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Abstract 
As in [2], to every incidence structure we can construct an incidence 

structure of independent sets. In this paper an incidence structure de­
fined by means of points and hyperplanes of a projective space is investi­
gated. In the corresponding incidence structure of independent sets there 
is a span (i.e. the maximal distance of two p-element independent sets of 
points) determined for some p > 2. 
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Defini t ion 1 Let G and M be sets and I C G x M. Then the triple J = 
(G,M,I) is called an incidence structure1. 

Let A C G, B C M be non-empty sets. Then we denote 

Ar = {m e M | glm Vg e A}, Bl = {g e G \ glm Vra e B}. 

For the empty set we put 0^ := M, 0^ := G. And moreover, we denote 
AU .- (A^, B** := (B±y, g^ := {gY, ra+ := {m}± for A C G, B C M and 
g e G, m e M. 

*Supported by the grant of the Palacky University No. 31203009 
1It is called kontext more frequently (Wille, [1]). The name incidence structure is used 

with regards to consecutive geometric applications. 
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192 Vladimir SLEZAK 

Definition 2 Let J — (G, M, J) be an incidence structure. A sequence 

( g o , m 0 , g i , m i , . . . , g r _ i , m r _ i , # r ) , 

wheregi G G for i G {0 , . . . , r } , mj G M for j G {0, . . . , r—1} and gjlmj,gj+ilmj 
for all j G {0 , . . . , r — 1}, is called a jam of elements go, gr-

A positive integer r is said to be a length of a join of elements go,gr- We 
suppose that the join (g,m, #) has a length 0. If a join of two elements of G 
exists, then we say that they are joinable. The minimal length of all joins of 
elements g,h G G we call a distance of these elements and denote by v(g,h). 
The maximal distance of any two elements of G is said to be a span of G and 
denoted by d(G). If \g^\ = \m^\ = 1 for all g G G, m G M, then we put 
d ( G ) = 0 . 

In what follows we denote Aa :~ A — {a}, Bm := B — {m} for A C G, 
BC M, respectively. 

Definition 3 The set A C G is said to be independent in G if a £ A\^ for all 
ae A. 

Consider a subset A C G . For a G A let us put XA(a) := Aj - a^. Then 
K^4 (a) = 0 if and only if a G A ^ . A is independent in G if and only if XA (a) ^ 0 
for all a G A. 

Prof. Machala has denned ([2], [3]) a norming mapping in incidence struc­
tures and incidence structures of independent sets. 

Definition 4 Let a non-empty set A C G be independent in G. If X = 
{KA(a) | a G A}, then for every choice QA = {ma G KA(a) | XA(a) G * } 
we define a norming mapping a : A —•> QA by the formula a (a) = m a for all 
ae A. 

In a similar way we define: A set B is independent in M if m ^ £?^ for all 
m e B. Let us put F B ( m ) := j?,;^ — m^ for each m G B. B is independent in 
M if and only if YB(m) 7- 0 for all m G £?. Let a non-empty set B C M be 
independent in M . We put 3̂  = {YB(m) \ m e B} and Q B = {gm G F B ( m ) | 
y B ( m ) G 3^}. The mapping /? : B -> Q B : m i-> am is a mapping norming the 
set B. 

Theorem 1 Let J = (G, M, 7) be an incidence structure and A C G be m-
dependent. Then each norming mapping a : A -» Q A is infective and QA is 
independent in M. 

The dual statement also holds: 

Theorem 2 Let J = (G, M, I) be an incidence structure and B C M be in­
dependent. Then each norming mapping /5 : B -> < j s is infective and QB is 
independent in G. 

For the proofs of Theorems 1 and 2 see [3]. 



Span in incidence structures of independent sets ... 193 

Definition 5 Let us consider an incidence structure J = (G, M, I) and a pos­
itive integer p > 2. Let Gp and Mp be the sets of all independent sets of G and 
M of cardinality p, respectively. Then Jp = (Gp, M p , Ip) is called an incidence 
structure of independent sets of J where AIPI3 if and only if there exists a 
norming mapping a : A -± B for A e Gp, B e Mp. 

Let us consider a projective space Vn of finite dimension n > 2 over a field 
K which can be uderstood as a set of all subspaces of a vector space V over K 
of dimension n + 1. Projective dimension of subspaces in Vn is defined with a 
help of dimension of subspaces in V by the formula dim-p U = dim\/ U — 1 for 
any subspace U of V. Then the projective space Vn has projective dimension 
n . The subspaces of projective dimension 0 (1,2, n — 1) are points (lines, planes, 
hyperplanes). The empty set is a subspace of Vn and dinYp 0 = — 1 . In what 
follows we will consider the notion of dimension of a subspace in the projective 
sense. However, we put dim-p U := dim U, i.e. the index V will be omitted. A 
subspace of Vn generated by a point-set A will be denoted by [A]. 

As in [4], we remind the following well-known formula: 

Propos i t ion 1 If U and V are subspaces of Vn, then 

dim U + dim V = dim(U + V) + dim(U 0 V). 

Propos i t ion 2 Let Ui,...,Ufe, 1 < k < n -f 1, be hyperplanes in Vn and let 
n/c = {! , . . . ,&}. Then the following conditions are equivalent: 

Vt € nk : ( f ) Uj) £ U., (1) 
j€nk-{i} 

dim( p | UJ) =n-k. (2) 
j€n f c 

For the proof see [4]. 

Let us suppose that an incidence structure J = (G, M, I) on the projective 
space Vn is defined as follows: G is a set of all points of Vn, M is a set of all 
hyperplanes of Vn and I is an incidence relation: xIU if and only if the point 
x lies in the hyperplane U. 

For elements of M we will use symbols U,V,W, . . . Then we suppose that 
U^ := U and so on. 

Let us consider an incidence structure of independent sets Jp = (Gp, M p , Ip) 
corresponding to J where 2 < p < n + 1. 

Let A = { o i , . . . o p } eGp, B = {bu...bp} eGp. We denote U = [A], V = 
[B] and for all i € { 1 , . . . ,P} we put Ai := A- {a,i},Bi := B - {6J , U; := [A;], 
Vi := [Bi]. Obviously dim U = dim V = p — 1, dim [/"» -= dim VJ = p - 2. In what 
follows we suppose that a« ^ b^ for all i and a line passing through the points 
Oj, bi will be denoted by Ci = a ^ , i.e. C{ = {a^} + {bi}. 
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Theorem 3 The following statements are equivalent for two distinct indepen­
dent sets A, B G Gp, 2 < p < n: 

(1) v(A,B) = l. 

(2) There exists a subspace W of dimension n—p which intersects all the lines 
d andWDU = WnV = 0. 

Proof (1) ==> (2) From v(A, B) = 1 the existence of norming mappings a,/3 
follows with the property fia(A) = B. Let us put a(A) = R and a(ai) = Zi. 
Then R = { Z i , . . . , Z p } G Mp. We choose such a denotation that /3a(ai) = 
P(Zi) = bi. Since R is independent in M it follows from Proposition 2 that 
dimIt^ = n — p and dimItj" = n — p + 1 for all i G {1 , . . . ,I>}. If we put 
W = R^ = r i i<i<p %u then W C R\ and W is a hyperplane in It* for each i. 
By the assumption a(ai) = Zi where Zi G A\ — a[. Hence a* ^ Zi and a« ^ TV. 
We also obtain â  G Itj\ Moreover, /?(Z;) = b{ where bi G RJ — Zi. The line 
Ci is contained in Icj" and is not contained in W. Hence it intersects W in one 
point for each i. 

Let r G TVnU. Then r is not contained in all subspaces Ui. Let for instance 
r $ Ui. Then U = r + Ui. It is clear that r G Zi, Ui C Zx which implies 
U C Z i . Thus ai G Zi and that is a contradiction. Therefore W n U = 0 and 
similarly TV n V = 0. 

(2) = > (1) For each % we put Zi = U{ + IV. Since IV n U = 0 and dim W = 
n — p it is clear that Zj is a hyperplane and â  ^ Z«. Let us denote R = 
{ Z i , . . . , Zp}. From Uj C Z* we get Zi G Aj and â  ^ Z; implies that Zi fi a\. 
Thus Zi G Aj — a J, the mapping! a : â  H-> ZJ is norming and I? is independent 
in M. Since the lines Ci intersect IV we get in proper denotation that Vi C Zi. 
Obviously bi £ Zi and bi G R\, that is bi £ RJ - Zi. Hence f3 : Zi -> bi is a 
norming mapping and /3a(A) = B. • 

We put 

V = / j ci 5 Qj — / ^ ci • 

l<i<p bfcj 

Then U + V = Q. If we denote dim(U + V) = I and dim(U n V) = r, then 
dimU + dimV = 2 ( p - l ) = / + r. 

Definition 6 One says that the sets A, B are in a basic position if v(A, B) = 1 
and the subspace U n V has minimal dimension. 

Proposit ion 3 If the sets A, B are in the basic position, then p > ^^ if and 
only if dim Q = n. 

Proof Let p > —^. Then 2p — 2 > n — 1 and I + r > n — 1. Since r is minimal 
admissible and hence / is maximal admissible number, we get / = n. Assume 
that dim Q = n. This yields 2(p - 1) = n + r and p = - ^ + ^ . From r > - 1 
we obtain ^ > 0 and p > n^1. • 



Span in incidence structures of independent sets ... 195 

Propos i t ion 4 Let the sets A, B be in the basic position. Then p < %£^ if and 
0n/ui/UnV = 0. 

Proof Let p < ^ . Then 2p - 2 < n - 1 and / + r < n - 1. For r = - 1 we 
have / < n, which is always fulfilled. From the requirement of minimality of r it 
follows that U n V = 0. Assume U n V = 0, that is r = - 1 . Then / - 1 = 2p - 2 
and 2p = / + 1. Since / < n we obtain 2p < n + 1 and p < - ^ . • 

Propos i t ion 5 Let the sets A,B be in the basic position and p = n ^ . Then 
dim Qj = n — 2 /Or eac/i j . 

Proof Since p = Ik^- it is clear that n is odd and n > 5. Let us put n = 2q + 1 . 
In <5j there exist rL^ — 1 = ^ ^ = g lines Q . If i? is a subspace and m is a 
line in P n , then dim(It + m) < dim I? + 2. It follows that for lines rai,..., m* 
from 7^n we get d i m ( ^ 1 < i < n P i ) < 2/ - 1. Thus dxmQj < 2q - 1 and from 
2g — 1 = n — 2 we have dim Qj < n — 2. If dim Qj < n — 2, for some jf, then 
dim Q < n and that is a contradiction to dim Q = n. Therefore dim Qj — n — 2. 

• 

Propos i t ion 6 Be£ i/ze se£s A, 1? be in £/ie basic position and p > n~-. Then 
dim Qj — n — 1 or dim Qj — n — 2 and there always exists such i that dim Qi = 
n - 1 . 

Proof We know that dimU = dimV = p — 1, dimUi = dimV; = p - 2, 
Q = U + V, Qi = Ui + Vi. Moreover dim<5 = n by Proposition 3 and hence 
dim(U n V) = 2p - n - 2. Let us show that dim Q, = n - 2 iff U n V = Ui n V,: 
Assume dim Qi = n - 2 . Then dim U«+dim Vi = 2 p - 4 =dim<52+dim(U?nVj) = 
n - 2 + dim(Ui n V,). This yields dim(U2- n VJ) = 2p - n - 2 = dim(U 0 V). Let 
Uf)V = Uif]Vi. Then 2p - 4 = dim Q, + 2p - n - 2 and dim Qi = n - 2. It 
follows that dim<5i = n — 1 iff dim(Ui n V«) < dim(U n V). Since there always 
exists such i that Ui H Vi ^ U n V we obtain that always exists such Qj that 
dimQi — n — 1. • 

R e m a r k 1 If dim<3j = n - 1 for certain j £ { 1 , . . . , p} , then p > n ^ : The 
subspace Qj has maximal dimension 2p — 3. In case of p < ^ ^ we get 2p — 3 < 
n — 2 and dimQj < n - 2. That is a contradiction. 

Further, let us put Xi = Ci n W and X — J2i<i<P
 x^ Xj = Yl&j xi- Then 

X, Xj C TV, Q = K + U and <?i = X, + U{. 

Proposit ion 7 Le£ £/ae sets A, B be in the basic position. Then dim Qi — n — 2 
if and only if dim Xi = n - p - 1 and dim Qi — n — 1 if and only if Xi = IV. 

Proof It is obvious that dim Kz- = dim Qi + dim(Xz- n Ui) - dim U;. If dim Qi — 
n-2, then dim Xi — n - 2 - l - p + 2 = n - p - 1 . Similarly, for dimQi = n - 1 we 
have dim Xi = n—p. If dimKj = n - p - 1 , then dimQi = n - p - l + p - 2 + 1 = 
n — 2 and from dim Xi — n — p we get dim Qi — n — 1. • 
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Example 1 
1. Let p = n. Then dimQ = n and W is a point. Obviously X = Xi = W 

for each i and thus dim Qi = n - 1 for each i. 
2. Consider n = 6, p = 4. It means that IV is a plane. All points Xi cannot 

lie on a line. If any three points of Xi do not lie on a line, then dim Qi = n — 1 = 5 
for each i. All the lines a a r e pairwise disjoint. Let for instance 2,1,2:2,#3 be 
pairwise distinct points lying on a line h in W. Then x^^h. We get dim Q4 = 
n — 2 = 4 and dim Qj = 5 for all j / 4. The lines c* are pairwise distinct again. 
Let xi = x2. Then d imQ 3 = dim<24 = 4 and dimQi = d imQ 2 = 5. 

Theorem 4 Let c i , . . . , c p be lines for 2 < p < n and Q = Vn. Then the 
following statements are equivalent: 

1. Qj is a hyperplane for each j G { 1 , . . . ,I>}. 

2. There exists precisely one subspace W of dimension k = n—p which does 
not contain any of lines a and intersects all of them. 

Proof (1) ==> (2) Assume that fli^i Qi Q Qj for certain j . From Cj C 
Hi^jQi w e n a v e cj = Qj a n d Q - Qj- That is a contradiction. The set 
{Qi I i G {15 • • • iP}} of hyperplanes is independent. If we put W = f]1<i<p Qi, 
then dim W = n—p = k by Proposition 2. Since Cj £ Qj a nd Qj is a hyperplane 
in Vn we obtain that Xj = Cj n Qj is a point and Cj (jL W. From Cj C f)i^j Qi 
it follows that Xj G f)i<i<p Qi and Xj G TV. Thus TV intersects all the lines a-

Let Z be a subspace of dimension k which intersects all the lines a a n d does 
not contain any of them. If we denote z\ = a f) Z, then Zf = Xa<i<P

 zi = %-
Let us put Zj = Yli^j zi f° r e a c n 3 € {!> • • • 5I9}- Then Zj C Z' and dim Zj < fc. 
On the lines c« we select points a2- distinct from Z{ and 2:̂ . Let us denote 
A = { a i , . . . , a p } , Ai = A - {a*} and U = [A], Ui = [Ai]. Then Q = U + Z, 
Qi = Ui + Zi. The set A. is independent: Let â  G Aj 1 = U^ Then ai e Qi. 
Since Q £ Qi a r-d Qi is a hyperplane we get ai = a D Qi = Xi. That is a 
contradiction. Thus dim U = p - 1 and dim Ui = p - 2. For given i we obtain 
dim ^ + dim Z{=p-2 + dim Zi=dim Qi + dim(Zi n Ui) = n - 1 + dim(Zi n Ui) 
and dim Zi = n — p + 1 + dim (Zi n Ui). Since dim Zi < k it is obvious that 
Zi n Ui = 0 and dim Zi = k. Hence Z{ = Zf = Z and ^ G Zi. Then ^ G Qi and 
^ G a, that is ^i G f]i<i<p Qi = W- T m s yields Z C IV and since d imZ = k 
we get Z = W. 

(2) = > (1) By the assumption Xi = Ci H W are points. Obviously B = 
Yli<i<p

xi = Q a n dHj = Ylij:jxi -= Qj- If dim Qi < n - 2 , then dimQ < n and 
thisls 'a contradiction to Q = Vn. Thus dim Qi > n - 2. Let dim Qi = n - 2 for 
certain i. If dim Bi = A:, then Hi = W and #i G Hi C Qi, that is dim(Qinci) > 0. 
We know that dim Qi + dim a = n - 1 = dim(Qi + a) + dim(Qi n a) which 
implies dim(Qi + a) = n - 1 — dim(Qi n a) a n d hence dim Q < n - 1. That is 
a contradiction. Thus dim Hi = k — 1 . If we select a point 2li ^ Xi on the line 
a, then yi £W and for IV' = yi + Bi we get dim W' = k. Thus Wf intersects 
all the lines a a ^ d this is a contradiction. 
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Let dim Qi = n. We select points az G cz- distinct from Xi and we put 
A = { a x , . . . , a p } , Ai = A - {az} and U{ = [Aj\ again. Then dimU; < p — 2, 
dim Hi < n—pandQi = Ui+Bi. From n+dim (UiDBi) = dimUt+dim Bi < n—2 
we get dim(Uj n Bi) < —2 which is a contradiction. Thus dimQi = n — 1. • 

Remark 2 Let p < -^-. Then dimQj < n - 1 foar each j G { l , . . . , p } 
by Remark 1. If k = n — p, then fc > p — 1. If we select points x^ E cz-
for i G { l , . . . , p } , then dim(Xa<;<p£i) < P — 1 < &• Thus there exist such 
subspaces of dimension k that they intersect all the lines cz-. 

In the following propositions 8-13 we assume that Q = Vn and dim Qi = 
n — 1 for all i G { 1 , . . . , p} . By Theorem 4 there exists a uniquely determined 
subspace W of dimension n — p for which W C Qi. Recall that Xi = Ci n TV for 
all i. 

Proposit ion 8 UnVV = 0<£>a2^PV /Or each i G { 1 , . . . , p} . 

Proof If UnTV = 0, then obviously a, $ TV. Let a, $ W for each i G { 1 , . . . ,p} 
and assume that x £ UnW. There exists i G { 1 , . . . ,p} such that x $ Ui. Since 
Ui is a hyperplane in U we get U = Ui + {#}. Moreover, Ut C Q«, PV C Q2 and 
x £ Qi, that is U C Qi. This implies ai £ Qi. Since az-^ TV we have a; / Xi 
and Cj = a« + Xi. Now from x?- G Qi it follows that Ci C Qz- and Q C Qi. That 
is a contradiction to Q = Vn. • 

Proposit ion 9 V f)W = Q <& bi $ W for each i G { 1 , . . . , p } . 

Proposit ion 10 U, + V = Vn & b{ ^ x{. 

Proof Let bi ^ Xi. Then Q = bz- + Xi. Obviously Qi C Ui + V. Let bz- G <92. 
Since .r̂  G Qi we have c?- C Qi and Qi -\- Ci = Q C Qi which is a contradiction. 
Thus bi $ Qi and Qi + {&<} = Vn. However, Qi + {&J C Uz + V yields 
Vn = Ui + V. • 

Proposit ion 11 V, + U = 7^n <=> a,; ^ .x,. 

Remark 3 If b2- = £;, then Uf + V = Q{ and hence dim(Uz- + V) = n - 1. 

Proposit ion 12 U C\V £Ui &bt ^ x{. 

Proof Since U+V = Q = F>n we get dim(UnV) = 2p-n-2. Let bt ?- x, which 
means P n = U, + V. Assume that UnV C U,-. Then U,nV = UnV. However, 
dim(UjnV) = 2 p - n - 3 = dim(UnV) and this is a contradiction. Let bi = Xi. 
From UiDV C UnV and Remark 3 we get dim(U,nV) = 2 p - n - 2 = dim(UnV) . 
It follows that Ui n V = U n V and U n V C U,. D 

Proposit ion 13 U n V £ V, <£> a, 7-- #, . 
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Remark 4 If U n TV = 0, then a; / Xi for each i € {1 , . . . ,P} and thus 
U n V £ Vi for each z G {1 , . . . ,P} . Similarly for V n W = 0. If U n V g V* 
for each i G { 1 , . . . , p} , then a* ^ £; for each i G {1, • . . ,p) and U n TV = 0 by 
Proposition 8. Similarly for U n V g U;. 

Corollary 1 Be* Q = P n . dim ft = n - 1 and (U n V) & Uh (UnV)g V{ for 
each i G {1 , . . . ,P} . Then the sets A,B are in the basic position. 

In order to determine a span of Gp one has to find such sets A,B G Gp, 
A = { a i , . . . a p } , B = {b i , . . .b p } , that v(A,B) is maximal. For brevity we 
suppose that â  ^ bj for a lH, j G { 1 , . . . , p} . It follows from the definition of a 
norming mapping that the renumbering of elements from A, B does not make 
any difference. If any element of A is equal to any element of B, then obviously 
v(A,B) is not greater than by the converse assumption. 

Theorem 5 In an incidence structure Jn+1 there is d(Gn+l) = 0. 

Proof Let A G G n + 1 . Then XA(a{) = Z{ G M for i £ { 1 , . . . ,n + 1}. There 
exists a unique choice QA = {Z\,..., Z n + i } from the set X and thus a unique 
norming mapping of A. Hence in .J7"n+1 we have |A^| = 1, similarly \B^\ = 1 for 
all B G M n + 1 . Therefore d(Gn+1) = 0. D 

Theorem 6 If 2(p - 1) < n, tAen d(Gp) = 2. 

Proof 1. Let U n V = 0. This is equivalent to dim(U + V) = dim Q = 2p - 1. 
Consider the lines c r , . . . , cp. According to Remark 2 there exist infinitely many 
subspaces of dimension n—p intersecting all the lines c% and not containing any 
of them. Obviously 2p - 1 = 1 + 2(p - 1) = 1 + (2 + . . . + 2). It means that 
the subspace Q generated by lines c\,... ,cv has maximal dimension and thus 
for Qj = Yli^j ci w e &et cj n Qj — 0- K w e select points Xi G Cj, Xi / a^,^, 
i G { l , . . . , p } , then X = {xi,... ,xp} is an independent set: Let Xj G XJ 

where Xj = X — {XJ}. Since Xj C Qj we get Xj G Cj n Qj and it is a 
contradiction. Hence the set X generates a subspace I2 of dimension p — 1. To 
Q there exists a complementary subspace S, i. e. Q + S = F*71, Q n 5 = 0. 
Then 2p - 1 + d imS = n - 1 and d imS = n - 2p. We get R n 5 = 0 and 
dim(jR+S) = p - l + n - 2 p + l = n - p . Let us put TV = R + S. Since U + R = Q 
we have dim(U n I?) = dim U + dim I? - dim Q = p - 1 + p - 1 - 2p + 1 = - 1 
which yields U n R = 0. Similarly V n I? = 0. Since TV n Q = I^ we also obtain 
UflTV = y n T V = 0. Therefore v(A, B) = 1 by Theorem 3. 

2. Let UHV ^ 0. Then dim(U + V) <2p-2<n. It is easy to see that there 
exists a subspace T of dimension p-1 with the property T n U = T n V = 0. We 
select independent points a[,.. .,af

p in T and denote A' = {a ;
l 7 . . . , a^,}. Then 

from 1. it follows that v(A, A') = v(A', B) = 1 and hence v(A, B) < 2. It is not 
difficult to find an example of v(A, B) = 2 (U = V). • 

In what follows we assume that p = n. 
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Remark 5 It follows immediately from Theorem 3 that a distance of sets 
A, B £ Gn is equal to 1 if and only if all the lines C\,..., cp pass through a 
point w which is contained neither in U nor in V. 

Definition 7 The sets A,B G Gn are said to be in a general position if the 
following conditions are valid: 

l.U*V, 
2. bj $ Ui.aj £ Vi for all i,j G { 1 , . . . , n } . 

Remark 6 Let au bt £ U n V for all i E { 1 , . . . , n} . Then the sets A,B eGn 

are in the general position. 

Theorem 7 If A, B e Gn are in the general position, then v(A,B) < n — 1. 

Proo f 1. Let n = 3. Then (by assumption) b2,63 ^ Ui, 02,03 ^ V\ and 
U\ i^V\. If the lines C2,C3 have a point w\ £ ci in common, then w\ ^ a\,b\ 
and v(A, B) = 1. Let v(A, B) / 1. The definition of the general position 
implies that at least one of the lines Ci (under a proper denotation) is contained 
neither in U nor in V. Let ci be that line. Then on ci there exists a point 
w\ ^ a i , bi such that V\ <£ R where R = w\ + Ui and for a point of intersection 
g = V\ n R we get g / b2,63, a2,03. In the plane ft we select a line a passing 
through g which is not contained in V and does not contain w\; we denote by 
a2,a'z its points of intersection with the lines w\a2, w\a%. The lines a'2b2, a'3b^ 
are distinct, contained in a plane S = q + Vi and thus they have a point w2 in 
common. Then there exist norming mappings 01,02,/?i,/?2 such that 

{a i , a 2 , a 3 } --A1 {a[ = bi,a2,a3} -2-? {bi,02,63}-

Thus v(A,B) = 2 . 

2. Let n > 4 and suppose that in every projective space Vn~l of dimension 
n - 1 there is v(Af,B') < n - 2 for independent sets A',Bf oiV71'1 in the general 
position. We show that v(A, B) < n — 1 for independent sets A, B of Vn in the 
general position. 

Let A = { a i , . . . , a n } , H = {b i , . . . , bn} be independent sets of Vn in the 
general position. Then for instance â  $_ Vi for all i € { l , . . . , n } , and hence 
Ui 7̂  Vi. On ci we can select a point w\ such that: 

a) w\ / a i ,b i , 
b) 1? = w\ + Ui is a hyperplane in Vn, 
c)V\£R and then for P = Vi n R we get dim P = n - 3, 
d) fy ^ P f o r a l l j € { 2 , . . . , n } , 
e) P does not intersect any of lines ?L>i ai. 
Let us select a subspace Q of R containing P and not containing w\, dim Q = 

n — 2. Then Q is a hyperplane in R and thus it intersects all lines w\ai at points 
a-, i € { 2 , . . . , n } . Obviously a- $ Vi, bi £ Q for i G {2, . . . , n } . If we put 
S = Q + Vi, then 5 is a hyperplane in P n , and hence it is a projective space of 
dimension n - 1 . The sets A' = { a 2 , . . . , a ^ } , B' = {b 2 , . . . ,b n} are independent 
in S and they are in the general position. 
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By assumption v(A',B') < n — 2, hence there exist norming mappings 
a2 , . . . , a n _ i and / 3 2 , . . . ,/3'n_\ such that B' = P'n_1a

t
n_1...l3'2a'2{A'). If we 

put 
xi = [^j- J " l f t 2 , • •. , i ~ 1 a i _ i , i ~ 1 a i + i , . . . , J _ 1 a n ] 

for j G { 2 , . . . , n — 1}, i G { 2 , . . . , n} where Wj are properly selected points, then 

( V , . . , 1 ^ ) 3 (X2,...,K2) $ (2a2,...,2an) 3 (K2
3,...,Xn) -> ... *V 

( b 2 , . . - , & n ) . 

The sets Aj = {bi, J a 2 , . . . , J a n } , j G { 1 , . . . , n - 1}, are independent in Vn. 
Let us put 

F / = [w i , a i , . . . , a<_ i , o<+ i , . . . , o n ] , 

Y? = [WJ,3~la\,... , i - 1 o ^ i , i " " 1 a i + i , . . . , J~1an] 

where bi := J _ 1 a i for i G { 1 , . . . , n } , j G {2 , . . . , n — 1}. 

Then ( a i , . . . , a n ) 2* <tf,...,Y*) % (b\,la2,... ^an) 3 ( i f , . . . ,Fn
2) ^ 

( b i , 2 a 2 , . . . , 2 a n ) -> . . . ^ 1 ( 6 i , . . . , 6 n ) . This yields v(.A,JB) < n - 1 in P n . 

Proposit ion 14 If A,B G G n , £/aen £/jere exists a se£ A' G G n ŝ cJi £/m£ 
v(i4, A') = 1 and A', B are in the general position. 

Proof Let us select an arbitrary point w\ ^ U, V. In the hyperplane V we 
select a subspace R of dimension n — 2 such that it does not contain any of points 
bi and any of intersections a^Lvi n V, i G { l , . . . , n } . Then consider an arbitrary 
hyperplane U' contaning R and not containing w\. We put a\ = aiW\ fl U', i G 
{ l , . . . , n } . It is obvious that a\,bi £ U' n V for all i G { l , . . . , n } , v(A,A') = 1 
and the sets A' = {a[,..., a n } , 1? are in the general position by Remark 6. • 

Theorem 8 Ifp = n, then d(Gp) < n. 

Proof If A, B are in the general position, then d(Gp) < n - 1 by Theo­
rem 7. If they are not in the general position, then we select a set A' accord­
ing to Proposition 14. Hence v(A,A') = 1, v(A',B) < n — 1 anh this yields 
v(A,B)<n. • 

Theorem 9 Let n = 3 and U = V. Then v(A,B) = 2 if and only if the 
triangles A,B are perspective (i.e. lines C\,c2,cs have one point in common). 

Proof 1. Let the triangles A, B be perspective. Then there exists a point 
r G U, r = ci fl c2 0 c3. At least one of lines Q , i G {1,2,3}, must fulfil a 
condition r ^ a^b^. Let ci be such a line. Select an arbitrary point w\ £ U 
and a point a[ on the line a\W\ such that a[ ^ a\,w\. Lines a[w\ and bir 
have ai in common and hence the lines a^&i, w\r have a point denoted by w2 

in common. It is obvious that there exist intersections a'2 = a2w\ n b2w2 and 
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a'3 = a3ivi D b3w2. For A' = {a i , a 2 , a 3 } we get v(A,A') = 1 = v(A',B) by 
Remark 5. Thus v(A,B) = 2. 

2. Let v(A,B) = 2. Then there exist points w\,w2 £ U, Wi ^ w2, and an 
independent set A' = {a^a^,^} G G3 with a property 

{a i , a 2 , a 3 } -> {a i , a 2 , a 3 } -* {01,02,03}-

For the points a\ we obtain a\ G aiW\, aj G biW2 for all i 6 {1,2,3}. That 
implies a\ = OiW\ H biW2, i G {1,2,3}. If the lines a%w\ and biW2 have a point 
in common, then also the lines aibi and ^ i ^ for i G {1,2,3} have a point in 
common. Denote r = w\w2 n U and we get r £ Ci for a l i i G {1,2,3}. Thus the 
triangles A, B are perspective. • 

Proposit ion 15 Let n = 3 and U = V. If the triangles A,B are not perspec­
tive, then v(A,B) = 3. 

Proof From U = V we get v(A,B) > 1 by Remark 5. Moreover, v(A, B) ^ 2 
by Theorem 9 and v(A, B) < 3 by Theorem 8. • 

Corollary 2 Ifp = n = 3, then d(G3) = 3. 

An open problem is to determine a span for n and p fulfilling an equality 
nY^- < p < n. The solution of that requires an analysis of rather complicated 
incidence relations in Vn. As an illustration we present a particular case for 
n = 4,p = 3. 

Proposi t ion 16 Let n = 4, p = 3. If the intersection of planes U,V is a point 
q and q ^ aiaj, q £ bibj for all distinct i,j G {1,2,3}, then the sets A,B are in 
the basic position. 

Proof If UflV = {q}, then U + V = Q = Vn. Suppose for instance dim Q3 = 2. 
Then the lines a ia 2 , bib2 have a point x in common. Since x G U Pi V we get 
x = q and q G a\a2 which is a contradiction. Thus all Qi are hyperplanes in Vn. 
According to Theorem 4 there exists a unique line intersecting all c .̂ Moreover, 
UOV £ Vi, Ui for all i G {1,2,3} and from Remark 4 we get UHW = VnW = 0. 
It follows from Theorem 3 that the sets A, B are in the basic position. • 

Theorem 10 If n = 4. then d(G3) = 2. 

Proof 1. Let U ^ V. We select points r G U, s G V such that r,s <£ U nV 
and r ^ aiOj,s ^ 6̂ 6̂  for all distinct i, j . Now let us select a line t intersecting 
the line rs such that tnU = tnV = 0 and consider a plane T = rs + t. Then 
T fl U = {r}, T fl V = {s}. In T we select an independent set A' = {a[,a'2, a3} 
such that r ^ a ^ - and 5 ^ o^a'.. The sets A, A' and A',I? are in the basic 
position by Proposition 16. Thus v(A, A') = v(A',B) = 1 and v(A,B) < 2. 

2. Let U = V. Then each line W intersecting all lines Ci is contained in 
the plane U. It follows from Theorem 3 that v(A,B) > 1. In U we select a 
point r ^ aiOj, r £ bibj. Now let us consider a plane T containing r such that 
T H U = 0 and proceed analogously to 1. We have obtained that v(A, B) < 2 
and thus v(A, B) = 2. • 



202 Vladimír SLEZÁK 

References 
[1] Ganter, B., Wille, R.: Formale Begriffsanalyse. Mаthemаtische Grundlаgen, Springer-

Verlаg, 1996. 

[2] Machala, F.: Incidence structures of independent sets. Acta Univ. Palacki. Olomuc, Fac 
rer. nat.38 (1999), 113-118. 

[3] Machala, F., Slezák, V.: Independent sets in incidence structures. Mathematica Slovaca 
(to appear). 

[4] Slezák, V.: Bаses in incidence structures defined on projective spаces. Acta Univ. 
Palacki. Olomuc, Fac rer. nat.37 (1998), 113-121. 


		webmaster@dml.cz
	2012-05-03T23:31:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




