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A b s t r a c t 

Function values interpolating splines of the odd degree 2n — 1 with 
special boundary conditions are known to minimize the L2-norm of the n-
th derivative on some wide class of interpolants. Similar extremal property 
have special even degree splines interpolating the values of the derivative 
or the mean values. When we restrict the minimization to the linear 
space of quartic splines on the given knotset only, we can use the spline 
free parameters to find the interpolating spline with the minimal value 
of the norm of the user's interest. It could be sometimes more easy for 
the user to determine the proper spline norm from the geometry of the 
problem solved rather than to find the corresponding boundary conditions 
for the interpolant he searches. 

K e y w o r d s : Q u a r t i c spline, opt imal spline, interpolat ing spline wi th 
minimal n o r m . 

2000 M a t h e m a t i c s Subjec t Classif ication: 41A15, 65D05 

1 Introduction 

Let us have given t h e spline knotset x = {xu i = 0 ( l ) n - f 1} on t h e real axis wi th 
stepsizes hi = Xi+i — X{ a n d t h e prescribed values g = {Gi, i = 0 ( l ) n } , which 
can be t h e function values prescribed in points of in terpola t ion ( F V I problem) 

* Supported by the Council of Czech Government, J 14/98:153100011. 
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104 Jiří KOBZA 

t = {tj, X{ < U < #i+i, i = 0(l)n} or the mean values prescribed on the inter­
vals [xtjXt+i], i ~ 0(1)n (MVI problem). The set of quartic splines s(x) G C3 

on a given knotset x forms a linear space. The subspace of quartic splines 
which interpolate given function or mean values g has four free parameters, 
which can be used to fulfil some boundary conditions (see e.g. [2], [7]). Some­
times it is not easy for the user to find the boundary conditions corresponding 
to his problem—he usually searches for some satisfactory smooth interpolating 
curve. Such geometric criterion is used e.g. in the known notion of natural, 
periodic, complete cubic spline, (see [2]) minimizing the F2-norm of the spline 
second derivative. Similar results are known for quadratic and quartic splines 
interpolating mean values (see [7], [9]). The minimization is considered here on 
some Wi or W% classes of interpolating functions. When we restrict ourself to 
the subsets of interpolating splines only in the problem considered, we can use 
spline free parameters to find interpolating spline with minimal norm, which 
can be chosen according to the geometry or physical meaning of the problem 
(errors or stability problems—norm of function values, minimal energy—norm 
of the first derivative, smoothness of the process—norm of the second deriva­
tive; corresponding vector norms on sufficiently fine knotsets can approximate 
above mentioned norms). In the following we will give some overview of many 
possibilities how to compute quartic splines with optimal parameters. We shall 
consider in the FVI problem the case U 7-= X{ only, which seems to us as the 
most suitable in the practice (symmetry, stability, four free parameters). 

For the functionals optimized we will therefore choose the different norms of 
the spline k-th derivative (k = 0,1,2,3) or the vectors of their discrete values 
in knots. We will use then as the most appropriate the local representations 
containing the interpolated values gi and the values rrtj = S'(XJ), Mj = S"(XJ) 
in the spline knots—on the boundaries of the local intervals [-Ct>-Ci+i]« Such a 
local representation (denoted as [g,m,M]) we can write (see [6]) as 

s(x) = 1>(u)gi + hi[pl(u)mi + ip\(u)mi+1} + fe?[^2(u).Mi + ipl(u)Mi+i] (1) 

where the local variable u = (x — Xi)/hi, local stepsize hi = Xi+i — Xi are used 
together with cardinal basis interpolatory functions ip^l, which for function 
values interpolation (FVI) problem with di = (U - Xi)/hi are 

4>(u) = 1, 

<p\(u) = u-di-(u*-$) + (u*-d})/2, 

<p\(u) = u
3-d*-(u4-d4)/2, (2) 

<pl(u) = (u2 - d?)/2 - 2(u* - d?)/3 + (u4 - df)/4, 

yl(u) = -(u*-d*)/3 + (u4-d4)/4. 

For the mean value interpolation (MVI) problem we obtain 

ip(u) = 1, <pl(u) = - | - + W - U 3 - L - \u4\ 

9\iu) = - | j + u* - \u4, <p\(u) = i - i„3 + I^45 ( 3 ) 
2" ' viv**; - 30 

__ _L 1 . .2 
20 vôЫ = 'à + hu2~Һ3 + Һ4 
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Such basis functions we can compute also for another spline local representations 
with parameters [g,s,m], [g,s,M], [g,s,T], [g,m,T] (see [6]). The [g,m,T] local 
representation will be used in the proof of Theorem 2. 

Given the interpolated values az, the local parameters mi,Mi in knots Xi 
have to satisfy the spline continuity conditions (CC) s(x) G C3[xo,xn+i] in 
case of maximal smoothness s G C3 , which will be considered in this contri­
bution. Such CC can be expressed in various forms—as recurrences in terms 
of one local parameter (see [4] and section 2), or (more easily) in terms of two 
local parameters used in local representations mentioned (section 3). The first 
possibility can be used when we want to minimize the norm of the vector of 
discrete values of one local parameter in knots. We shall use in this case the 
notation 

n+1 

Jk<i(s) = \\is(k)(xi)}\\l = Y,(s{k)(x^> k = 0,1,2,3. (4) 
i=0 

The second possibility is more appropriate when we want to minimize the F2-
-norm of some spline derivative—we shall denote the corresponding functionals 
as 

Ms)= [ "% ( fc )(-r)]2<te, k = 0 , l , 2 ,3 , (5) 

which can be (using proper local representation) expressed as quadratic form in 
the values of the two local parameters used. We will show in the following that 
the problem of computing optimal local parameters of the quartic spline can 
be expressed as the quadratic programming problem with equality constrains 
given by CC. In the most simple cases we can use for its solution pseudoinverse 
matrix approach, in some another cases (weighted discrete norms) the approach 
for optimal solutions of difference equations (given by CC) described in [8]; in 
general cases we can use standard algorithms of quadratic programming. 

2 One parameter Continuity Conditions used 

2.1 Function values interpolation problem 

Using the technique of divided differences (see e.g. [4], [7]) or symbolic comput­
ing devices (as Mathematica—see e.g. [5])), we can obtain the CC expressed as 
recurrences in one local parameter with the coefficients depending on the geom­
etry of the set of spline knots and points of interpolation and with right-hand 
side coefficients dependent also on prescribed values #;. In the most frequently 
used case of equidistant knotset x with hi = h and FVI problem with points of 
interpolation ti = (xi -f- a^+i)/2, the CC with local parameters 

gi = s(U), Si = s(xi), mi = s'(xi), Mi = s"(xi), T{ = s,n (x{) 

can be written for knots xu i = 2(l)n - 1 as (see [5]) 
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s,_2 + 76*t-i + 230s, + 76s;+i + Si+2 =, 

-i«aN-a + i i ^ - 1 + u f t + f t + i ) i ( 6 ) 

mi-2 + 76m l_i + 230mz- + 76mz+i + m;+2 = 
384, „ 

= - ^ ( - f t - a - ^ i + 3 a + a + l ) | (7) 

M,_ 2 + 76M,_i + 230M, + 76Mz+i + M,+ 2 = 
384, 

= 2i?^i-2~gi-i~~9i+gi+l)^ (8) 

T2_2 + 76T,_i + 230T, + 76Ti+l + T,+2 = 
384, 

= -^-(-gz-2 + 3g,_i - 3gi+gi+1). (9) 

Mention please the known fact of identical coefficients on the left sides of these 
independent recurrences (valid in the case of equidistant set only). When we 
want to find e.g. the interpolating spline s(x) with minimal value of Ji<*(s), we 
can use the pseudoinverse approach (see e.g. [1]) to underdetermined system of 
linear equations (7) with four free parameters and full row rank matrix to find 
the solution—the vector m = [mt] with minimal value of Jid(s). For computing 
of the corresponding components of the vector M = [Mi] in the spline local 
representation (1) we cannot use then similarly the system (8) (because we have 
used all free parameters yet in computing parameters m 2 ) . The recurrences (6)-
(9) have been obtained as result of some elimination processes and give values 
Si, mi, Mi,Ti relatively independent (we could recognize it on the discontinuity 
of the spline with parameters computed in such an independent way). When we 
have computed optimal parameters m^ from the system (7), we have to use for 
computing the values Mi the formulas from the middle part of the mentioned 
elimination process—in the equidistant case we obtain e.g. 

M 0 = [-1216<7o + 1344G1 - 128G3 

+ fe(-109m0 - 1006mi + 7m 2 + 146m3 + 2m4)]/30ti2; 

Mi = [320Go - 384Gi + 64p3 

+ h(5m0 + 269mi - 8m2 - 73m3 - m4)]/30ft2, 

Mj = [-64 0 i _ 2 + 192p i_i - 128Gi+i j = 2(l)n - 1, 

+ h(-mj-2 - 70m j _i + 115m; + 146ra i + i + 2m i + 2)]/30tY2, 

M n = [-64Gn_3 - 384Gn_2 + 448Gn 

- /i(ran_ 3 + 79m n _ 2 + 452m n _i + 421mn + 7mn +i)]/30t\ 2, 

M n + i = [320Gn_3 + 1344Gn_2 - 1664Gn 

+ h(hmn-3 + 386m n _ 2 + 1603mn_i + 1538mn + 116mn+i)]/30A2. 
(10) 

Similarly, when we want to find spline with minimal value of the functional 
<I2d(s), we have to compute with the pseudoinverse the optimal solution M of 
the system (8) and then use these values for computing local parameters m2-
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from the explicit relations 

m ° = T9_oh[30725o - 5568__ + 2496<?3 

- !i2(656M0 + 3763Mj + 3975M2 + 1001M3 + 13M4)]; 
m i = T9_57r[-30725o + 36485l - 576<?3 

+ /.2(16M0 + 573MX + 905M2 + 231M2 + 3M3)], 
mi = T9los[30725j_2 - 5568.J-1 + 2496 5 j + 1 j = 2(l)n - 1 

- /i2(16Mj_2 + 1203Mj_i + 3335M,- + 1001M j+1 + 13Mj+2)]> 
m " = I 9 k [ - 3 0 7 2 f f n _ 3 + 36485 n_2 - 5765n 

+ !i2(l6Mn_3 + 1213Mn_2 + 3465Mn_! + 871Mn + 3M n + 1 ) ] , 

m » + i = T9_6h[30725n_3 - 55685 n_2 + 24965n 

+ h 2 ( - 1 6 M n _ 3 _ 1203Mn_2 + 2695Mn_i + 1559Mn + 627Mn+i)] 

Similar approach we can use in case of minimization of Jod{s), J3«i(5)- When 
we have computed e.g. optimal values s from (6), then the remaining local 
parameters m for the local representation [g, s, m] we have to compute from 
the formula 

mj = ^ [ - 2 4 ° 2 i - 2 " 3344a i_1 - 64Gi+1 

+ 15SJ-2 + 1184sj_i + 2585sj + 260s i + i + 4s i + 2 ] , j = 2(l)n - 1 

and the four boundary values from some special formulas. 
In case of more general norms 

^ M = I > * [ s ( f c ) ( z i ) ] 2 , | |m||2 = m T R _ m , | |M||2 = M T R 2 M (12) 

with positive weighting coefficients Wi or positive definite matrices R i , R 2 we 
can use the quadratic programming technique or least squares approach de­
scribed in [8] to find minimum of such functionals under CC conditions (inter­
preted as difference equations now). 

2.2 Mean values interpolation problem 

In case of mean values interpolation (MVI) the prescribed values are 

1 r*«+i 

9i = — I s{x)dx, hi = Xi+i - Xi, i = 0(l)n. (13) 
hi Jxi 

The corresponding CC written with local parameters s, m , M , T in case of 
equidistant knotset x we can choose from the following recursions with i = 
2(l)n - 1 (see [5] for the general case) 
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5i_2 + 26si_i + 66si + 26s i + i + si+2 = 5(g;_2 + H<7t-i + l lg ; + gi+i)> (U) 

mi_2 + 26m i _i+66mi + 2 6 m i + i + m i + 2 = ^ ( - g i _ 2 - 3 ^ - i +3_Li+gi+i), (15) 

Mi_2 + 26Mi_i + 66M; + 26M i + i + M i + 2 = f§(gi-2 - gi-i - gi + gt+i)> (16) 

Ti-2 + 26Ti_i + 66T, + 26T,+i + T,+2 = ^ P ( - 0 i - 2 + 3#-_i - 3O; + gi+1). (17) 

We can again compute one of the vectors s, m , M , T from corresponding 
underdetermined system from (14)-(17) using pseudoinverse of the full row rank 
matrix of the system and then to compute the remaining local parameters from 
the corresponding explicit relations. When we have computed vector m with 
minimal norm and we use local representation [g,m,M], then we can compute 
M using explicit formulas 

M0 = [-380<?0 + 420Gi - 40G3 

+ /i(~55m0 - 272mi - 21m2 + 46m3 + 2m4)]/12/V\ 

Mi = [lOOGo - 12001 + 20G3 
+ h(5m0 + 73mi + 6m2 - 23m3 - m4)]/12fr2, 

Mj = [-20G,_2 + 6 0 ^ - 1 - 40a J + i j = 2(l)n - 1 
+ h(-mj-2 ~ 20mj_i + 33m,j + 46m J + i + 2m,j+2)]/12/i2, 

M n = [-20gn_3 - 120gn_2 + 140an 

- / i(mn_3 + 29mn_2 + 138mn_i + 125mn + 7mn + i)] /12/i2 , 

M n + i = [100an_3 + 420^n_2 - 520on 

+ /i(5mn_3 + 136mn_2 + 483mn_i + 454mn + 62mn + i)]/l2b ,2 . 

(18) 
When we have computed the vector M with minimal norm, then the corre­
sponding components of the vector m we can compute as 

m0 = [600sr0 - 10205l + 420#$ 
+ / i 2 ( -90M 0 - 573Mi - 641M2 - 189M3 - 7M4)]/240/i, 

mj = [-600^0 + 780^1 - 18O03 

+ ft2(10M0 + 177Mj + 269M2 + 81M3 + 3M4)]/240/i, 

mi = [6005,-2 - 10205j_i + 420<jj+i j = 2( l )„ - x 

- /i2(10M3_2 + 253M j_i + 561M,- + 189M,+ i + 7M i+2)]/240/i, 

m n = [-600<?„_3 + 780#n_2 - 1805n 

+ / J
2(10Mn_3 + 257Mn_2 + 589M„_i + 161M„ + 3Mn +i)]/240/i, 

m„+i = [6005n-3 - 1020$rn_2 + 420s„ 
- /i2(10Mn_3 + 253Mn_2 + 481M„_i - 131M„ - 73Mn+i)]/240/i. 

(19) 
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More generally, when we have computed some of vectors s ,m,M,T with minimal 
norm, we can compute the remaining parameters from explicit formulas 

mj = [~70gj-2 ~ 935^-1 - 15a i + i 
+ 1 4 ^ . 2 + 397si._i + 2185^- + 561s i + i + 455 i+2]/l76/i, 

mj = (-9j-2 + gi+i)/3/i - h2(Tj„2 + 29T i_i + 902} + 29T i + 1 + T i + 2) /360, 

Sj = [260^-2 + 300^-1 + 160a i+i 

+ h(13m^2 + 314mi__1 + lQ5mj - 184m i + 1 - 8m i + 2)]/720, 

Sj = (9j-2 + gj+i) - h2(Mj_2 + 27Afj-i + 84M, + 27M i + 1 + M i + 2 ) /120, 

Sj = [-600gj-.2 + 2520^-1 
- h3(5Tj_2 + 124T i_1 + 231T, + 58T i +i + 2T i+2]/2160, 

Mj = (29j„2 ~ 3 ^ - 1 + gi+i)/3li2 

+ li(2Ti_2 + 55T/-1 + 33Tj - 29T i + i - T i + 2) /360. 

(20) 
(j = 2(1 )n — 1; additional special formulas are needed for boundary values.) 

2.3 Existence, uniqueness of the optimal solution 

The quadratic functionals we minimize are nonnegative and so there exist their 
minima. In all cases mentioned here (FVI, MVI problems on equidistant knot-
set) the two matrices appearing in CC for FVI and MVI problems with various 
local parameters have full row rank. The pseudoinverse solution with minimal 
norm for each local parameter is then unique in such problems (see [1]). These 
uniqueness and the existence of simple explicit formulas for computing the val­
ues of the remaining local parameters give us then the proof of the uniqueness 
of such solution. Even in the general case our functionals Jkd(s) &re convex 
functions which are minimized over convex set determined by spline CC for the 
local parameter chosen—such a problem is knowm to have a unique minimizer. 
Thus we have proven the following theorem. 

Theorem 1 In the problems FVI, MVI on the general spline knotset there ex­
ists for each functional Jkd(s), k = 0,1,2,3 the unique quartic interpolatory 
spline with the minimal value of such functional. The vector of optimal val­
ues of one kind of the local parameters of such spline can be computed using 
pseudoinverse solution of the system of corresponding continuity conditions; the 
values of the second unknown local parameter used in the local representation 
has to be computed from complementary formulas as given for equidistant case 
in (10), (11), (IS), (19), (20). We can use some special LSQ approach de­
scribed in [5] for minimization of functionals of the type (12); we can use the 
algorithms for the problem of quadratic programming with equality constraints 
in such or more general cases. 

Remarks The expressions for the general case of CC and functionals for FVI 
problem on the general knotset are too lengthy to be written and discussed here. 

For the user the algorithm described needs only to choose the order of the 
derivative minimized and to know corresponding continuity conditions—not to 
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search for complementary boundary conditions. As we can see on the examples 
below, the difference in the results is to be seen on the boundary intervals 
mainly. 

Example 1 For the monotone (staircase) function values on the equidistant 
knotset t = 1 : 2 : 29, x = 0 : 2 : 30, 

g = [1,10,10,10,11,13,14,15,15,15,16,17,18,20,20] 

the quartic spline with minimal norm | | m | | 2 = 2.43 ( | |M| | 2 ) = 84.3) is plotted 
with dashed line on Fig.l; with dash-dot line is here plotted the spline with 
minimal norm | | M | | 2 = 2.29 ( | |ni | | 2 = 6.33) and with dotted line the spline with 
minimal norm of the vector [m, M] equal to 6.3 (see Section 4.1). 

25 

20 Һ 

15 

10 

-10 

-15 

-20 

min norm(m)=2.4 (norm(M)=84.3) — dashed 

min norm(M)=2.29 (norm(m)=6.3) — full 

min norm([m,M])=6.3 — dots 

([norm(m),norm(M)])=[5.8, 2.5]) 

staircase data interpolated with quartic spline 

10 15 20 25 30 

Fig. 1 

Example 2 On the equidistant knotset x = 0 : 2 : 20 the mean values 

g = [5,1,3,4,7,13,8,11,15,9] 

are prescribed. 
The quartic MVI spline with minimal value of the norm | | m | | 2 = 7.75 (and 

| | M | | 2 = 53.1) is plotted in dots on Fig. 2. Interpolating spline with minimal 
norm | | M | | 2 = 6.47 ( | |m| | 2 = 10.2) is here plotted in dash. With full line is 
plotted here the spline with minimal norm | | [ m , M ] | | 2 = 11.5. 
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18 

14 

12 

10 

~i г "1 Г 

oh 

~T Г 

MVI with quartic splines — min norm(m), norm(M), norm([m,M]) 

• min norm(m)=7.75 

^ 7 

• min norm(M)=6.47 .. dashed 

- min norm([m,M])=11.5 .. full 

(small differences) 

10 12 14 16 20 

Fig. 2 

In both cases we can see the substantial differences near the boundaries 
only (which is caused by damped error propagation known at these splines— 
connected with diagonal dominance in CC). More details about the norms of 
the vectors considered in Examples 1,2 are given in the Table 1. 

I|M|| 
\m,M) || 

F V I - Ex. 1 

-II ЦMll n к м ) i i 
2.4255 84.3086 84.3435 

6.3270 2.2873 6.7278 

5.7936 2.4591 6.2939 

MVI - Ex. 2 

IHI W\\ \\{m,M}\\ 
7.7538 53.1378 53.7005 

10.1722 6.4710 12.0560 
9.4004 6.6338 11.5055 

Table 1. 

3 Optimization with two local parameters 

3.1 Continuity conditions with two parameters 

It is not an easy matter to obtain the continuity conditions (6)-(9), (14)-(17) 
and completing formulas for the second parameter even for equidistant knotset. 
We obtain very lengthy formulas in the general case. More simple approach 
we can obtain when we use the spline local representation (l)-(2) and express 
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the CC for s, s^ in each inner spline knot. We obtain then the CC as linear 
recursions between values of the local parameters m, M, with coefficients de­
pending on the geometry of the spline knots and points of interpolation, with 
components of the right-hand side depending also on prescribed values gi (for 
the general case see [5]). 

In case of the equidistant knotset and di = (U—Xi)/hi = 1/2 in F VI problem 
we obtain CC as system of linear recurrences 

^(3mi_i + 26mi + 3m,i+i) + ^h(Mi-i - Mi+i) = \(gi - gi_i), 3 2 * 

k(rm-i - rrn+1) + g(Mť_i + 4M; + Mi+1) 2Һ 
0, i = l ( l ) n . 

(21) 

These CC form now the system of 2n equations with 2 n + 4 parameters, with the 
matrix consisting of four (n, n + 2) -matrices with tridiagonal structure. With 
the notation 

A = 

B = 

3 26 3 

3 26 3 

1 4 1 

C = 

1 0 

1 0 - 1 

1 4 1 

we can write these CC in matrix form as 

192 
ь = M = [-----fø.+1-ft)] 

" | A C " 

. c §в. 
m 

_ҺM = 
b" 
0 (22) 

Let us mention that the matrices A, B, C have full row rank and are constant 
for different stepsizes h and values g. The block matrix of the system (22) is 
also of the full row rank. 

In the MVI problem we can use the local representation (1), (3) to obtain 
the CC on the general knotset with pi = hi-i/hi, i = l ( l ) n as 

| / i i_imi_i + ^ ( / l i - i + hi)mi + | h i + i m i + i 

+/i 2 _ 1 Mi_i + §(/i2 - /i2_i)Mi - /i2Mi+i = 3 1 % - <7;-i), 

mi_i + (pf - l)irii - p 2 mi+i 

+ |/ii_i[Mi_i + 2(1 +Pi)Mi + pi Mi+i] = 0. 

Using the matrix notation 

(23) 

A = 

9Л0 21(Л0 + Лi) 9ЛX 

9Лi 21(Лi + Л2) 

9 Л „ _ І 

9Л2 

21(Лn_i + Л„) 9Лn 
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c = 

2/i2 3(hj-h2

0) -2h\ 
2h\ 3(/i2 - h\) -2Л 2 

D = 

2Л2_i 3 ( Л 2 - Л 2 _ i ) 

1 PÌ ~ 1 -P? 

в 

1 Pl-l -ň 
h0 2h0(l+pi) hopi 

-2ҺÌ 

l.n-1 2_.„(1 +p„) lln-lPn 

b1 = [6J] = [60(<7, - _._i)], b2 = [62] = 0, t = l(l)n, 

we can write with this four (n,n-/-^-matrices the CC in the matrix form 

A C 
ЗD B 

m 
_M_ = 

b 1 

b 2 (24) 

In the equidistant case we can rearrange the CC to simpler and more symmetric 
form as in the FVI problem; the full row rank of the system is then better to 
be seen. 

3.2 Functionals Jk(S) minimized—FVI problem 

Using the local representations (1) we can compute expressions for functionals 
Jk(s). In case of the FVI problem with di = (t{ — Xi)/h{ = 1/2 we obtain 

fXn+1 v ^ 9 \ 
Jo(s) = / [s(x)]2dx = 22 hi92i + ^ 22 hi9i{,mi+i ~ ^ i ) 

г = 0 

-_Sň Ž ^ ( M i + M i + l ) + 55^5. __. ft«? ( 8 4 8 3 m ' + 9914m,m.+1 +8483m2
+1) 

i = 0 322560 i = 0 

J — ] Г A?(239M? - ±Ş?M,M<+i + 239MД.i) 
258048 

ѓ = 0 

i " 
+ o. .r__y" l^( 3 1 1 9 m » M » - 2257miMi+1 + 2257m i+1M i - 3119m.+1M i+i) 

г = 0 

= ___>_ 2 + P 2 

î = 0 

m 
M 

+ [mT,MT] 
R i | Q 

_ Г » -
L 2 Q

2 R2 

m 
M 

(25) 

with the vector p and tridiagonal matrices R i , R2, Q which can be recognized 
from the explicit expression written above ( R i , R 2 are symmetric, positive 
definite—SPD matrices). 
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For the L2-noTin of the first derivative of the FVI spline with di = 1/2 (equal 
to zero for constant values gi = g) we obtain more simple symmetric quadratic 
form 

J1{s)= f '+\s'{x)}2dx = 
JXn 

Ы 
Y_ ^ l 7 8 m 2 + 54m»m i + 1 + 78m?+ 1 + h2{2M2 - 3 M . M i + 1 + 2M;?+1) 
ѓ = 0 

+hi(22miMi - 13ra.M i + i + 13rn.+_.Mi - 22m. + iM. + i ) ] 

-йвi-*--^ 
R i | Q 

L _ Q T _ R 2 

m 
M 

with (n+l,n+l)- matrices ( R _ , R 2 are SPD matrices) 

(26) 

R i 

78ft0 27ft0 

27ft0 78(Л0 + ft_) 27fti 

27ft„_i 78(Л„_j + Л„) 27Л„ 
27ft„ 78ft„ 

R 2 = 

4Л„ -злg 
-ЗЛg 4(Лg + Л?) -ЗЛf 

-ЗЛ*__ 4(ftЗ_x + Л„) _ЗЛ* 
-ЗЛЗ 4ЛЗ 

Q = 

lЗЛg 22(Л_ - Л§) -lЗЛf 

13Л„__ 22(Л„ - A»_.) -13Л„ 
ІЗЛ^ -22ЛH 

For the F2-norm of the spline second derivative in such case we obtain 

Ms) = r+\s"{x)}2dx = _T T^--[18(m. - m i + 1 ) 2 

•!x0 ,_.„ -*>fti 
+ A? (2M? - MtMi+1 + 2M?+ 1) + 3fti(m; - mi+1){Mi + M i + 1 ) ] 

= [ m T , M T ] 
| R i ^ Q m 

M 
(27) 
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with tridiagonal (n+1 ,n+1)-matrices 

Ri = 

v1 

-ҺQ h0 -f hľ —hг 

-h~\ h-i. + h-1 -h-1 

-K1 K1 

R 2 

4/г0 -h0 

~h0 4(h0 + hľ) -Лi 

-hn-i 4(lгn_i + /г„) -ft n 

1 1 
- 1 0 1 

- 1 0 1 
- 1 - 1 

Q 

Let us mention that the matrices R i , Q are singular (one, two eigenvalues equal 
to zero—row sum is equal to zero vector). So also the compound matrix is 
singular (it corresponds to the fact that Jz(s) = 0 for the data gi from some 
linear function). 

Similarly we can obtain the functional J${s) for the F2-norm of the spline 
third derivative as the quadratic form 

Ms) = r+1[s'"(x))2dx = ]T -l[3(m. - mi+1)
2 

Jx° i=0 i 

+ h2(M2 + MiMi+1 + Mf+1) + 3hi(mi - m i + i)(M. + Mi+1)) 

3Ri | Q 1 
= 4[m т,M т] 

L§QT_R-j 
m 
M 

(28) 

with matrices 

R i 

ҺÕ3 -ҺÕ3 

-Һ0

Ó к0 + ҺŢ* - v 

- з - Kix hnix + K6 -h~ 
- K3 K3 

R_ = 

2/ІQ-1 hõ1 

ҺÕ1 ^(h^ + к1) к1 

C i í t ó + ť ) /г-1 

2/г: 
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Q 

л 0

2 

-A 0

2 - Л 0

2 

лг2 лг2 

- l tn-1 - l tn-1 + K" K 
2 ř,-2 

-Aň2 - A " 2 , 

(the matrices R i , Q and also the resulting block matrix are again singular; 
J3(s) = 0 for the data O_ from some quadratic function). 

3.3 Junctionals in the MVI problem 
In the MVI problem with local representation (1), (3) we can obtain for the 
functionals considered on the general knotset the following expressions. 

n - n 

J0(s) = ___ A.<,? + ^ _ — ___ A?[(583m2 + 934m.m i + 1 + 583m 2
+ 1 ) 

=0 i=0 

+A 2 (22M 2 - 41MiMi+1 + 22M 2
+ 1 ) 

+A i (223m i M i - 197miM.+_ + 197m i + iM. - 223mi+1Mi+1)} 

i=0 

E^2
 + ^ [ m т , M 

i = 0 
25200l 

Rx Ì Q 

| Q T R 2 

m 
M 

with full row rank tridiagonal matrices 

R i 

583A_ 467Ag 
467Л_ 583(Лj_ + h\) 467Л? 

467Лn__ 583(Л„__ + hзj 4 б 7 / . з 
467ҺÍ 583K 

(29) 

R 2 

22Л_ -20.5Л[j 
-20.5Л§ 22(A^ + Лf) -20.5Лf 

-20.5Лn__ 22(Лn__ + Лn) -20.5Л„ 
-20.5Л.Î 22Л?Í 

Q 

223ЛЈ. -197Л_. 
197Л^ 223(Л_ - Л_) -197Л_ 

197An__ 223(An - An__) -197An 

197A* -223A* 

When we compute the expressions for the quadratic forms J/.(s), k — 1,2,3 
for the MVI problem, we obtain the identical results as for the FVI problem 
with _£_ = 1/2—what is the reason? Comparing the expressions for the basis 
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functions for the FVI and MVI problems in (2), (3), we will find that the 
corresponding functions differ with additive constants only in general and so 
they have identical derivatives. This fact results then in identical structure of 
matrices in matrix forms of functionals mentioned. As a consequence we obtain 
then similar results in questions of existence and uniqueness of optimal FVI and 
MVI quartic splines. We can use this fact also in computational algorithms. Let 
us remark that the mentioned property of cardinal basis functions does not mean 
that the corresponding splines differ with an additive constant. 

L e m m a 1 The quadratic forms Jk(s), k = 1,2,3 for quartic FVI and MVI 
splines on given spline knotset x are equal for given index k. 

4 Existence and uniqueness of opt imal splines 

4.1 Minimal norm of vector [m;M] 

We can search also for the spline with minimal norm of the vector [m;M]. In 
the case of minimization of its /2-norm we can find the pseudoinverse solution to 
the system of equations (21) for FVI problem, (23) for MVI problem. The full 
row rank of matrices of this systems ensures us the existence and uniqueness of 
optimal values for components of the vectors m, M. We can consider similarly 
the minimization of such functionals as J\(s) + J2(s). 

L e m m a 2 There exist the unique quartic FVI, MVI interpolatory splines on 
the general knotset with minimal l2-norms of the vector [m;M]. They can be 
computed with pseudoinverse approach to the CC (21) or (23). 

The results for such optimal splines from the Examples 1, 2 we can see in 
the Table 1. 

4.2 Func t ionals Jk(s) 

Following the definition, all mentioned functionals are nonnegative quadratic 
forms and therefore there exists their minimum. Positive definitness of the ma­
trix of the quadratic form is known to be sufficient condition for the uniqueness 
of minima. The functionals Jo (s) in both FVI and MVI problems are equal to 
zero in the case s(x) = 0 only—it proves their positive definiteness and unique­
ness of the minima. For the data not allowing constant FVI (gi = const.) or 
MVI spline (gi/hi = gi-i/hi-i) we obtain also the positive value of the func­
tionals Ji(s), which proves the positive definitness of corresponding matrices 
and uniqueness of the minima in such cases (we have controlled it numerically 
on many examples). We have mentioned yet the singularity of the matrices of 
quadratic forms in the functionals J2(s), Jz(s)> We cannot prove the uniqueness 
of the minima with similar simple arguments now. All the problems mentioned 
are some quadratic programming problems with equality constraints—in some 
simple cases we have proved the uniqueness yet in Section 2.3. We have now 
to use some more detailed technique from optimization theory. The conditions 
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for the existence and uniqueness of the general quadratic programming problem 
with equality constraints 

min <J - p T H p + g T p ; A p = - d , p <G Rm, A = (n,ra) (30) 

were discussed in details in [3], where (Theorem 1.1, Theorem 2.1) the necessary 
and sufficient conditions for the strong minimizer (unique solution) are stated. 
The corresponding Kuhn-Tucker matrix 

к = 
H A т 

A 0 

with left diagonal block H taken from minimized quadratic form and the full 
rank matrix A from equality constraints is here used and the existence of the 
strong minimizer (unique minimum) proved under three types of conditions 
which can be numerically controlled: 
a) the matrix H is symmetric, positive definite; 
b) for matrix Z of the basis of the null space N (A) of the matrix A the matrix 

Z T H Z is positive definite; 
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c) iV(A)n!V(H) = {0}; 

d) the number of negative eigenvalues of K is equal to the rank of A and K is 
regular. 

We have done many computations with Matlab for both FVI and MVI prob­
lems with n ranging from 5 to 50 and stepsizes h = 2,1,0.1,0.01,0.001 (the Mat-
lab function null(A) can help to find the matrix Z). In all cases we have obtained 
with approaches b), c) the positive results in the question of the uniqueness of 
the solution minimizing functionals J2(s), Js(s) in FVI and MVI problems with 
positive semidefinite matrices. But it was difficult to find the rigorous proof 
in the general case. The matrices H (identical for FVI and MVI problems as 
stated above) have more simple structure when we instead of the local param­
eters [g,m,M] use another triplet of parameters [g,m,T] with the vector T of 
the third spline derivatives Ti = s'"(xi) (see [6]). With this local parameters we 
can write the spline local representation 

s(x) = ip{u)gi + hi[<pl(u)mi + <p\(u)rm+i] + h\ [<Po(u)Ti + <pl(u)Ti+1] (31) 
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with basis functions for (FVI) problem with di = \ 

i>(u) = 1, 

<pl(u) = (-3/4 + 2u - « 2)/2, <p\(u) = (u2 - l/4)/2, 

<p3(u) = (9/16 - 4u2 + 4u 3 - u 4)/24, 

<p\(u) = ( 7 / 1 6 - 2 u 2 + u 4 ) / 2 4 . 

For the mean value interpolation (MVI) problem we obtain 

(32) 

<ф(ч) = 1, 

ч>\Ы = - è + Ь2> 
^o(^) = - | + u ~ è^2; 

.зл,л - JL <pl(u) 1,,2 j _ 1„,3 1 Ч ł4 - 7 У Z 4 - -llö — 11 
45 6 a T 6 U 2 4 a 

(33) 
1 „,2 i 1 „,4 

V l ( U ) = 350 

With this local representation we can express the functionals considered as 

^(m2 - 2 m ť m i + 1 + m 2
+ 1 ) + ^ ( 4 T 2 + 7 T T . + 1 + 4T2

+1] Ш = J2 

ѓ=0 

J3(S) = \ Ê M-ľ + T T + ! + Ti+l) 

(34) 

(35) 

i=0 

with the matrices of the quadratic form with block diagonal structure 

H 
R І O 
O R 2 

R i = 

1 - 1 
- 1 2 - 1 

-1 2 - 1 
- 1 - 1 

, R 2 — 
360 

8 7 
7 16 

7 16 7 
7 8 

for the functional J 2 (s) and for functional Js(s) with matrices 

R i = O, R 2 — — 

2 1 
1 4 1 

1 4 1 
1 2 

The matrix R i is symmetric positive semidefinite in case of J 2 (s) and for Jz(s) it 
is zero matrix. The matrix R 2 is positive definite in both cases. The continuity 
conditions in the FVI and MVI problems we can write in the matrix form as 

A ц A i 2 

A 2 i A 2 2 

m 
T 

b i 

o 
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In the FVI problem on equidistant knotset, d{ = 1/2 the (n,n+2) - submatrices 
are determined as (see [5]) 

A ц = 

1 6 1 

1 6 1 

A12 = 

1 - 2 1 

1 - 2 1 

A 2 І = -
48 

7 18 7 

7 18 7 

A 2 2 = - — 
6 

1 4 1 

1 4 1 

Similar structure of these matrices for MVI problem is described in [5]. We are 
able to prove now the following Theorem. 

Theorem 2 The quadratic programming problem to find minimum of Jk(s), 
k = 2, 3 under continuity conditions has unique solution in FVI and MVI prob­
lems on equidistant knotsets. 

Proof From the description of the coefficients of the matrices Ay we can see 
the full row rank of the block matrix of continuity conditions. We shall use the 
proposition c) and we prove, that the vector from the nullspace of the matrix 
H cannot belong to the nullspace of the matrix of the continuity conditions. 
Let us start with the functional Js(s), where we have R i = O. The system 
R 2 T = O with regular matrix has only trivial solution T = O. The nontrivial 
vector [m,T] from the nullspace of the matrix of CC so has to be obtained 
as the nonzero solution of the overdetermined system of equations A u m = O, 
A 2 i m = O. The solutions of such systems are also the solutions of homogeneous 
linear difference equations—with the roots of characteristic polynomials equal 
to — 3 -f 2\/2, —3 — 2\/2 in the first part and double root equal to one in the 
second part of equations. With the exception of the case of two knots such 
equations have not the common nontrivial (zero) solution. 

Let us now consider the case with the functional J 2 (s) • The system R 2 T = 
O has trivial solution only. If we have m / O , then the solution of R i m = O 
is the vector of constants (mi = c) only (proof by induction) with A 2 i m = O . 
The part T of the nullspace of the matrix of CC with such a vector m has to 
be a solution of the system of overdetermined equations 

A ц T = - A ц Ш A 2 2 T = O . 

The first system has no trivial solution T = 0 . (When we present the solutions 
of block systems as the solutions of the difference equations with the roots 
of characteristic polynomials which are again different for each block, we can 
conclude that such a system has no solution.) 

Quite similarly we can prove the uniqueness in the MVI problem. With 
more detailed technique it is possible to prove in such a way the uniqueness of 
the solution also with local parameters [g,m,M]. 
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Let us mention that the zero value of the functional Jk{s) we obtain when 
the data g correspond to some polynomial of the degree k — 1. 

We can summarize the results obtained in the subsection 4.2 in the following 
Theorem. 

T h e o r e m 3 The problem of finding a quartic FVI or MVI interpolatory spline 
on equidistant knotset with minimal value of the functional Jk{s) has the unique 
solution for each k E {0,1,2,3}. We can compute it with quadratic programming 
techniques or with some special techniques mentioned above. 

R e m a r k The uniqueness of such optimal splines will hold also for slightly 
nonequidistant knotsets. 
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Examples For the monotone data from the Example 1 (FVI) we have computed 
the local parameters of the quartic splines with minimal values of the functionals 
Jfc(s), k = 0,1,2,3. We can see their plots on Fig. 3 and recognize significant 
differences in the boundary intervals only (especially in the case of Jo{s))-

We have computed also the optimal MVI quartic splines for the mean values 
given in the Example 2 with minimal values of functionals mentioned above. 
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The results are to be seen in the Fig. 4—with the significant differences on the 
boundary only. 

Quartic MVI splines with minimal L2-norms Jk, k=0,1,2,3 
i i i 

10 15 20 25 

Fig. 6 

Example 3 For the equidistant points of interpolation t = 0 : 1 : 20, spline 
knots x = —0.5 : 1 : 20.5 and the following general data 

g = [15,11,4,5,0, - 2 , - 7 , -1,6,10,12,16,19,17,13,12,8,6,3,1,0] 

the plots of quartic FVI splines are given in Fig. 5. We can see again the visible 
differences near the boundaries only. Similar result we can obtain for the spline 
with minimal norm of the vector [m,M]. 

Examp le 4 For the general knotset and MVI problem with 

x = [0,2,3,5,7,9,10,13,17,20,22], g = [4,2,1, - 2 , - 3 , -1 ,3 ,6 ,7 ,5] 

we can find the plots of quartic MVI splines with minimal values of J/c(s), 
k = 0,1,2,3 and minimal value of norm [m, M] in Fig. 6. 

All the examples have been computed with special MATLAB M-files s4opte , 
sp l4hodn worked out by the author. These examples show the visually nice 
properties of splines with minimal norm of the first or second derivative. 
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