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Abstract

As in [2], to every incidence structure we can construct an incidence
structure of independent sets. In this paper an incidence structure de-
fined by means of points and hyperplanes of a projective space is investi-
gated. In the corresponding incidence structure of independent sets there
is a span (i.e. the maximal distance of two p-element independent sets of
points) determined for some p > 2.

Key words: Incidence structure, independent set.

1991 Mathematics Subject Classification: 06B05, 08A35

[

Definition 1 Let G and M be sets and I C G x M. Then the triple J =
(G, M, I) is called an incidence structure!.
Let A C G, B C M be non-empty sets. Then we denote

At ={me M | gIm Vg€ A}, Bt ={g€G|gIm VYm € B}.
For the empty set we put §T := M, @+ := G. And moreover, we denote
AN = (AN, BY .= (BYT, gT = {g}!, m} :== {m}} for AC G, BC M and
geG, meM.

*Supported by the grant of the Palacky University No. 31203009
11t is called kontert more frequently (Wille, [1]). The name incidence structure is used
with regards to consecutive geometric applications.
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192 Vladimir SLEZAK

Definition 2 Let J = (G, M, I) be an incidence structure. A sequence

(90, mo, g1, M1,.-. ,gr—l,mr—l,gr)a

whereg; € Gfori € {0,...,r},m; € Mforj € {0,...,r—1} and g;Imj, gj+1Im;
for all j € {0,...,r — 1}, is called a join of elements go, g,.

A positive integer r is said to be a length of a join of elements gg,g-. We
suppose that the join (g,m,g) has a length 0. If a join of two elements of G
exists, then we say that they are joinable. The minimal length of all joins of
elements g,h € G we call a distance of these elements and denote by v(g, h).
The maximal distance of any two elements of G is said to be a span of G and
denoted by d(G). If |g'| = |mt| = 1 for all g € G, m € M, then we put
d(G) = 0.

In what follows we denote 4, := A — {a}, Bp, := B — {m} for A C G,
B C M, respectively.

Definition 3 The set A C G is said to be independent in G if a ¢ Al for all
a€ A

Consider a subset A C G. For a € A let us put X“(a) := Al —a’. Then
X#A(a) = 0if and only ifa € Al+. Ais independent in G if and only if X“4(a) # 0
for all a € A.

Prof. Machala has defined ([2], [3]) a norming mapping in incidence struc-
tures and incidence structures of independent sets.

Definition 4 Let a non-empty set A C G be independent in G. If X =
{X4(a) | @ € A}, then for every choice Q4 = {m, € X4(a) | X4(a) € X}
we define a norming mapping a : A — Q4 by the formula a(a) = m, for all
a€A.

In a similar way we define: A set B is independent in M if m ¢ B} for all
m € B. Let us put Y®(m) := B}, — m* for each m € B. B is independent in
M if and only if YB(m) # 0 for all m € B. Let a non-empty set B C M be
independent in M. We put Y = {YB(m) | m € B} and QF = {g,, € YB(m) |
YB(m) € Y}. The mapping 3 : B = QB : m + g,,, is a mapping norming the
set B.

Theorem 1 Let J = (G,M,I) be an incidence structure and A C G be in-
dependent. Then each norming mapping a : A — Q4 is injective and Q4 is
independent in M. ’

The dual statement also holds:

Theorem 2 Let J = (G, M,I) be an incidence structure and B C M be in-
dependent. Then each norming mapping B : B — QP is injective and QP is
independent in G.

For the proofs of Theorems 1 and 2 see [3].
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Definition 5 Let us consider an incidence structure J = (G, M, I) and a pos-
itive integer p > 2. Let GP and MP be the sets of all independent sets of G and
M of cardinality p, respectively. Then J? = (GP, MP, IP) is called an incidence
structure of independent sets of J where AIPB if and only if there exists a
norming mapping a : A — B for A € G?, B € MP.

Let us consider a projective space P" of finite dimension n > 2 over a field
K which can be uderstood as a set of all subspaces of a vector space V over K
of dimension n + 1. Projective dimension of subspaces in P" is defined with a
help of dimension of subspaces in V' by the formula dimp U = dimy U — 1 for
any subspace U of V. Then the projective space P™ has projective dimension
n. The subspaces of projective dimension 0 (1,2,n — 1) are points (lines, planes,
hyperplanes). The empty set is a subspace of P* and dimp § = —1. In what
follows we will consider the notion of dimension of a subspace in the projective
sense. However, we put dimp U := dim U, i.e. the index P will be omitted. A
subspace of P™ generated by a point-set A will be denoted by [A].

As in [4], we remind the following well-known formula:
Proposition 1 IfU and V are subspaces of P", then
dimU +dimV = dim(U + V) + dim(U N V).

Proposition 2 Let Uy,...,Ux, 1 < k < n+1, be hyperplanes in P™ and let

ng ={1,...,k}. Then the following conditions are equivalent:
ViEnk:( N Uj)gUi, 1)
j€nk—-{i}
dim( N U]-) =n—k @)
JENK

For the proof see [4].

Let us suppose that an incidence structure J = (G, M, I) on the projective
space P" is defined as follows: G is a set of all points of P™, M is a set of all
hyperplanes of P™ and I is an incidence relation: zIU if and only if the point
z lies in the hyperplane U.

For elements of M we will use symbols U,V, W, ... Then we suppose that
Ut :=U and so on.

Let us consider an incidence structure of independent sets J? = (GP, MP, IP)
corresponding to J where 2 < p <n + 1.

Let A = {a1,...a,} € G?, B = {b1,...bp} € GP. We denote U = [4], V =
[B] and for all 7 € {1, . ,p} we put Al =A- {ai},Bi =B — {bl}, Ul = [Ai],
Vi :=[B;]. Obviously dimU =dimV =p—1,dimU; = dimV; = p—2. In what
follows we suppose that a; # b; for all ¢ and a line passing through the points
a;, b; will be denoted by ¢; = a;b;, i.e. ¢; = {a;} + {b:}.



194 ' Vladimir SLEZAK

Theorem 3 The following statements are equivalent for two distinct indepen-
dent sets A,B € GP,2<p<n:

(1) v(A,B) =1.
(2) There ezists a subspace W of dimension n—p which intersects all the lines
cand WNU=WnV =40.

Proof (1) = (2) From v(A, B) = 1 the existence of norming mappings «,
follows with the property fa(A) = B. Let us put a(A) = R and a(a;) = Z;.
Then R = {Zi,...,Z,} € MP. We choose such a denotation that Ba(a;) =
B(Z;) = b;. Since R is independent in M it follows from Proposition 2 that
dimR* = n —p and dimR} = n—p+1forall i € {1,...,p}. If we put
W =R'= nlSiSp Z;, then W C R;L and W is a hyperplane in R; for each i.
By the assumption a(a;) = Z; where Z; € AZT - az. Hence a; ¢ Z; and a; ¢ W.
We also obtain a; € Rf. Moreover, 3(Z;) = b; where b; € Rf — Z;. The line
¢i is contained in R} and is not contained in W. Hence it intersects W in one
point for each 1.

Let r € WNU. Then r is not contained in all subspaces U;. Let for instance
r ¢ Uy. Then U = r + U;. It is clear that r € Z;, Uy C Z; which implies
U C Z,. Thus a; € Z; and that is a contradiction. Therefore W NU = () and
similarly W NV = 0.

(2) = (1) For each i we put Z; =U; + W. Since WNU =0 and dimW =
n — p it is clear that Z; is a hyperplane and a; ¢ Z;. Let us denote R =
{Z1,...,2Z,}. From U; C Z; we get Z; € AlT and a; ¢ Z; implies that Z; ¢ alT.
Thus Z; € AlT - alT, the mappingi « : a; — Z; is norming and R is independent
in M. Since the lines c; intersect W we get in proper denotation that V; C Z;.
Obviously b; ¢ Z; and b; € Ril, that is b; € Rf — Z;. Hence B : Z; = b; is a
norming mapping and Sa(A) = B. ) m]

We put
Q= > c Q=) ca
1<i<p i#j
Then U +V = Q. If we denote dim(U + V) = [ and dim(U N V) = r, then
dimU +dimV =2(p—-1)=1+r.

Definition 6 One says that the sets A, B are in a basic position if v(A,B) =1
and the subspace U NV has minimal dimension.

Proposition 3 If the sets A, B are in the basic position, then p 2 ’—‘—‘{—1 if and
only if dim @Q = n.

Proof Let p > ﬂ;—l Then 2p—2>n—1and l+r > n—1. Since r is minimal
admissible and hence [ is maximal admissible number, we get [ = n. Assume
that dim @ = n. This yields 2(p—1) =n+r and p = 2+ + L. From r > -1
we obtain 71 >0 and p > %$L. O



Span in incidence structures of independent sets . .. 195

Proposition 4 Let the sets A, B be in the basic position. Then p < "/)Zr—l if and
only ifUﬂV=0.

Proof Let p<2f: Then2p—2<n—-1landl+r<n-1. Foryr=—-1we
have ! < n, which i 1s always fulfilled. From the requirement of minimality of r it
follows that UNV = . Assume UNV =0, that isT = —1. Thenl~1=2p—-2
and 2p =1+ 1. Since | < n we obtain 2p <n+1and p < 2L |

Proposition 5 Let the sets A, B be in the basic position and p = "-*21 Then
dimQ; =n — 2 for each j.

Proof Sincep = "+1 it is clear that n is odd and n > 5. Let us put n = 2¢+1.
In Q; there exist ";Ll 1= "—;— = q lines ¢;. If R is a subspace and m is a
line in P?, then dim(R + m) < dim R + 2. It follows that for lines my,...,my
from P" we get dim(} ", c;«, Pi) < 20 — 1. Thus dimQ; < 2¢ — 1 and from
2¢—1=n-2wehave dmQ; <n-2. If dimQ; < n — 2, for some j, then
dim @ < n and that is a contradiction to dim @ = n. Therefore dim Q; = n — 2.

O

Proposition 6 Let the sets A, B be in the basic position and p > '—‘22"—1 Then
dimQ; =n—1 or dimQ; = n —2 and there always exists such i that dim Q; =
n—1.

Proof We know that dimU = dimV = p -1, dimU; = dimV; = p — 2,
Q=U+V, Q; =U;+V;. Moreover dim@ = n by Proposition 3 and hence
dim(UNV) =2p—n—2. Let us show that dimQ@Q; =n-2ifUNV =U;NV;:
Assume dim Q; = n—2. Then dim U; +dim V; = 2p—4 =dim Q; +dim(U;NV;) =
n — 2+ dim(U; N'V;). This yields dim(U; NV;) = 2p—n—2 = dim(U NV). Let
UNV =U;NV;. Then 2p -4 =dimQ; +2p—n—2and dim@; =n —2. It
follows that dim Q; = n — 1 iff dim(U; N V;) < dim(U N V). Since there always
exists such ¢ that U; NV; # U NV we obtain that always exists such @; that
dim Q, =n-1. (]

Remark 1 If dimQ; = n — 1 for certain j € {1,...,p}, then p > "“ The
subspace @; has maximal dimension 2p — 3. In case of p < i we get 2p 3<
n — 2 and dim @Q; < n — 2. That is a contradiction.

Further, let us put 2; = ¢; N W and X = 37, ;¢, Ti, Xj = ) ,4; zi. Then
X,X;CW,Q=X+Uand Q; = X, + Ui.

Proposition 7 Let the sets A, B be in the basic position. Then dimQ; = n—2
if and only if dim X; =n—p—1 and dimQ; =n — 1 if and only if X; = W.

Proof It is obvious that dim X; = dim Q; +dim(X;NU;) —dim U;. If dim Q; =
n—2,then dim X; = n—2—1—p+2 = n—p—1. Similarly, for dim @Q; = n—1 we
have dim X; = n—p. fdimX; =n—p—1,thendim@Q; =n—-p—-1+p-2+1=
n — 2 and from dim X; =n — p we get dimQ; = n — 1. [m]
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Example 1

1. Let p =n. Then dim @ = n and W is a point. Obviously X = X; = W
for each ¢ and thus dim Q); = n — 1 for each 1.

2. Consider n = 6, p = 4. It means that W is a plane. All points z; cannot
lie on a line. If any three points of z; do not lie on a line, then dim@Q; =n—-1=75
for each i. All the lines ¢; are pairwise disjoint. Let for instance z;, x5, z3 be
pairwise distinct points lying on a line h in W. Then z4 ¢ h. We get dim Q4 =
n—2=4and dim@Q; = 5 for all j # 4. The lines c; are pairwise distinct again.
Let ; = 3. Then dim Q3 = dim Q4 = 4 and dim Q; = dim Q2 = 5.

Theorem 4 Let ci,...,c, be lines for 2 < p < n and Q = P". Then the
following statements are equivalent:

1. Q; is a hyperplane for each j € {1,...,p}.

2. There exists precisely one subspace W of dimension k = n — p which does
not contain any of lines ¢; and intersects all of them.

Proof (1) = (2) Assume that (1, ,; Qi C QJ for certain j. From ¢; C
Miz; Qi we have ¢; C Q; and Q C Q] That is a contradiction. The set
{Q, | i € {1,...,p}} of hyperplanes is independent. If we put W = Ni<i<p @i>
then dim W = n—p = k by Proposition 2. Since ¢; € Q; and Q; is a hyperplane
in P" we obtain that z; = ¢; N Q; is a point and ¢; ¢ W. From ¢; C [\, Q
it follows that z; € ﬂlSiSp Q; and z; € W. Thus W intersects all the lines c;.

Let Z be a subspace of dimension k which intersects all the lines ¢; and does
not contain any of them. If we denote z; = ¢i N Z, then Z' = 7, ;2 C Z.
Let us put Z; = 3, ; z; for each j € {1,...,p}. Then Z; C Z' and dim Z; < k.
On the lines c; we select points a; distinct from z; and z;. Let us denote
A={a,...,ap}, Ai = A—{a;} and U = [A], U; = [A;]. Then Q =U + Z,
Q; = U; + Z;. The set A is independent: Let a; € A? = U;. Then a; € Q;.
Since ¢; € @; and Q; is a hyperplane we get a; = ¢; N Q; = z;. That is a
contradiction. Thus dimU = p — 1 and dim U; = p — 2. For given ¢ we obtain
and dimZ; = n — p+ 1 + dim(Z; N U;). Since dim Z; < k it is obvious that
Z;NU; =0 and dim Z; = k. Hence Z; = Z' = Z and z; € Z;. Then 2; € Q; and
zi € ¢, that is z; € ()y<i<, @i = W. This yields Z C W and since dimZ = k
we get Z =W.

(2) = (1) By the assumption z; = ¢; N W are points. Obviously B =
ZKKP:C, CQandBj =3, ;2 CQ;. If dimQ; <n-2, then dimQ < n and
this is a contradiction to Q = ’P” Thus dim Q; > n —2. Let dimQ; =n—2 for
certain i. If dim B; = k, then B; = W and z; € B; C Q;, that is dim(Q;N¢;) > 0.
We know that dim @Q; + dimc; = n — 1 = dim(Q; + ¢;) + dim(Q; N ¢;) which
implies dim(Q; + ¢;) =n — 1 — dim(Q; N ¢;) and hence dim @ < n — 1. That is
a contradiction. Thus dim B; = k — 1. If we select a point y; # x; on the line
ci, then y; ¢ W and for W' = y; + B; we get dim W' = k. Thus W' intersects
all the lines ¢; and this is a contradiction.
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Let dimQ; = n. We select points a; € c; distinct from z; and we put
A ={ay,...,ap}, A; = A —{a;} and U; = [4;] again. Then dimU; < p — 2,
dim B; < n—pand Q; = U;+B;. From n+dim(U;NB;) = dim U;+dim B; < n—2
we get dim(U; N B;) < —2 which is a contradiction. Thus dim@; =n—-1. O

Remark 2 Let p < 2L Then dimQ; < n — 1 foar each j € {1,...,p}
by Remark 1. If ¥k = n — p, then k& > p — 1. If we select points z; € ¢;
for i € {1,...,p}, then dim(3_,<;c, i) < p—1 < k. Thus there exist such
subspaces of dimension k that they intersect all the lines c;.

In the following propositions 8-13 we assume that @ = P™ and dim@Q; =
n—1for alli € {1,...,p}. By Theorem 4 there exists a uniquely determined
subspace W of dimension n — p for which W C @Q;. Recall that z; = ¢; N W for
all 7.

Proposition 8 UNW =0 < a; ¢ W for eachi € {1,...,p}.

Proof IfUNW = (), then obviously a; ¢ W. Let a; ¢ W for each i € {1,...,p}
and assume that x € UNW. There exists ¢ € {1,...,p} such that ¢ U;. Since
U; is a hyperplane in U we get U = U; + {z}. Moreover, U; C Q;, W C Q; and
x € Q;, that is U C Q;. This implies a; € @;. Since a; ¢ W we have a; # z;
and ¢; = a; + z;. Now from z; € Q; it follows that ¢; C Q; and @ C @;. That
is a contradiction to Q = P". m|

Proposition 9 VNW =0 < b; ¢ W for each i € {1,...,p}.
Proposition 10 U; + V = P" & b; # x;.

Proof Let b; # x;. Then ¢; = b; + z;. Obviously Q; CU; + V. Let b; € Q;.
Since z; € Q; we have ¢; C @; and Q; + ¢; = Q C Q; which is a contradiction.
Thus b; ¢ Q; and Q; + {b;} = P". However, @; + {b;} C U; +V yields
Pr=U;+V. O

Proposition 11 V; + U = P" & a; # x;.

Remark 3 If b; = z;, then U; + V = @Q; and hence dim(U; + V) =n — 1.
Proposition 12 UNV € U; & b; # ;.

Proof Since U+V = @ = P" we get dim(UNV') = 2p—n—2. Let b; # z; which
means P = U; +V. Assume that UNV C U;. Then U;NV = UNV. However,
dim(U; NV) = 2p—n—3 =dim(UNV) and this is a contradiction. Let b; = x;.

From U;NV C UNV and Remark 3 we get dim(U;NV) = 2p—n—2 = dim(UNV).
It follows that U; NV =UNV and UNV C U;. |

Proposition 13 UNV € V; & a; # z;.
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Remark 4 If UNW = 0, then a; # z; for each i € {1,...,p} and thus
UNV gV, for each i € {1,...,p}. Similarly for VNW =0. TUNV ¢ V;
for each i € {1,...,p}, then a; # z; for each i € {1,...,p} and UNW =0 by
Proposition 8. Similarly for UNV € U;.

Corollary 1 Let @ =P™, dimQ@Q; =n—1and (UNV) ¢ U;, (UNV) L V; for
each i € {1,...,p}. Then the sets A, B are in the basic position.

In order to determine a span of G? one has to find such sets A, B € GP,
A = {a1,...ap}, B = {b1,...bp}, that v(A, B) is maximal. For brevity we
suppose that a; # b; for all 4,5 € {1,...,p}. It follows from the definition of a
norming mapping that the renumbering of elements from A, B does not make
any difference. If any element of A is equal to any element of B, then obviously
v(A, B) is not greater than by the converse assumption.

Theorem 5 In an incidence structure J"t! there is d(G**1) = 0.

Proof Let A € G"*!. Then X4(a;) = Z; € M fori € {1,...,n + 1}. There

exists a unique choice Q4 = {Zi,...,Zn41} from the set X and thus a unique
norming mapping of A. Hence in J™*! we have |A"| = 1, similarly |B¥| = 1 for
all B € M™*1. Therefore d(G™*!) = 0. o

Theorem 6 If 2(p — 1) < n, then d(GP) = 2.

Proof 1. Let UNV = . This is equivalent to dim(U + V) =dimQ = 2p— 1.
Consider the lines ¢y, ..., cp. According to Remark 2 there exist infinitely many
subspaces of dimension n — p intersecting all the lines ¢; and not containing any
of them. Obviously 2p—1=1+4+2(p—1) =1+ (2+ ...+ 2). It means that
the subspace @) generated by lines ¢y, ...,cp, has maximal dimension and thus
for Q; = Zi# c; we get ¢; NQ; = 0. If we select points x; € ¢;, T; # a;, b,
i € {1,...,p}, then X = {z;,...,z,} is an independent set: Let z; € X]u
where X; = X — {z;}. Since X]N C Qj wegetz; €ciNE;anditisa
contradiction. Hence the set X generates a subspace R of dimension p — 1. To
Q there exists a complementary subspace S, 1. e. Q@+ S =P", QNS = 0.
Then 2p — 1+ dimS =n —1 and dimS =n —2p. We get RNS = 0 and
dim(R+S) =p—-1+n-2p+1=n—p. Letusput W = R+S. Since U+R = Q
we have dim(UNR) = dimU +dimR—-dim@Q =p—-1+p—-1-2p+1= -1
which yields U N R = . Similarly V N R = 0. Since W N Q = R we also obtain
UnNnW =V NW = 0. Therefore v(A, B) =1 by Theorem 3.

2. Let UNV # 0. Then dim(U+V) < 2p—2 < n. It is easy to see that there
exists a subspace T of dimension p— 1 with the property TNU = TNV = . We

select independent points aj,...,a, in T and denote A" = {aj,...,a,}. Then
from 1. it follows that v(A, A") = v(A’, B) = 1 and hence v(4, B) < 2. It is not
difficult to find an example of v(4,B) =2 (U =V). m]

In what follows we assume that p = n.
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Remark 5 It follows immediately from Theorem 3 that a distance of sets
A,B € G" is equal to 1 if and only if all the lines cy,...,c, pass through a
point w which is contained neither in U nor in V.

Definition 7 The sets A,B € G™ are said to be in a general position if the
following conditions are valid:

1. U#V,

2.b; ¢ Us,a; ¢ Viforalli,j € {1,...,n}.

Remark 6 Let a;,b; ¢ UNV for all s € {1,...,n}. Then the sets A,B € G"
are in the general position.

Theorem 7 If A,B € G™ are in the general position, then v(A,B) <n —1.

Proof 1. Let n = 3. Then (by assumption) by,b3 ¢ Ui, as,a3 ¢ Vi and
U; # V;. If the lines cz,c3 have a point w; € ¢; in common, then w; # ay,b;
and v(A,B) = 1. Let v(4,B) # 1. The definition of the general position
implies that at least one of the lines ¢; (under a proper denotation) is contained
neither in U nor in V. Let ¢; be that line. Then on ¢; there exists a point
wy # ai, by such that Vi € R where R = w; + U; and for a point of intersection
g =ViNR we get g # bs,bs,as,as. In the plane R we select a line ¢ passing
through g which is not contained in V' and does not contain w,;; we denote by
ah,ay its points of intersection with the lines wyas, wias. The lines abbs, abs
are distinct, contained in a plane S = ¢ + V; and thus they have a point w» in
common. Then there exist norming mappings a4, as, f1, B2 such that

101

{a1,a2,a3} iy {a] = b1,a}, a5} Pz0g {b1,b2,b3}.

Thus v(A4, B) = 2.

2. Let n > 4 and suppose that in every projective space P"~! of dimension
n—1 there is v(A', B') < n—2 for independent sets A’, B’ of P"~! in the general
position. We show that v(A4, B) < n — 1 for independent sets A, B of P" in the
general position.

Let A = {a1,...,a,}, B = {b1,...,b,} be independent sets of P™ in the
general position. Then for instance a; ¢ V; for all 4 € {1,...,n}, and hence
U; # V1. On ¢; we can select a point w; such that:

a) w1 74— ay, bl,

b) R = w; + U; is a hyperplane in P™,

¢) V1 € R and then for P =V; N R we get dim P =n — 3,

d)bj ¢ Pforallje{2,...,n},

e) P does not intersect any of lines w a;.

Let us select a subspace @ of R containing P and not containing w;, dim Q =
n—2. Then @ is a hyperplane in R and thus it intersects all lines w; a; at points
aj, i € {2,...,n}. Obviously a} ¢ V3, b; ¢ Q for i € {2,...,n}. If we put
S =@+ V1, then S is a hyperplane in P", and hence it is a projective space of
dimension n — 1. The sets A’ = {a},...,al}, B' = {bs,...,b,} are independent
in S and they are in the general position.
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By assumption v(A’,B’) < n — 2, hence there exist norming mappings
ab,...,ah_y and Bh,...,0,_; such that B' = B, _j0;,_;...0B505(A"). If we
put

j—1

. - 1 1 _
Xg:[wj,’ 0.2,...,] ai-l,J a,~+1,.‘.,’ an]

for j € {2,...,n—1},i € {2,...,n} where w; are properly selected points, then

’ ’ B:—,_
(ag, ... lan) 3 (X2,..,X2) B (Cas,... %) 3 (X3,...,X3) » ... 5
(bas. .., bn). ‘ .
The sets A; = {b1,7as,...,7an}, j € {1,...,n — 1}, are independent in P".
Let us put
Vi =[wy,a1,...,8i-1,8i41,- - -, 0],
Y;’j = [wjaj_laly e 7j_la'i—1,j_lai+1$ s 7j_la'n]
where b; :=J7ta, fori € {1,...,n},j€{2,...,n—1}.
Then (a1, ...,an) 5 (V1,..., YD) B (b, Y0, ... tan) B (V2,...,¥2) B
(b1,2as,...,2an) = ... 5" (by,...,bn). This yields v(4,B) < n — 1 in P".
O

Proposition 14 If A|B € G", then there exists a set A’ € G™ such that
v(A,A") =1 and A', B are in the general position.

Proof Let us select an arbitrary point w; ¢ U,V. In the hyperplane V we
select a subspace R of dimension n—2 such that it does not contain any of points
b; and any of intersections a;w; NV, ¢ € {1,...,n}. Then consider an arbitrary
hyperplane U’ contaning R and not containing w;. We put a} = a;w; NU’, i €
{1,...,n}. It is obvious that a},b; ¢ U'NV for all i € {1,...,n}, v(4,A4") =1
and the sets A’ = {a!,...,al}, B are in the general position by Remark 6. O

Theorem 8 If p =n, then d(GP) < n.

Proof If A, B are in the general position, then d(G?) < n — 1 by Theo-
rem 7. If they are not in the general position, then we select a set A’ accord-
ing to Proposition 14. Hence v(4,A4’) = 1, v(A',B) < n — 1 anh this yields
v(4, B) <n. ]

Theorem 9 Let n = 3 and U = V. Then v(A,B) = 2 if and only if the
triangles A, B are perspective (i.e. lines ¢y, ca2,c3 have one-point in common).

Proof 1. Let the triangles A, B be perspective. Then there exists a point
r €U, r=c NcyNes. At least one of lines ¢;, ¢ € {1,2,3}, must fulfil a
condition 7 # a;,b;. Let ¢; be such a line. Select an arbitrary point wy ¢ U
and a point @} on the line a;w; such that a] # a;,w;. Lines ajw; and byr
have a; in common and hence the lines a}b;, wir have a point denoted by ws
in common. It is obvious that there exist intersections ab = azw; N bawy and
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ay = azw; Nbsw,. For A’ = {a,a},a}} we get v(4,4") =1 = v(4',B) by
Remark 5. Thus v(A4, B) = 2.

2. Let v(A, B) = 2. Then there exist points wy,ws ¢ U, w; # wy, and an
independent set A’ = {a},a},a}} € G* with a property

{al,ag,a3} — {a’l,afz,ag} - {bl,bz,bg}.

For the points a} we obtain a} € a;w;, a} € byws for all i € {1,2,3}. That
implies a} = a;w; N bws, i € {1,2,3}. If the lines a;w; and b;w, have a point
in common, then also the lines a;b; and wyws for ¢ € {1,2,3} have a point in
common. Denote r = wywe NU and we get r € ¢; for all 4 € {1,2,3}. Thus the
triangles A, B are perspective. a

Proposition 15 Let n = 3 and U = V. If the triangles A, B are not perspec-
tive, then v(A, B) = 3.

Proof From U =V we get v(4, B) > 1 by Remark 5. Moreover, v(4, B) # 2
by Theorem 9 and v(4, B) < 3 by Theorem 8. a

Corollary 2 Ifp=n =3, then d(G®) = 3.

An open problem is to determine a span for n and p fulfilling an equality
"T“ < p < n. The solution of that requires an analysis of rather complicated
incidence relations in P™. As an illustration we present a particular case for
n=4p=3.

Proposition 16 Letn =4, p = 3. If the intersection of planes U,V is a point
q and q ¢ a;a;, q ¢ b;b; for all distinct 1,5 € {1,2,3}, then the sets A, B are in
the basic position.

Proof IfUNV = {q}, then U+V = @ = P™. Suppose for instance dim Q3 = 2.
Then the lines ajas, b1by have a point z in common. Since z € U NV we get
z = q and ¢ € ajay which is a contradiction. Thus all @; are hyperplanes in P™.
According to Theorem 4 there exists a unique line intersecting all ¢;. Moreover,
UnV ¢ V;,U; for alli € {1,2,3} and from Remark 4 we get UNW = VNW = {.
It follows from Theorem 3 that the sets A, B are in the basic position. O

Theorem 10 If n =4, then d(G3) = 2. ol

Proof 1. Let U # V. We select points r € U, s € V such that r,s ¢ UNV
and r ¢ a;aj,s ¢ b;b; for all distinct ¢,j. Now let us select a line ¢ intersecting
the line rs such that tNU =tNV = () and consider a plane T = rs + t. Then
TNU ={r}, TNV ={s}. In T we select an independent set A’ = {a},a}, a3}
such that r ¢ aja} and s ¢ aja;. The sets A, A" and A', B are in the basic
position by Proposition 16. Thus v(4,A’) = v(A’,B) =1 and v(4, B) < 2.

2. Let U = V. Then each line W intersecting all lines ¢; is contained in
the plane U. It follows from Theorem 3 that v(A4,B) > 1. In U we select a
point r ¢ a;aj, T ¢ b;b;. Now let us consider a plane T containing r such that
TNU = 0 and proceed analogously to 1. We have obtained that v(4,B) < 2
and thus v(A4, B) = 2. m]
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