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Abstract 

The purpose of this paper is to find an analogon of the Galois triangle 
theory for direct summands of modules over arbitrary unitary commuta­
tive rings. 
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Let an arbitrary unitary commutative ring A. be given and let M be an 
A-module. The aim of this paper is (by using the properties of projections) to 
find 1-1 correspondences between the ordered set of direct summands of M and 
the ordered set of left (right) principal ideal of the ring of endomorphisms of M 
generated by an idempotent element. 

The solution of this problem is well known f.e. in the case M is a vector 
space [1] or totally reducible module [3] (the set of direct summands of M is 
equal to the set of all submodules in this cases). 

Notat ion 1 
1.1. By P we will denote the ring of endomorphisms on M i.e. P = E n d M , 

the composition of / , g G P we will define by (fg)(x) — g(f(x)). 

* Supported by the grant of the Palacky University 1999 "Rozvoj algebraickych metod 
v geometrii a uspofadanych mnozinach" 
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1.2. By L(P) we will denote the set of the all left ideals of P generated by an 
idempotent element and by i?(P) the set of the all right ideals of P generated 
by an idempotent element. 

1.3. By U(M) we will denote the set of the all direct summands of the 
A-module M. 

1.4. For every S G U(M) let us denote 

N(5) = { / G P ; V x G S : / ( x ) = o } , 

Q(5) = { / G P ; V X G M : / ( X ) G S } . 

(Equivalent^, N(5 ) = {/ G P ; 5 C K e r / } , Q(S) = {/ G P ; I m / C S}). 
1.5. For every J G R(P) let us denote 

K(J) = {x G M ; V / G J : f(x) = o} , 

L(J) = { / G P ; V 5 G J : / < ? = o}. 

1.6. For every J G L(P) let us denote 
r 

H ( J ) = {x G M ; 3 / i , . . . , / r G J , 3 y i , . . . ,y P G M : x = ] T / ^ y * ) } , 

R ( J ) = { / G P ; V 5 G J : 5 / = o}. i = 1 

R e m a r k 2 Every idempotent element of P is usually called a projection. 
It is well known (see [2]), that / G P is a projection if and only if there exist 

elements U, V G U(M) such that: 
( l ) M = U©y, 
(2) VxG M , x = x r r + x y , x c / G U,xK G V : / (x ) = Xr/. 
Therefore / is called a projection M OHiO U parallely V. Clearly, I m / = U, 

/ = V and / |U is an identity mapping. 

L e m m a 3 For any f,g G P , / is a projection, the following holds: 

K e r / C Kerg <=> fg — g. 

P r o o f Let K e r / C KerG. Let us consider an arbitrary element x of M . It may 
be written by x = xi + x2 , xi G I m / , x2 G K e r / . 

Then we have 

g(x) = g(xi)+g(x2) = g(x!) = g(f(x1)) = g(f(x)) = (fg)(x). 

The reverse implication is clear. 

L e m m a 4 For any / , a G P . / z's a projection, the following holds: 

Img C I m / ^=4> g/ = o. 

P r o o f Evidently, g/ = g implies Imo C I m / . 
Let Im a C Im / . As / | Im / = id we may write 

(fl/)(x) = / (g(x)) = g(x), for any x G M . 
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Proposit ion 5 For any submodule S G U(M) the following hold: 
(l)N(S)eR(P), 
(2) Q(5) e L(P) . 

Proof Firstly, let us prove the part (1). 
Let us consider an S G U(M). It follows from the definition of the operator 

N than N(S) is a right ideal of P . 
Since S G U(M) we have a T G U(M) such that M = S&T. Using remark 2 

we obtain the existence of a projection / M onto T parallely S = K e r / . 
Let an arbitrary endomorphism g G N(S) be given. It yields S C Ker a 

which implies (by lemma 3) that g — fg. Thus N(S) C / P . Since the reverse 
inclusion is evident we have N(S) G I?(P). 

The part (2) may be proved by an analogical way (due to lemma 4). 

Proposit ion 6 If J G It(P) then K(J) G U(M). 

Proof Let / be the idempotent generator of J, J = / P . Using the definition 
of the operator K we have x G K(J) iff (/p)(x) = o for every PGP, which is 
equivalent to / ( x ) = o. It yields K e r / — K(J ) . 

As / is a projection the kernel of it is an element of U(M). 

Proposit ion 7 If J G L(P) then H(J) G U(M). 

Proof If we denote by / the idempotent generator of J then the submodule 
S = I m / belongs to U(M). 

Arbitrary x G H(J) may be written as follows (fi G J for any i — 1 , . . . , r ) : 

r r r 
x = Y2 h(yi)= H (ff./)(y.) = £ /(s^y.)). 

i = l i=l i=l 

which gives that H(J) C S. 
The reverse inclusion follows from the definition of H, immediately. 

It follows from the propositions 5, 6, 7 that it is possible to investigate the 
compositions K N , NK, HQ and QH . 

Proposi t ion 8 IfS G U(M) then the following hold: 
(1)K(N(S)) = S, 
(2) H (Q(5)) = S. 

Proof Firstly, let us prove the part (1). 
If S G U(M) then there exists a projection / such that K e r / = S and 

moreover N(S)) = / P (see the proof of proposition 5). Using this fact and the 
definition of K we may write K(N(S)) = K e r / = S (see the proof of 6). 

Now, let us prove the (2). 
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It follows from the lemma 4 that for any S e U(M) we have a projection g 
such that Img = S and Q(S) — Pg. Since every element from H(Pg) may be 
written by 

r r 

x = XXfo)(y.) = £0(/.(yi)). L,...,/rGP 

it follows from this H(P#) = Img. It means H(Q(5) ) = S, consequently. 

P r o p o s i t i o n 9 
(1) IfJe L(P) then Q(H(J)) = J. 
(2) IfJe .R(P) £/*en N(K(J)) = J. 

Proof 
Ad (1): Let / be an idempotent generator of J. Then H(J) = I m / (see the 

proof of 7). Respecting the fact g is an element of Q ( I m / ) iff Img C I m / we 
(according to 4) have g e P / = J. 

Ad (2): Let / be an idempotent generator of J. Then K(J) = K e r / (see 
the proof of 6). Using the lemma 3 we obtain that g e N(Ker / ) iff g e / P = J. 

P r o p o s i t i o n 10 
(1) IfJe R(P) then L(J) = Q(K(J ) ) . 
(2) IfJe L(P) then R(J) = N(H(J ) ) . 

Proof Firstly, we prove the part (1). 
Let J = / P , Then K(J) = K e r / and therefore Q(K(J ) ) = Pg where g is a 

projection with Img = Kerf (see proofs of 6 and 8). 
Let us consider arbitrary elements q e Q(K(J ) ) , j e J which means that 

q — pg and j = / r , where p, r e P . For any x E M we may write 

(qi)(x) = r(f(g(p(x)) = o , 

since Img = K e r / . Thus Q(K(J)) C L(J) . 
If h e L(J) then hf = o. It implies that Imh C Ker / . Using the fact 

K e r / — Img and lemma 4 we obtain h — hg. It implies n £ P# = Q(K(J ) ) . 
The second part may be proved analogously. 

It is easy to derive that for every U,S e U(P), J, K C P hold 
(1) JCK^ K(J) D K(iv"),H(J) C H(iv"),R(J) D R(.ftT),L(J) D L(iv"), 
(2) U C S => N(U) D N(5) ,Q(U) C Q(5) . 
Now, if we consider operators N , K , Q , H , L , R a s mappings of correspond­

ing ordered sets then the following theorem follows clearly from propositions 8, 
9 and 10. 
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Theorem 11 

(1) Operators N and K are mutually inverse antiisomorphisms of ordered sets 
(U(M),C) and (.R(P),C). 

(2) Operators Q and H are mutually inverse isomorphisms of ordered sets 
(U(M),C) and(L(P),C). 

(3) Operators L and R are mutually inverse antiisomorphisms of ordered sets 
(it(P),C) and(L(P),C). 

(4) The following diagram is commutative 

R 

ДP) ^ Д(P) 

U(M) 
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