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Abstract

In this paper are given definition of Chipman pseudoinverse, which is
generalized Moore-Penrose matrix, some its properties and algorithms for
its computation. One example for its application in spline theory is shown
at the end.
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1 Introduction

Consider the system of linear equations
Az = b, (1)

where A is a regular matrix of size n x n,  and b are column vectors of size
n x 1. Then there exist just one solution zo = A~ 1b.

Let A be a singular or non-square matrix of size m x n and b a vector of size
m x 1. We attempt to find a least-squares solution of the equation (1), in other
words a solution, which minimize norm of the residual vector

llAz — b, ©)
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and which has minimal norm among all these vectors.
Now we consider the Euclidean norm

| z [l2= VaTaz, (3)

Theorem 1.1 Consider the matriz equations (1) with a matriz A of sizem xn
and a vector b of size m x 1 and Euclidian norm (8). Then there is just one
least-squares solution xo with minimal norm. This solution is formed as

Ty = A+b, (4)
where matriz At is Moore-Penrose inverse of A.
Proof See [10].

Theorem 1.2 To each matriz A there ezists exactly one Moore-Penrose in-
verse AT,

Proof See [10].
Now let N be a n x n symmetric positive definite matrix (p.d.s.) and denote

llz]|ln = V2T Nz. (5)
In next section we solve matrix equation
Az =0 (6)

with matrix A of size m x n and vector b of size m x 1 and consider the norm
(5). So we attempt to find a least squares solution of the equation (6). This
least squares solution is formed by using Chipman pseudoinverse of matrix A,
which is defined in next section.

2 Definition and properties
The following definition and theorem were published in [9].

Definition 2.1 Let A be a m X n matrix, M a m x m symmetric positive
definite matrix and N a n X n symmetric positive definite matrix too. The
matrix A}, v of size n x m, which satisfies the axioms

AAf A = A _ (7)
Ay nAAY N = AN ®)
T
(Maaf ) = Madg 9)
T
(NafnA) = NAfnA, (10)

is called the Chipman pseudoinverse of matrix A.



Chipman pseudoinverse of matrix, its computation and application ... 145

Theorem 2.2 Basic properties of A;{,N'

o If A is zero matriz, then AL,N = AT

o If M, N are identity matrices, then Ay, y = A*

If A is square reqular matriz, then AL, y=A471
+
(4%n), =4

* (AX”'N)T - (AT);—I,M-1

Proof Using definition it is easy to prove this statements.

If matrix B is full column rank or full row rank, then there is a simple way
for computation its Chipman pseudoinverse with just one p.d.s. matrix.

Theorem 2.3 Let B be a matriz of size m x v, rank(B) = r, M be p.d.s.
matrixz of size m X m and denote

B}, = (BTMB)" BTM. (11)

Then BX} is Chipman pseudoinverse of B corresponding to matriz M and any
symmetric matric N of size r X r.

Proof Matrix B}\*./[,N’ with a p.d.s. 7 x r matrix N, must satisfy equations
(7)-(10). Using (11) it is easy to prove, that axioms (7)—(10) hold.

Theorem 2.4 Let C be a matriz of size v x n, rank(C) = r and N be p.d.s.
matriz of size n X n and denote

Cty=N-1cT (CN~1CT) 7. 12)

Then C:LN is Chipman pseudoinverse of C' corresponding to matriz N and any
symmetric matriz M of size r X r.

Proof The proof is similary as in precedent theorem.

Theorem 2.5 (Rank factorization) Let A be a non-zero matriz of size
m X n, rank(4) = r, M be p.d.s. matriz of size m x m and N p.d.s. ma-
triz of size n x n. Then there exist matrices B of sizem xr and C of sizeT Xn
such that

A= BC, (rank factorization)
r = rank(B) = rank(C) and

Al v =ClnBirn (13)
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Proof If A is m x n matrix of rank r, then there exist not unique regular
square matrices D and E, such that

I, O
pas= (5 0).

which give the representations

— -1 Iro -1
a-o (50)

A=BC=bicl +...+bcl, (rank factorization)

where B is m x r matrix of rank r consisting of the first r column vectors
bi,...,b, of matrix D™ and C is r x n matrix of rank r consisting of the first
r row vectors ci,...,c, of E7L.

We can see, that matrices B, C always exist for each matrix A4, but they are
not unique.

Matrices Cf; v and By y exist and are given in two precedent theorems.
Hence

Al y=N"1CT (CN~'CT) " (BTMB) " BTM. (14)

Using (14) it is easy to prove that matrices A, A*Aj,, ~ satisfy equations (7)-(10).

Theorem 2.6 Let A be a m X n matriz. Let M p.d.s. matriz of size m X m

and N p.d.s. matriz of size n X n are fized. Then there exist just one matriz
Aty

Proof By Theorem 2.5. Chipman pseudoinverse A;I’ n really exists for each
matrix A. So now we show, that if X and Y are Chipman pseudoinverses of
matrix A for fixed p.d.s. matrices M and N, then X =Y.

Matrices X and Y satisfy equations (7)—(10). Using these equations we have

X = XAX =N"'NXAX = N"'(NXA)T X = NTATXTNTX
= NTATYTATXTNTX = N"'ATYTNN-TATXTNTX
=N I(NYATNY(NXA)T X = NTINYANT'NXAX = YAX

Y =YAY =YM 'MAY =YM ' (MAY)T =y M'yTATMT
= YMWYTATXTATMT =y M~ 'YTAT (MAX)T
=YMWWTATMAX =YM~' (MAY)T AX = YM'MAY AX
= YAYAX =YAX

SoX =Y.
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Theorem 2.7 Consider the matriz equation (1) with a matriz A of sizem X n
and a vector b of size m x 1. Let g = AX,,YNb. Then for each vector z of size
nXx1l,x#xo is

(i) |lAzo — bllm < [|Az — bl|nm

or
(i) |Azo —bllm = [[Az —bllsr  and  lzolln < |lz]|n-

Vector zg is called M-least-squares solution of equation (1) with minimal norm

(5)-

Proof See [10].

3 Iterative algorithm

In [10] are given several computational methods for generalized inverses, but
not all of which may be suitable for numerical computations. Some of them are
useful in theoretical investigations. One of them, rank factorization, is described
above. In next section is shown Generalized Greville algorithm, which is based
on Greville algorithm, see [1]. In [5] is given universal iterative method for
computing generalised inverses. So for computing Chipman pseudoinverse we
get the following four theorems. Their proofs are given in [5] too.

Theorem 3.1 Let B be a matriz of size m X r, rank(B) =1 > 2, let M be
p.d.s. matriz of size m x m. If ¢ > 2 is an integer, then for iterative proces

2
Vg =B"MB, a=——=—, Yo=aVf,
? Y 77 L
Ty =1-Y,Vg
Vijn= ([ +T+T2+--+T" )Y  k=12,... (15)

X1 = YeaBTM
we get limg_,00 Xj = BJT,,Y..

(I denotes identity matriz and tr(A) denotes trace of matriz A (sum of
diagonal elements.))

Theorem 3.2 Let C is a matriz of size r x n, rank(C) =71 > 2, let N be p.d.s.
matriz of size n x n. If ¢ > 2 is an integer, then for iterative proces

2

Ve=CN1CT, a=——"—— Yy=aVZ,
c T Ive)y 0T
T, = I -YVe
Yier = ([+Te+Tp +--+T7 Y)Y k=1,2,... (16)

X1 = N0V

we get limy_, 00 Xj = CTN.
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Theorem 3.3 Let A be matriz of size m X n, rank(A) = r > 2, M be p.d.s.
matriz of size m x m, N be p.d.s. matriz of size n x n and let us put rank
factorization A = BC, where matriz B is of size m x r, C of size v X n and
rank(A) = rank(B) = rank(C). If ¢ > 2 is an integer, then for iterative proces

2

Va=BTMANCT, a= ———, Yo=oaV}

4 TR WIv,) 0T A

Ty = I —Y3Vy
Yipr = [+ T +T¢+-+ T Yy k=1,2,... (17)

Xk+1 = N_ICTYk+1BTM
we get limg_y00o Xg = A}lL,LN.

Theorem 3.4 Let A be matriz of size m x n, rank(A) = 1 and A = BC its
rank factorization. Then using notation from the preceding theorems there is

1
At o =——  _N-IcTyTBT
MN = 4 (VIV,) A ’

with p.d.s. matrices M, N of corresponding size.

Proof See [5].

4 Partition of matrix

In this section we give definition of operation * and partition of matrix, which
are used in the Generalized Greville algorithm for computation Chipman pseu-
doinverse. This algorithm we give in next section. Let M,, , be a set of all
m X n matrices.

Definition 4.1 Let A € My, 0, Ny € My m be p.d.s. matrix and Ny, € My
be p.d.s. matrix too. Define

A* = N7'ATN,,. (18)

Lemma 4.2 Let A,B € Munn and Np,, Ny, be p.d.s. matrices of corresponding
size. Then
(A" =4
(AB)" = B*A*
(A+B)* = A* + B*

Proof Using definition it is easy to prove this statements.
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Lemma 4.3 Let a be a non-zero vector of size 1 x n and Ny, N,, are p.d.s.
matrices of corresponding size, which define a*. Then

* *\—1
ay, n, =0 (aa’) (19)
is Chipman pseudoinverse of a.

Proof Using (19) we have

af, n, = Nita" Ny (aNn"laTNl)—1 = N;'a" N, N[ (aN,jlaT)_1
= N;taT (aNn_laT)_1 ,
and this is owing to (13) Chipman pseudoinverse of vector a.

Definition 4.4 Let A € Mpun, N, Ny, Ny, be p.d.s. matrices of corre-
sponding size, m; + me =m, Ep, € Mu, m, Em, € M, m, such that

Eml E:m = I-mu Esz:nz = Imm (20)
Ey En, +E, ,En, = In. (21)
Let the matrices
B=E, A (my xn), (22)
C=E,,A (m2 x n)

Then the m x n matrix

(2).

is called (mq + ma, Ep,, Em, )-partition of matrix A.

Remark 4.5 For each matrix A € M, , and fixed p.d.s. matrices Np,, Ny, ,
Np,, M1, ma, such that my; + me = m, matrices Ep,,, E,,, always exist. In
Theorem 4.8 will be given instruction for finding these matrices in general case.
For fixed m1, ma, Ep,, Em, is (m1,m2, Em,, Em,)-partition of matrix A unique.

Now we show one example of (m; + ma, Ep,, Em,)-partition of matrix A,
when p.d.s. matrices Ny, N, and Np,, are identity matrices of corresponding
size. Let

Epny = (Im, Omy,ms) » Em, = (Omz,ml Im,).

* — I1TL1 * — Oml,m2
E,, = (Omz,ml and E.,= T, .

It can be easily seen that the relations (21), (22) hold.
Let

Then

B=EpnA,  C=Enp,A.

In this case matrix B is formed from the first m; rows of matrix A and matrix
C is formed from the m; + 1,...,m rows of matrix A.
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Owing to Definition 4.4 m x n matrix

B
C
is (m1, ma, Em,, Em,)-partition of matrix A.

Theorem 4.6 (Singular value decomposition) Let A be a matriz of size
m X n, rank(A) = r. Then there are erist unitary matrices U of size m x m
and V of size n X n such that

A=UDVT, (24)
D, 0) . ) . . .
where D = 0 o) matriz of size m x n, D, = diag (di,...,d,) is reqular
matriz of sizer X T and dy,...,d, are singular values of matriz A.

Proof See in [3].

Remark 4.7 If A is symmetric positive definite matrix of size n x n, then its
singular value decomposition is

A=UDUT
and singular values d; > 0,...,d, > 0.

Theorem 4.8 Let A € Mpn and Ny, Np,,Np, are p.d.s. matrices,
my + ma = m. Moreover, let us put singular value decomposition

N; = U,'DiUiT for i = my, may, m.
Let the matriz D, = diag(di, .- .,dm), then denote
DSY}') = (dla'g (d17""dm1))—1 and DS,%) = (dzag (dm1+1a-~7dm))_1

and 12
En, = Um1 ([DMIDSTIL)] 0m1,m2) U£
) (25)
—1/2
Enmy = Up, (omz,ml [0, D] ) Uz,
Then matrices E, , En, satisfy (21), (22), and for

B = EmlA, C = EmgA’

(2),

is (m1 +m2, En | Epn, )-partition of matriz A.

matriz
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Proof We must prove that matrices Ep,,, En, satisfy statements (21), (22).
Because

E; = N 'EL N,

Il

UnDZIUTU,, ( [Dmleé)]_l/z

0m27'm1

) UYL Un, D, UL (27)

I

D, D%) 1/2
Um ([ 1 ] Ugl

m2,mi

and similary

Omy,m
E* — N—IET N, — U mi,m2 1/2 UT 0
ma m “ma-Yme m [D D(‘Z)] ma» (28)
ma m
we have
Em1E;z1 =
—1/2 1) 1/2
= Un, ([DmngTll)] Oml,mz) UZUm < [Dn(l)l Dm ] Ull = lml.
ma,my

Similary for Em,-

5 Generalized Greville algorithm

In this section we give the Generalized Greville algorithm for computing Chip-
man pseudoinverse A}; \ of matrix A € M, for fixed p.d.s. matrices M €
Mm,m: N € Mn,n‘

Greville algorithm (see [1]) for computing Moore-Penrose inverse A* of ma-
trix A is based on computing Moore—Penrose inverse A,‘: of matrix Aj, where
Ay, is formed from the first k-rows of matrix A, k =1,...,m.

Computing Chipman pseudoinverse Aj;[ n of matrix A is based on computing
Chipman pseudoinverse for matrices Ag, where matrix Aj will be defined in
Theorem 5.1 as partition of matrix Axy1, Kk = 1,...,m — 1, A, = A. We
use informations from Theorem 4.8, in which are given instruction for finding
partition of m x n matrix A by using singular value decompositions of p.d.s.
matrices Npy, Ny, N, m = my + ma. Also for finding matrix Ay we need
p.d.s. matrices Ngy1, Ni, N;. Altogether in algorithm we will need, except
p.d.s. matrices M, N, sequence {Ni};’;l of p.d.s. matrices, N; € M;;. In k-th
step of Generalized Greville algorithm we compute for matrix Ay, its Chipman
pseudoinverse A} = A% .

On sequence {N;};! of p.d.s. matrices is from theoretical investigations no
requirement, but for numerical computation, because this algorithm use inverse
of Ny, is in place to Ny be good conditioned.
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At first we give algorithm for general sequence of p.d.s. matrices {N;}7
and this algorithm we prove. In case, when we use sequence of identity matrices
{L;}7, this algorithm is more simply. In k-th step we compute for matrix Ay

=1

its Chipman pseudoinverse A} = AZ, n- This is showed in Remark 5.3.

Theorem 5.1 (Generalized Greville algorithm) Let A € My, , p.d.s. ma-
trices M € Muy,m, N € My, are given and {N;}7" be a sequence of p.d.s.
matrices, where N; € M, ;.

1. Denote Ay = A, Npy = M.

Let us compute for k =m,m —1,...,2 matrices

A =EP A (k-1)xn
ar = Efk)Ak 1xn

where matrices E,(ck_)l, Egk) are computed by using singular value decom-
positions of p.d.s. matrices Ny, = UpDyUl, Ny—1 = Ug_1Dp_ UL,
N, =U, DU} .

Let the matriz Dy, = diag(dy,...,d), then denote

DV = (diag(dy,...,dx_1))""  and D =1/dy

and
~1/2
E,(ek_)l = Ur1 ([Dk—lchl)] Ok—l,l) ur
—1/2
E® =1, (01,k_1 [D:D] )U,Z’.
2. Put 1
Af = N71AT (4, N1 A7) (29)
3. Let us for k =2,3,...,m compute n X k matrices
be e\ (A ) —dibe )]
af = (& EBM) (( k'l)bk ¢ k)] , (30)
where
dk = akAj_l, (31)
ek = ag —dpAg_1, (32)
N N N )
b = { ((Ck) ch) (ck)T N* if e #0 (33)
(1 +dedy) " di (AF_)" if ek =0.
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Then matriz A'}\}k’N = A: is for k = 1,2,...,m Chipman pseudoinverse of

matriz Ag. For given matriz A and p.d.s. matrices M, N is matric AL,N = A}
its Chipman pseudoinverse.

Proof Proof is based on the mathematical induction proving axioms (7)—(10)
for Chipman pseudoinverse of matrix Ay.

Remark 5.2 Chipman pseudoinverse A}[,L  isindependent on sequence of p.d.s.
matrices {N;}77", this sequence is given only for computing partitions of ma-
trices Ag, k =m,...,2, A, = A and their Chipman pseudoinverse Axk_ N-

Remark 5.3 Now we describe in more details the Generalized Greville algo-
rithm for matrix A € My n, p.d.s. matrices M € My m, N € M, , and
sequence p.d.s. matrices {Ii};’;jl. Construction of matrices Ey_1, Ej using sin-
gular value decomposition of p.d.s. matrices Iy, I_1, I; are given in Remark 4.5.

Algorithm:

1. Let M = UDUT, where D = diag (A1, ..., \n) is singular value decomposi-
tion of matrix M.

Then owing to theorem 5.8 is (m — 1) X m matrix

VAL 0 ... 0 0
0 V... 0 0
Am_1 = Em_lA = . . . UTA
0 0 ...v/An1 0
and vector 1 x m
am = B A = (ol,m~1 \/,\m) UTA.
For k =1,2,...,m — 1 denote a; the k-th row of matrix 4,,_; and
a
az
A =
aj;

the submatrix formed from the first & rows of matrix A4,,_;.

2. Put )
A} = N71AT (AN14AT)

3. Letfor k=2,3,...,m is
dy = akA;:_l
cr = ar —dpAk—1

be = { (ckN’lckT)_ll c if cp #0
(1+did?) " dy (A ,)T N if ¢ = 0.
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Then for k=2,...,m—11is
Af = (A}, — N7'bdi N7'bY)
and
At = (Af_, = N“'Ld, N~'T) DV2UT.

Matrix A7} is Chipman pseudoinverse of matrix A for given p.d.s. matrices
M,N.

6 Optimal properties of some cubic splines
Let us have given function values g;, 1 =0,1,...,n + 1 in spline knots
(Az) : To< T <Ty<...<Tp < Tpil-

The cubic splines Ss; (z) € C? interpolating prescribed values have two free
parametres which can be used for some boundary condition. In spline theory is
known, that the minimum of the functional
Tn41
a6 =15 = [ 15"@) do (34)
zo
is attained by interpolatory natural cubic spline on the class of interpolants from
W2 (see [6]).
With local parametres g; = s (z;) and M; = s" (z;), we can state the conti-
nuity conditions as recurrences (see in [6])

hi_iM;_1+2 (hi—-l + hl) M; +h; M1 = fi, 1=1 (1) n (35)
where
gi+1 — Gi  9i — gi—1
i =3 -
f h; hi—1

Recurrences (42) we can write in vector notation as

hi =z — 4,

AM = f (36)
with tridiagonal matrix A of size n x (n + 2) , rank(A4) = n,
ho 2 (ho + h1) hy
hq 2 (hl + hz) ho
hn—2 2 (hn-—2 + hn—l) hn—l
hn—l 2 (hn-—l + hn) hn

and vectors

M = (Mo, My, Mz,...,Mps1)",  F=(f1, oo f)"
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Functional (41) we can rewrite

n

1 1
J(s)=Y" . (M? + MMy + M%) = éMTRM, (37)
i=0
with p.d.s. matrix R of size (n +2) x (n + 2).
So owing to (5) there is
1
T(s) = gl
We want to find the minimum of the functional
J(s) = MTRM (38)
owing to
AM = f. (39)

In other words, we want to find such vector M of second derivatives of interpo-
latory cubic spline, which minimizes functional (38).
In regard to Theorem 2.7 we can state following

Theorem 6.1 Let us have given spline knots (Azx) and values g; in knots z;,
t =0,1,...,n+ 1. Then functional (38) is minimized, in the class of cubic
splines on the given knotset (Az) for data g;, by interpolatory cubic spline,
whose local parametres M; are given as R-least squares solution of equation
(39), so A

N = AT, (40)

where matriz A:LR is Chipman pseudoinverse of matriz A (see Theorem 2.4).
This cubic spline is unique.

7 Numerical results
We compare computing Chipman pseudoinverse of random matrices by given
methods:

1. Rank factorization

2. Iterative method

3. Generalized Greville algorithm

Note, that for computing by Rank factorization and Iterative method we must
know rank of matrix, but for computing by Generalized Greville algorithm is
not necessary.

Denote Ag’ as Chipman pseudoinverse computing by i-th method for matrix
A and fixed p.d.s. matrices M, N of corresponding size. Now let

v(1) = max (AA7 A - A)
) (AfA47 - AT)

v(3) = max (MAA])T — MAAT)
) ((NAFA)T — NAF A)
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and v = max; v(z), now v; denotes v computed by i-th method and ¢; denotes
time necessary for computing Chipman pseudoinverse by i-th method.

Follow numerical computing were given on computer Intel Pentium II, 333
MHz, RAM 64 MB, HDD 4.8 GB for matrices with random numbers from
interval (0, 1) of size m x n, with variant rank = r. P.d.s. matrix M, N are full
matrix. Computing Chipman pseudoinverse by Iterative method use ¢ = 15, see
section 3. For computing by Generalized Greville algorithm we use sequence of
identity matrices, then we count by algorithm given in Remark 5.3.

m,n T U1 V2 U3
50,100 | 50 | 1.87107'° 1.51 10710

75,100 | 50 |2.101071° 2.5210°1° 3.74 10~°
100,100 | 50 | 5.59 1071% 9.62 1071° 1.92 1078
150,100 { 100 | 4.48 109 2.6010~7 2.42 1078
150,100 | 50 | 1.15107? 2.9510~° 5.89 1078
250,100 | 50 | 1.6910=° 7.20107° 7.68 1078
250,100 | 100 | 5.07 107° 1.421077 3.79 107°
250,250 | 250 | 1.26 10~¢ 2.68 1075 —
800,800 | 600 | 1.15107% 1.24 1073 —

m,n r t t2 i3
50,100 | 50 0.22 5.6 6.97
75,100 | 50 0.22 7.69 5.38

100,100 | 50 0.28 9.94 6.36
150,100 | 100 | 0.55 16.64 28.18
150,100 | 50 0.6 24.11 2044
250,100 | 50 0.99 51.96 34.11
250,100 | 100 1.04 31.53  30.48
800,800 | 600 | 3.74 102 2.87 10° —

From fhese two tables we can see, when we know rank of matrix, then com-
puting by Rank factorization gives very good results. Generalized Greville algo-
rithm gives good results too, but this method need more time. This algorithm
is in place to use, when we do not know rank of matrix.
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