the incidence
structure [Jf has the graph presented in the proposition. O
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The validity of Proposition 8 does not depend on the incidence of elements
Ai+41 and z.

Enclosures 12, 13 show the situation for p = 5,k = 2 and ¢ = 1. There are
ai+1 I z at Encl. 12 and a;4+1 4 2 at Encl. 13.

Pr0p0s1txon 9 If B=2 exists, then B'™% = {y,b,m}} U(Q* — {nk,ny}) where
y €M — (M —{b}). If Js = (G4, My, I4) is a substructure of J with G4 =
G1 U {d} and My = My U {b,y}, then J} has a graph

q’ B Bz 2 Bz 1 1, Bz+1 Bz+2

WA - 1]

’

q E AI 1 Az Az+1 Az+2 Az+3
The proof is similar to Proposition 8. In this case gx £ v, ai+2.f y.

Remark 4 If B**3 and B~? exist, then ¢ # ¢’ and z # ¥.

Theorem 9 Let J5 = (G5, M5, I5) be a substructure of J with Gs = G1U{d},
Ms = My U {b,z,y}. If E; I” B where B € Ms, then E, I’ B for a certain
r#4¢,9,j and BjN B = BN B,.

Proof It follows from E, I? B**3 B, and E, I* B*~% By that j # q,q
Since B € M there exists 2 € B, 2 ¢ Ms. It holds E; I? B;, B and thus
IBDB | =p- 1 From B; = {b mh,mit1} U (QF — {nk,nJ}) we get B =
{zymi,mig1} U (Q° = {nx,n;}) or B = {z,bym'} U (Q* - {nk,n]}) or B =
{z,b, ml+1} u (Q - {nk,n]}) or B = {z,b,m},miy1} U (Q" — {nk,nj,n.}).
There exists a norming mapping a : E; — B because E; [ P B

a) Let B = {z,m},mi11} U (Q" — {ny,n;}). Then a(d) = z, alai42) =
miy1, afa)) = m; and o(g) = n; for | # k,j. If g £ z, then C7 I? B
which is a contradiction. Hence g, I 2. If g; £ 2, then A* I? B’ where

= {2, m;}U(Q" —{nk}). This is a contradiction again. Finally, g; I z implies
AH'S I B' where B = {z,mi11} U (Q" — {nk}) and this is a contradiction.

b) Let B = {z,b,m;} U (Q" — {ny,n;}). Then a(d) = b, a(ai+2) = 2,
afa;) = mj and a(q) = nm for | # k,j. If g; £ 2, then A*"! I? B’ where
B' = {z,b,m{} U (Q" - {nk,nq}) which is a contradiction. Let gy £ z. Then
At IP B where B' = {z,m}} U (Q! - {nk}). This is a contradiction again. If
gk I z, then A2 [P B’ where B = {2z} U Q" which is a contradiction.

c) Let B = {z,b,mi11} U ( — {nk,n;}). Then a(d) = b, a(ai+2) = mi41,
a(a;) = z and a(gr) = ny for I # k,j. If g £ z, then Ai+3 I’ B' where
B' = {z,b,mi11} U(Q* — {nk,ng}) which is a contradiction. Hence g; Iz If
gk & z, then A2 IP B’ where B’ — {z,mi+1} U (Q* — {nk}) and this is a

contradiction again. If g I z, then A¢ J? B’ where B' = {2z} U @* which is a
contradiction.
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d) According to a)-c) we obtain B = {z,b /! 1 mig1} U(QF — {nk,nj,nr}).
Then a(d) = b, a(ait2) = mit1, alai) = m}, a(gr) = z and a(g) = m for
l#k,j,r. Let gx I 2. Then C’ I? B’ where B’ = {z my,mig1 PU(Q' - {nk,n;})
which is a contradiction because B’ # X7, B;, Thus gk 4 z. Let g; I z. Then
A3 [P B where B' = {z,b,mi;1} U (Q — {nk nr}) which is a contradiction.
Hence gk, g; £ z which yields E, I? B. If r = g, then from B # B*3 B, we
obtain a contradiction. Thus r # ¢. Similarly r # ¢'. It is easy to see that
Bijz{bvm;)m'i'Fl}U(Qi_{nk7nj7nr})=BnB1" d

Theorem 10 If C* I? B, then B = X*.

Proof Let us suppose that C* I? B and B # X*. Then B ¢ M;U{b, z,y} and
thus there exists v € B, v ¢ M; U {b,z,y}. It follows from C*¥ I? X* B that
|BNX*| = p—1. Hence B = {v,m}}U(Q*—{ny}) or B = {v,m;41}U(Q"~{nk})
or B = {v,m},m;11} U (Q" — {nk,n,}). There exists a norming mapping « :
Cc* - B.

a) Let B = {v,m!} U (Q" — {nk}). Then a(ait2) = v, a(a}) = m, and
a(g;) = nj for j # k. If g £ v, then A* I? B’ where B' = {v,m/}U(Q" — {nx})
which is a contradiction because of B’ # B, B*~!. If g; I v, then A*+2? P B’
where B’ = {v} UQ®. This is a contradiction again.

b) If B = {v,mi;+1}U(Q" — {nk}), we obtain a contradiction similarly to the
case a).

¢) Let B = {v,m},mi41} U (Q" = {nk,n,}). Then a(airs) = mis1, a(a}) =
m}, a(gr) = v and a(g;) = nj for j # k,r. If gp I v, then A* I” B’ where
B' = {v,m[} U (Q" — {n,}) which is a contradiction. If gy £ v, then C" I? B’
which is a contradiction again.

It follows from a), b), c) that B = Xk, O

Let us suppose that there does not exist the set B:~2. Then the set B**+3
exists and the incidence structure J} has the graph from Proposition 8.

At the same time A*~! = A°, thus i = 1. Let us put L = {1,...,p—1} again
and let L' = L — {k,q}. If E; € G}, j # ¢, then there exists a set B C M — My
such that F; I B. By Theorem 9, there exists E, C GP (where r € L', r # 7)
such that E, I? B.

Let us put Y; := B and r = £(j). By this a bijective mapping ¢ of the set L’
is assigned which is involutory. Let ¢ : L — L is the mapping from Theorem 7.
If we put ¢(q) = go, then a set A; € GP exists such that A, IP X9, X%, If
g2 # k, then C% I? By, and Eg, I? B,,. (See Figure 5 where the graph of the
substructure J¥ is emphasized.)

Bi-! Bt BHBBT B X1 X B Y, B,

AR - A

A0 Aé Az+1Az+2Az+3E Cc1 Ay Co Egp Eq, Cas

Figure 5
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There exists Yy, € MP such that E,, I” Yy, and, by Theorem 9, there exists
B4y € MP, Eyy I? Y,, where £(gz) = gs. Then Eqy IP B,,, C% I” By, X% and
Ay, € GP exists with Ag, 1P X% and Ay, IP X% where p(q3) = qa. If q4 # K,
then we proceed in the same way until we get E,, , I” B,,_,, C%~2 I? X%-2,
Aq,_, I? X%-2, X%-1 and C%-1 JP X%~ where g,_; = k and C%-* = A, by
Theorem 10.

If the set B~? exists and B**3 does not, then A*t3 = A™ and we proceed
analogously to the previous case, using ¢’ instead of q.

Let us assume that there exist both sets B2, B*3, Then we put L” =
L —{k,q,q'}. Consider mappings ¢ : L — L, £ : L" — L" described in the first
case. Let us put

lp...Ep(q) =q41 and  plp...Ep(q) = ¢4y
N——— ———

l T

for I € {1,...,u} and r € {1,...,v} where u+ v+ 2 = p — 1. Then either
k=wu+1or k=wv+1 Suppose that K = v+ 1. Then, by Theorem 10,
Ck = A"

MP: .
(+)
GP:
By, Clonidg, C% Ay C7 Ey AT E, C1 4, C% O 4, A

Figure 6

According to Theorem 9 there does not exist B € MP such that Eq3+1 I’ B
and B # By, thus E%H = A°. Figure 6 shows the graph of JP emphasizing
the substructure JF. By assumption, A*N A+ = A" N A2 from Theorem 6
we have C% NA,, = Ag; NC¥+1 if g := qand j € {1,...,u}. At the same time,
Cc% N Agy = Ag N C%+ if ¢} := ¢ and j € {1,...,v}. Furthermore, B+2 N
Bi+3 = B*3NB, = {b,m;1}U(Q" — {nk,ng}) and B 'NB~%2 = B ?NBy =
{6, m{}U(Q*—{nk,ng}). It follows from Theorem 9 that B, NY,, =Yy, NB,, .,
for j € {2,...,u~1} and By NYy = Yy N By forj € {2,...,u—1}. If
p=2q+1, then n = 5q + 3.

2. Assume that u # k. Then, by Proposition 7, also u’ # k where B'*? =
{b,mip1}U(QF = {nx}), B! = {b,m}U(Q* — {nx}), A = {d,ai 12} U(R -
{9u}), A1 = {e,aj}U(R* —{gu}). Since J is of type (p,n) there exist norming
mappings oy : A3 = Bit? q,: A1 o BiTL

Proposition 10 The following statements hold: ) '
(i) d ny,ng; dI m, < A3 IP B, dIm) < A7 = {d,d}}U(R —{g.}),
(i) e X nyryng; ed miyy & ATV TP Byye I mig1 & A3 = {e,a;40} U

(B = {gu'})-
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Proof (i) It follows from u # k that oy (d) = ny, thus d F ny, g (aiz2) = mip1,
ai(gr) = b and a;i(g-) = n, for r # k,u. If d I ng, then A**3 I? Bi+1 which is
a contradiction and hence d £ ny.

If d £ m), then A"*® I? B,. Conversely, Ai*+3 P B implies the existence
of just one norming mapping a : A'** — B, with a(d) = m] and thus d.Z m!.
If d I m}, then A" I? B*~! where A’ = {d,a}} U (R’ - {g,}). Thus A’ = A"}
because A' # A'. Let A" = {d,al} U (R - {gu}). Then just one norming
mapping a : A"™! — B~! exists with a(d) = n, and a(a}) = m!. This yields
dIml.

(ii) The proof is similar to (i). o

Proposition 11 The following equivalences hold:
u=u < dIm; & elmi; < d=e.

Proof Let us suppose that u = u'. Moreover, assume that d Z m}. Then
A3 [P B, by Proposition 10. If e.f m;;1, then A*~! I? B, which contradicts
C¥ I By. If e I m;y1, then A3 = {e,a;12} U (R’ — {gu}) = {d, @iy} U(R" —
{g.}) which yields e = d; thus e £ m;;1, a contradiction. Hence d I m;.

Consider d I m}. It means that A""! = {d,a}} U (R" — {gu}) = {e,al} U
(R' — {gu}). Since d,e ¢ R* we have d = e and u = v/. From a;(d) = n, we
obtain d I m;y; and thus e I m;y;. Similarly, e I m;y; yields d = e, u = o/
and d I m}.

If d = e, then a;(d) = ny, a;(e) = n,. Hence n, = ny and u = ', O

a) Let us assume that u # u/. Then d # e, d £ ny,nk, m;, A" IP B, and
elnu’ynkami-i—lv Ai_l r Bu"

Let J3 = (Gs, M3, I3) be a substructure of J with G3 = G U {d, e} and
M; = M, U {b}. The graph of J2 has the following form:

u’ B, B! B Bitl Bit+2

WA

u’ Ai-1l At AL AiT2 fit3 o

S

See incidence structures J3, J¥ for p = 5, k = 2, u = 1, ¥’ = 3 at Enclo-
sure 14.

Theorem 11 IfAIP Bj, A# C7, then also A I? By for j' # k,u,u’, j.

Proof Let A I” B; and A # CJ. Then A C G — G3 and there exist_s a € A,
a € G — G3. Now, from lAD Cil=p-1land ¢’ = {az,ahLz} U (R - {g;})
we obtain A = {a,a/} U (R' = {g;}) or A = {q, ai+2} U (R — {g;}) or A =
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{a,a},ai41} U (R* — {95,9;:}). Since A I? B; there exists a norming mapping
a:A— B;.

(i) First assume that A = {a,a}} U (R* - {g;}). Then a(a) = mi;1, a(a}) =
m} and a(g,) = n, for r # k,j. If a I ng, then A I” X7 which is a contradiction.
Thus a £ ny. If a I nj, then A’ I? B* where A’ = {a,a}} U (R' — {gx}). This
is a contradiction. In the case a.Z nj we get A I? B*~! which also contradicts
our assumption.

(ii) If A = {a,a;42} U(R" — {g;}), then one can get a contradiction similarly
to (i).

(iii) According to (i), (ii) we have A = {a,a},ai42} U (R* — {g;,9;}). Let
J' = k. Then a(a) = b, a(ai+2) = mit1, alal) = m} and a(g,) = n, for
r#k,j. If a I nj, then A’ I B**? for A’ = {a,a;42} U (R" — {gx}) which is a
contradiction. In the case a.Z' n; we obtain 4 I? X*. It follows from Theorems
6, 7 that A I? X¥(*) and because of B; # X¢(¥) we have a contradiction.

Let 5 = u. Then a(a) = ny, a(a}) = m!, a(ait2) = mit2, a(gr) = b and
a(gr) = n, for r # u,k,j. If a4 nj, then A I? B, which is a contradiction. In
the case a I n; we obtain A’ I? B'*2 where A’ = {a,a;42} U (R' — {g.}). This
is a contradiction again. We proceed in a similar way in the case ;' = u’. Hence
3" # kg

We have a(a) = nj, a(a}) = mj, a(ait2) = mit1, a(gy) = b and a(g,) = n,
for r # k,j,5'. If a I ng, then A I” X7 which is a contradiction. Thus a Z ny.
If a I nj, then A’ I? B**? where A’ = {a,a;42} U (R* — {g;+}). This is a
contradiction again. Thus a.Z'n; an in this case A I” Bji. ]

Let us put L ={1,...,p—1} and L' = L — {k,u,u’}. To every j € L' there
exists A € GP such that A I? B;. Then, by Theorem 11, there exists j' € L/,
j' # j such that A I” Bj. In this way we get a mapping £ : L' — L' which
is involutory. However, this contradicts the fact that the positive integer |L'| is
odd. Hence, an incidence structure of type (p, n) satisfying the requirements 2,
a) does not exist.

b) Let us assume that u = u'. Then, by Propositions 10, 11, we have d = e,
thus A = {d, a;42} U (R ~ {gu}), A" = {dsl}U(R' ~{g.}) and dZ no,m,
dlI mg, mMiy1.

Proposition 12 If J3 = (G3, M3, I3) is a substructure of J with G3 = G1U{d}
and Ms = M, U {b}, then a graph of J; has a form

i i ni ; X7
3 Bi-1 Bi pitl gi+2 B; B, X* Xx*

GE: ‘
31 fim1 gi gitl git2 gi+8 F;Ci cv g, Ck

where Fj = {d, al, ai12} U (R — {gu,g;}) for 7 # u.
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Enclosure 15 shows the incidence structures J3 and J3 for k = 2 and u = 1.

Since the incidence structure J is of type (p, n) there exists either a set
B3 ¢ MP where A3 IP Bi+3 or a set Bi~2 € MP where Ai~! [P Bi-2,

Proposition 13 Let a set B'™> € MP ezist. Then B3 = {z,b,m;;;}U(Q" -
{nk,ng}) where = ¢ Ms. If Jy = (G4, Ma,I4) is a substructure of J with
G4 = G, U{d} and My = M, U{b,z}, then a graph of J} has a form

pi-1 Bi Bitl gi+2 gi+3 B, X4 B; X7

RN

Al A ATFL 442 443 B 4 F;CI c* F,

S

Proof Since B*? = {b, mH_l} U(Q* — {nk}) and |B*2 N B*3 = p — 1
we have B3 = {z, m1.+1} U (Q" — {nx}) or B'*® = {z,b} U (Q" — {nx}) or
B3 = {2,b,mip1} U (Q" — {n,ng}) where z ¢ M;. There exists a norming
mapping o : A% — B3 because A3 IP Bit3,

a) First suppose that B**® = {z,mi11} U (Q" — {nt}). Then a(d) = n.,
a(aiye) = miy1, a(ge) = = and a(g,) = n, for r # u,k. Let g, I . Then
A*+?2 JP Bi+3 which is a contradiction. Hence g, 4 z. If a; I z, then C* I? B’
where B’ = {x,m},m;4+1} U (Q" — {ng,n,}) which is a contradiction. If a} Z z,
then Fj I? B’ where B’ = {z,m;1,}U(Q' — {nx}). This is also a contradiction.

b) Let B = {2,b}U(Q' - {nx}). Then a(d) = ny, a(ais2) = 2, alge) = b
and a(g,) = n, for r # u,k. Let g, I z. Then A"*? I? B’ where B' =
{z} U Q. This is a contradiction. Hence g, £ z. If a} I z, then A* I? B’ where
B' = {z,m!} U (R' — {n,}) which is a contradiction. Finally, if a} Z z, then
Ai=1 [P Bi+3 which is also a contradiction.

¢) Now it is clear that B**3 = {z,b,m;41} U (Q* — {nk,ny}). First assume
that ¢ = u. Then a(d) = z, a(ai+2) = mit1, a{gr) = b and agr) = n,
for 7 # u,k. Let g, I . Then A* I? B’ where B’ = {z} UQ'. Thisis a
contradiction. Hence g, £ z.

Let o} I z. Then for an arbitrary j # u we have C? I B’ where B' =
{z,m}, m;;11}U(Q" — {nk,n,}) which is a contradiction. If a}.Z z, then C* I B’
where B’ = {z,m;+1} U (Q' — {n,) which is also a contradiction. Thus q # u.
Then a(d) = nu, a(airz) = mip, a(ge) = b, a(gy) = z and a(g,) = n, for
r# k,u,q. Let gy I z. Then A**! I B**3 which is a contradiction.

Hence g, £ z. If a} I z, then C* I? B’ where B’ = {z,m},m;41} U (Q* —
{9u, 94}) which is also a contradiction. Hence a}.Z z. However, then F, I? Bi*+3
and J? has a graph presented in the proposition. O

Enclosure 16 shows J4 and J} for k = 2,u =1,q = 3.

In a similar way we can prove the following proposition:
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Prop051tlon 14 If there exists a set B € MP, then Bi=2 = {y,b,m/} U
(Ql —{nk,ng'}) wherey ¢ Mz. If Jy = (G4, My, 14) is a substructure of J with
=G, U {d} and My = M3 U {b y} then the graph of j4 has a form

q’ F Az 1 Az Az+1 Az+2Az+3 N \u/\Fk/\Ck

Remark 5 If both sets Bi+3, Bi~2 exist, then ¢ # ¢'. Indeed, in the contrary
case we have F, I? B**3 B‘~2 which is a contradiction.

Theorem 12 Letusput L = {1,...,p—1} and L' = L—{k,u,q,q¢'}. IfF; I’ B
for j € L' where B # By, then also Fj IP B for j' € L', j' # j.

Proof Let F; I? B, j € L' and B # B;. If J5 = (G5, M3, I5) is a substructure
of J with G5 = G1 U{d} and M5 = M; U{b,z,y} (z,y are from Propositions
13, 14), then B € M? and there exists z € B, z € M — Mj. With respect to
|BNB;| = p—1 we have B = {z,m}, mi41}U(Q" — {nk,n;}) or B = {2,b,m/}U
(@~ {nk,ny}) or B = {z,b,m;11} U (@' = {ng,n;}) or B = {z,b,m},mi11} U
(Q* — {nk,nj,n;}). Moreover, there exists a norming mapping « : F; — B.

Assume that B = {z,m},m;11}U(Q" — {nk,n;}). Then a(d) = n,, a(a}) =
m}, a(ait2) = mit1, a(gr) = z and agr) = n, for r # kyu,j. If g, I z,
then C’ I? B which is a contradiction. Thus g, £ z. Let g;j I z. This yields
C* I? B’ where B’ = {z,m},m;1+1} U (Q* — {ng,n.}). This is a contradiction.
From g; Z z we obtain Fj I? B which is a contradiction again. In a similar way
we can prove that also the two following cases are impossible.

Hence, B = {z,b,m},m;+1} U (Q* — {nk,nj,nj:}). Assume that j’ = wu.
Then a(d) = z, a(ai+2) = mit1, a(al) = ml, a(gr) = b and a(gr) = n, for
T # kyu,j. If g; £ z, then C* I” B which is a contradiction. If g; I z, then
Fy I’ B' where B’ = {z,m!,m;;1} U (Q" — {ny4,nx}). This is a contradiction
again. Thus j' # u.

Assume that j = ¢. Then a(d) = ny, @(ai+2) = miy1, a(al) = m;, a(ge) =
b, a(gq) = z and a(g,) = n, for r # u,j,k,q. If g; £ z, then F, I’ B which
is a contradiction. If g; I 2, then Fy I? B’ where B’ = {z,m},mi11} U (Q* —
{ng,nk}). This is also a contradiction. Therefore, j' # ¢. Similarly we prove
that j' # ¢'. We have obtained that j' € L' and a(d) = n,, a(a)) = mi,
a(ai+2) = mi+1'7 a(gk) =b, a(gj’) = z and a(gr) = Ny for r 7é usja kajl- If
gu I z, then C7 IP B which is a contradiction. Thus g, £ z. If g; I z, then
C* IP B’ where B’ = {z,b,m},mi+1} U (Q* — {nk,nu,n;}). This is also a
contradiction. Hence g; £ z which yields Fj IP B. o

Remark 6 Enclosure 17 shows the situation described in Theorem 12 for p = 7,
k=2,¢=3,q =4,j=6,7 =5. In Theorem 12 there is supposed that both
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sets B3, B'=2 exist. However, this theorem also holds if one of those sets does
not exist. Then L' = L — {k,u, ¢} resp. L' = L — {k,u,q'}.

First let us assume that both sets B**3, B?~2 exist and consider the sets
L,L' from Theorem 12 where |L'| = p — 5. If F; € GP for j € L', then there
exists a set Y; € MP, Y; # Bj, such that F; I” Y;. Moreover, by Theorem
12, F;: IP Y; for a certain j' € L' distinct from j. If we put £(j) = j' for an
arbitrary j € L', then £ is involutory mapping of the set L’. For every j € L' let
us consider a substructure J; = (G, Mj, I;) of J where G; = {C’j,Fj, Fj, Cj’},
M; = {Xj,BJ-,Y]-,Bj«,Xj’}. It is obvious that J; = J¢(j)-

MP w=19w q1
GP \//\/\/\/ \ /\/\/\/\/V \/\A
Ct% FyFy  Chw-1 C7 C9 Ay o F, F,, C* Cc* F, C
Figure 7

Let us consider an involutory mapping ¢ of the set L described in Theorem 7.
Then ¢(u) = k and ¢ induces an involutory mapping of a set L” = L — {u, k}
where || =p — 3.

Let J5 = (Gs, M5, Is) be a substructure of J where G5 = G1U{d} and My =
My U {b,z,y}. We assign a graph of this structure by means of Propositions
13, 14. If we put ¢(q) = qi, then ¢ € L' and there exists a set 44, € GP
such that Ag, I? X7, X% (see Figure 7). Furthermore, let £(q1) = €¢(q) = ¢2
where g2 € L"”. Consider a substructure J;, where X% € M, ; let us put
©(g2) = p€p(q) = g3 and &(q3) = qa, consider J,, where X% € My, etc.

Similarly, let ¢(¢') = qi, &po(¢') = £(¢}) = ¢5 etc. There exist positive
integers v, w where

Ep...tp(q) =¢q and Ep...E0(d) = q,
SN—— N——

such that v + w = p — 5 (Figure 7). With respect to |L”| = p — 3 we obtain
©(gv) = gw. Hence, there exists a set A € GP such that A I? X9 X% which is
a contradiction. Thus, any incidence structure described above does not exist.

Let us suppose that Bi*2 exists and B*~! does not, i. e. i = 1. Then
there also exists an involutory mapping ¢ of the set L' = L — {k,u, ¢} which
contradicts the fact that L’ has an odd number of elements. Similarly we obtain
a contradiction if B*~! exists and B**? does not.

Thus, any incidence structure of type (p,n) satisfying the requirements 2,
b) does not exist.

Main Theorem Let J = (G, M,I) be an incidence structure of type (p,n)
where p,n > 2. Let R* = R**! for a certain i, 0 <i < n—2 and a\, & m’. Then
p is odd, thus p = 2q+1 and a graph of the incidence structure JP is either ()
from [5] where n = 3q + 2 or (¥x) where n = 5q + 3.
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