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Abstract 
In this paper are given definition of Chipman pseudoinverse, which is 

generalized Moore-Penrose matrix, some its properties and algorithms for 
its computation. One example for its application in spline theory is shown 
at the end. 
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1 Introduction 

Consider the system of linear equations 

Ax = b, (1) 

where A is a regular matrix of size n x n, x and b are column vectors of size 
n x l . Then there exist just one solution XQ = A~xb. 

Let A be a singular or non-square matrix of size mxn and b a vector of size 
m x 1. We attempt to find a least-squares solution of the equation (1), in other 
words a solution, which minimize norm of the residual vector 

\\Ax - b\\, (2) 
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144 Jitka MACHALOVÁ 

and which has minimal norm among all these vectors. 
Now we consider the Euclidean norm 

(3) 

Theorem 1.1 Consider the matrix equations (1) with a matrix A of size mxn 
and a vector b of size m x 1 and Euclidian norm (3). Then there is just one 
least-squares solution XQ with minimal norm. This solution is formed as 

xo = A+b, (4) 

where matrix A+ is Moore-Penrose inverse of A. 

Proof See [10]. 

Theorem 1.2 To each matrix A there exists exactly one Moore-Penrose in­
verse A+. 

Proof See [10]. 

Now let N be a n x n symmetric positive definite matrix (p.d.s.) and denote 

\\x\\N = VxTNx. (5) 

In next section we solve matrix equation 

Ax = b (6) 

with matrix A of size mxn and vector b of size ra x 1 and consider the norm 
(5). So we attempt to find a least squares solution of the equation (6). This 
least squares solution is formed by using Chipman pseudoinverse of matrix A, 
which is defined in next section. 

2 Definition and properties 

The following definition and theorem were published in [9]. 

Definition 2.1 Let A be a m x n matrix, M a m x m symmetric positive 
definite matrix and N a n x n symmetric positive definite matrix too. The 
matrix AM N of size n x m, which satisfies the axioms 

AAM^NA = A (7) 

AM,NAAM^N = AMjN (8) 

(MAA^Y = MAA+iN (9) 

(NA^NA)T = NA^NA, (10) 

is called the Chipman pseudoinverse of matrix A. 
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Theorem 2.2 Basic properties of A\j- N. 

• If A is zero matrix, then A^ N = AT 

• If M, N are identity matrices, then AM N = A+ 

• If A is square regular matrix, then A^ N = A"1 

• I ^ M N ) — -4 

rp 

• \AM,N) ~ \ A J/V-^M-1 

Proo f Using definition it is easy to prove this statements. 

If matrix B is full column rank or full row rank, then there is a simple way 

for computation its Chipman pseudoinverse with just one p.d.s. matrix. 

Theorem 2.3 Let B be a matrix of size m x r, rank(J5) = r, M be p.d.s. 
matrix of size m x m and denote 

£ + = (BTMB)~1 BTM. (11) 

Then B^ is Chipman pseudoinverse of B corresponding to matrix M and any 
symmetric matrix N of size r x r. 

Proo f Matrix B^ N, with a p.d.s. r x r matrix N, must satisfy equations 
(7)-(10). Using (11) it is easy to prove, that axioms (7)-(10) hold. 

Theorem 2.4 Let C be a matrix of size r x n, rank(C) = r and N be p.d.s. 
matrix of size n x n and denote 

C+N = N-1CT{CN-1CT)~1. (12) 

Then C+
N is Chipman pseudoinverse of C corresponding to matrix N and any 

symmetric matrix M of size r x r. 

Proo f The proof is similary as in precedent theorem. 

Theorem 2.5 (Rank factorization) Let A be a non-zero matrix of size 
m x n, rank(A) = r, M be p.d.s. matrix of size m x m and N p.d.s. ma­
trix of size nxn. Then there exist matrices B of size mxr and C of size r xn 
such that 

A = BC, (rank factorization) 

r = rank(23) = rank(C) and 

AM,N — ̂ M,N^M,N' (13) 
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P r o o f If A is m x n matrix of rank r, then there exist not unique regular 
square matrices D and E, such that 

DAE 

which give the representations 

IrO\ 
0 Oj ' 

-1 / Ir 0 \ „_i A = D-'{oo)E 

A = BC = bicf + ... + brcj, (rank factorization) 

where B is m x r matrix of rank r consisting of the first r column vectors 
bi,..., br of matrix D _ 1 and C is r x n matrix of rank r consisting of the first 
r row vectors c i , . . . , cr of E _ 1 . 

We can see, that matrices B, C always exist for each matrix A, but they are 
not unique. 

Matrices C^ N and B^ N exist and are given in two precedent theorems. 
Hence 

A+ tN = N-'C7 (CJV-1C7T)~1 (BTMB)~1 BTM. (14) 

Using (14) it is easy to prove that matrices A, A^ N satisfy equations (7)-(10). 

Theorem 2.6 Let A be a m x n matrix. Let M p.d.s. matrix of size m x m 
and N p.d.s. matrix of size n x n are fixed. Then there exist just one matrix 
A+ 

Proof By Theorem 2.5. Chipman pseudoinverse A^ N really exists for each 
matrix A. So now we show, that if X and Y are Chipman pseudoinverses of 
matrix A for fixed p.d.s. matrices M and N, then X = Y. 

Matrices X and Y satisfy equations (7)-(10). Using these equations we have 

X = XAX = N-XNXAX = N'1 (NXA)T X = N-1ATXTNTX 

= N-1ATYTATXTNTX = N-1ATYTNN-1ATXTNTX 

= N-1 (NYAf N'1 (NXA)TX = N^NYAN^NXAX = YAX 

Y = YAY = YM~XMAY = YM~X (MAY)T = YM~1YTATMT 

= YM-1YTATXTATMT = YM-1YTAT (MAXf 

= YM-1YTATMAX = YM-1 (MAY)T AX = YM~lMAYAX 

= YAY AX = YAX 

SoX = Y. 



Chipman pseudoinverse of matrix, its computation and application ... 147 

T h e o r e m 2.7 Consider the matrix equation (1) with a matrix A of size m x n 
and a vector b of size m x 1. Let xo = A^ Nb. Then for each vector x of size 
n x 1. x ^ xo is 

(i) \\Axo-b\\M < \\Ax-b\\M 

or 
(ii) \\Axo-b\\M = \\Ax-b\\M and \\XQ\\N <\\X\\N-

Vector xo is called M-least-squares solution of equation (1) with minimal norm 
(5). 

Proof See [10]. 

3 Iterative algorithm 

In [10] are given several computational methods for generalized inverses, but 
not all of which may be suitable for numerical computations. Some of them are 
useful in theoretical investigations. One of them, rank factorization, is described 
above. In next section is shown Generalized Greville algorithm, which is based 
on Greville algorithm, see [1]. In [5] is given universal iterative method for 
computing generalised inverses. So for computing Chipman pseudoinverse we 
get the following four theorems. Their proofs are given in [5] too. 

T h e o r e m 3.1 Let B be a matrix of size m x r, rank(H) = r > 2. let M be 
p.d.s. matrix of size m x m. If q > 2 is an integer, then for iterative proces 

VB=BTMB, a = J L -, Y0 = aVT, 
t r (V^ VB) 

Tk=I- YkVB 

Yk+i = {I + Tk + Tl + --- + T"'1) Yk k = 1,2, . . . (15) 

Xk+i = Yk+iBTM 

we get l im^oo Xk = B\j . 

(I denotes identity matrix and tr(A) denotes trace of matrix A (sum of 
diagonal elements.)) 

Theorem 3 .2 Let C is a matrix of size rxn, rank(C) = r > 2, let N be p.d.s. 
matrix of size n x n. If q > 2 is an integer, then for iterative proces 

V c ^ N - ^ , a = ^ ^ , Y0=aVT, 

Tk = I - YkVc 

Yk+i = {l + Tk+Tk
2 + --- + T«-1)Yk k = l,2,... (16) 

Xk+i = N~lCTYk+i 

we get limft_+oo Xk = C+N. 
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T h e o r e m 3.3 Let A be matrix of size m x n, rank(A) = r > 2. M be p.d.s. 
matrix of size m x rn, N be p.d.s. matrix of size n x n and let us put rank 
factorization A = BC, where matrix B is of size m x r, C of size r x n and 
rank(A) = rank(J5) = rank(C). If q > 2 is an integer, then for iterative proces 

VA = BTMAN~1CT, a = J , Y0 = aVj 
tr (Vi VA) 

Tk = I-YkVA 

Yk+l = (l + Tk + Tk
2 + --- + T«-1)Yk k = l,2,... (17) 

Xk+1 = N~1CTYk+1B
TM 

we get lim^^oo Xk = A^N. 

T h e o r e m 3.4 Let A be matrix of size m x n, rank(A) = 1 and A = BC its 
rank factorization. Then using notation from the preceding theorems there is 

A+M>» = -WV^)N~1CTVIBTM' 

with p.d.s. matrices M, N of corresponding size. 

Proof See [5]. 

4 Partition of matrix 

In this section we give definition of operation * and partition of matrix, which 

are used in the Generalized Greville algorithm for computation Chipman pseu-

doinverse. This algorithm we give in next section. Let Mm,n be a set of all 

m x n matrices-

Definition 4.1 Let A G Mm,n, Nm G jWm?m be p.d.s. matrix and Nn G Mn,n 

be p.d.s. matrix too. Define 

A* = N~1ATNm. (18) 

L e m m a 4.2 Let A,B G Mm,n and Nm,Nn be p.d.s. matrices of corresponding 
size. Then 

(A*)* = A 

(AB)* = B*A* 

(A + B)* = A* +B* 

Proof Using definition it is easy to prove this statements. 
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Lemma 4 .3 Let a be a non-zero vector of size 1 x n and Ni,Nn are p.d.s. 
matrices of corresponding size, which define a*. Then 

aNi,Nn ~ a* (aa*)~l (19) 

is Chipman pseudoinverse of a. 

Proo f Using (19) we have 

< 5 jv n = N^1aTN1 (aN-'a7^)'1 =N-1aTN1N~1 (aN^a7)'1 

^ N-laT (aN~laTyl , 

and this is owing to (13) Chipman pseudoinverse of vector a. 

Definition 4.4 Let A E -Mm ,n , Nm,jVmi,Nm2, be p.d.s. matrices of corre­
sponding size, m\+m2— m, Emi e Mmi,m, Em2 G Arm 2 ? m , such that 

Em\Emi = Imi, h/m2hjm2 = Im2, (20) 

EmiEmi + Em2Em2 = Im. (21) 

Let the matrices 
B = Emi A (mi x n), 
C = Em2A (m2 x n ) . 

Then the m x n matrix 
FT 

is called (mi -f- m2,Emi, Em2)-partition of matrix A. 

(22) 

(23) 

Remark 4.5 For each matrix A G At m , n and fixed p.d.s. matrices Nm, Nmi, 
Nm2, m i , m2 , such that m\+ m2 — m, matrices i ? m i , Em2 always exist. In 
Theorem 4.8 will be given instruction for finding these matrices in general case. 
For fixed mi , m2 , Emi, Em2 is (mi,m2 ,F^m i ,Em 2)-part i t ionof matrix^! unique. 

Now we show one example of (mi + m2,Em 1,Em2)-partition of matrix A, 
when p.d.s. matrices jVm, Ar

mi and Nm2 are identity matrices of corresponding 
size. Let 

I-'mi — VImi L ' m i 5 m , 2 ) , I^m2 :=: l ^ m 2 , m i 1m2) • 

Then 

E*mi = (Q
Imi ) and 2 C 2 = ( V m 2 

\ u r a2 ,mi / \ % 2 

It can be easily seen that the relations (21), (22) hold. 
Let 

B — EmiA, C — Em2A. 

In this case matrix B is formed from the first mi rows of matrix A and matrix 
C is formed from the mi + 1,..., m rows of matrix A. 
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Owing to Definition 4.4 m x n matrix 

(?) 
is (mi, m2 , Emi, E'm2)-partition of matrix A. 

Theorem 4.6 (Singular value decomposit ion) Let A be a matrix of size 
m x n, rank(A) = r. Then there are exist unitary matrices U of size m x m 
and V of size n x n such that 

A = UDVT, (24) 

where L) = I J is matrix of size m x n, D\ — diag ( d i , . . . , dr) is regular 

matrix of size r x r and d±,..., dr are singular values of matrix A. 

Proof See in [3]. 

Remark 4 .7 If A is symmetric positive definite matrix of size n x n, then its 
singular value decomposition is 

A=UDUT 

and singular values d\ > 0 , . . . , dn > 0. 

Theorem 4.8 Let A G Mm,n and Nm,Nmi,Nm2 are p.d.s. matrices, 
mi -F m2 = m. Moreover, let us put singular value decomposition 

Ni -= UiDiUf for i = m i , m 2 , m . 

Le£ £fte matrix Dm = diag ( d i , . . . , dm), then denote 

D$ = ( d i a g ( d i , . . . , d m i ) ) " 1 and D$ = ( d i a ^ ( d m i + i , . . . , d m ) ) _ 1 

and 

Emi = Umi I \DmiDm 0mi,m2 J ^m 

(25) 

P - TT (n \n n ( 2 ' l 1 / 2 1 n ? 
•Cjm2 — u m 2 I u m 2 , m i Lt-/m2J~/ra I ^ m -

Then matrices Emi, .Em2 satisfy (21), (22), and for 

B = Emi A, C ~ Em2^-> 

matrix 

(o ) - (26) 

M (mi + m2 , 25mi 5 Em2)-Partition of matrix A. 
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Proof We must prove that matrices Emi,Em2 satisfy statements (21), (22). 
Because 

Emi = N^E^Nmг 

= UmDm

lUmUm ( [->•».->«] j UT

miUmiDmiU
T

mi (27) 
\ U m 2 > m i / 

_ ,{DmiD^}^\uT 
um \ Q ] umi 

Jm2,mi 

and similary 

we have 

Em2 = Nm

lEІ2Nm2 = Um( \D2D7Җ
 1/2 ) Uҷ*> ^ 

EmiEmi = 

-u (\D D^V1/2O )UTU (\D<niDҷ]1/2}uT 

— umi 1 \ u m \ u

m I umi,m2 J
 umum I L J I u

m 

^ \ "m2, mi / 

U1 - I 
umx — Ч -

Similary for Em2. 

5 Generalized Greville algorithm 

In this section we give the Generalized Greville algorithm for computing Chip-
man pseudoinverse A^ N of matrix A G Mm,n for fixed p.d.s. matrices M G 
Mml7n, N e Mn,n. 

Greville algorithm (see [1]) for computing Moore-Penrose inverse A+ of ma­
trix A is based on computing Moore-Penrose inverse A^ of matrix Ak, where 
Ak is formed from the first k-rows of matrix A, k = 1 , . . . , m. 

Computing Chipman pseudoinverse A^ N of matrix A is based on computing 
Chipman pseudoinverse for matrices Ak, where matrix Ak will be defined in 
Theorem 5.1 as partition of matrix Ak+\, k = l,...,m - 1, Am = A. We 
use informations from Theorem 4.8, in which are given instruction for finding 
partition o f m x n matrix A by using singular value decompositions of p.d.s. 
matrices Nmi, Nm2, Nm, m = m\ 4- m>i- Also for finding matrix Ak we need 
p.d.s. matrices Nk+\, Nk, N\. Altogether in algorithm we will need, except 
p.d.s. matrices M, N, sequence {Ni}™^1 of p.d.s. matrices, Nj G Mi^. In fc-th 
step of Generalized Greville algorithm we compute for matrix Ak its Chipman 
pseudoinverse A~£ = AN N. 

On sequence {Ni}7^1 of p.d.s. matrices is from theoretical investigations no 
requirement, but for numerical computation, because this algorithm use inverse 
of Nk, is in place to Nk be good conditioned. 
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At first we give algorithm for general sequence of p.d.s. matrices { N i } ^ 1 

and this algorithm we prove. In case, when we use sequence of identity matrices 
{ / i } ^ 1 ' ^n-s algorithm is more simply. In k-th step we compute for matrix Ak 

its Chipman pseudoinverse A^ = A\k N. This is showed in Remark 5.3. 

Theorem 5.1 (Generalized Greville algorithm) Let A G Mm,n, p.d.s. ma­
trices M G Mmtm> N G -Mn,n are given and { N . } ^ 1 be a sequence of p.d.s. 
matrices, where Ni G M^%. 

1. Denote Am = A, Nm = M. 

Let us compute for fc = ra,ra — 1,...,2 matrices 

Ak-x = E^Ak ( i - l ) x n 

ak = E[k)Ak 1 x n 

where matrices E^k\, E[ ' are computed by using singular value decom­
positions of p.d.s. matrices Nk — UkDkU%', Nk-i = Uk-\Dk-iU^_l, 
N^UiDxU?. 
Let the matrix Dk = diag (di , . . . , dk), then denote 

(2) D ^ = (diag(di,...,d*_i)) - ì and DÌ 1/dfc 

and 

4% = Uk-i ([_)„_!DІ1}] ^2 0„_i,Л U, 

í!i Í0i,k-i [DiD{2)] E 
(k) -1/2 

щ. 

2. Put 

3. Let us for k = 2,3, 

Af = N~1Aj (A1N~1Aiy1 

., m compute n x k matrices 

(29) 

where 

к = Kл* ^fe) 

dk = aдЛjJІ!, 

ck = öfe — dfc_4fc__i, 

- i ) -dfcftfc 

&fc 
(30) 

(31) 

(32) 

Ъk = \ {kkf^ty1 tøf-V tkФO (33) 
Ч l + -„-í)-1_*(Л+_1)* ./c*=0 . 
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Then matrix ANkN — A% is for k = 1,2, ...,m Chipman pseudoinverse of 

matrix Ak. For given matrix A and p.d.s. matrices M, N is matrix A~^ /y = Am 

its Chipman pseudoinverse. 

Proof Proof is based on the mathematical induction proving axioms (7)-(10) 
for Chipman pseudoinverse of matrix Ak. 

Remark 5.2 Chipman pseudoinverse A^ N is independent on sequence of p.d.s. 

matrices {Ni}7^1, this sequence is given only for computing partitions of ma­

trices Aft, fc = m , . . . , 2, Am = A and their Chipman pseudoinverse ANk N. 

Remark 5.3 Now we describe in more details the Generalized Greville algo­
rithm for matrix A G Mm,n, p.d.s. matrices M G - M m , m , IV G Mn,n and 
sequence p.d.s. matrices {Ii}™^1- Construction of matrices Ek-\, Ek using sin­
gular value decomposition of p.d.s. matrices Ik, Ik-i, Ii are given in Remark 4.5. 

Algorithm: 

1. Let M — UDUT, where D = diag (A_,..., Am) is singular value decomposi­
tion of matrix M. 

Then owing to theorem 5.8 is (m — 1) x m matrix 

Лr. — Em-iA — 

/v/ÃГ 
0 -

0 . 

0 . 

- 1 

0 0 \ 
. . 0 0 

V o 

am = E\A — (0 i , m 

0 . 

0 . 

- 1 

•• N/AШ-I 0 / 

Æ ) t!T -̂

UTA 

and vector 1 x m 

For fc = 1,2, . . . , m — 1 denote ak the k-th row of matrix Am-\ and 

(ax \ 

Ak = 
a2 

the submatrix formed from the first k rows of matrix A m _ i . 

2. Put 

Af = N-гÁţ (AxN^AJ - i 

3. Let for k = 2 , 3 , . . . , m is 

c4 = akA~l_x 

Ck = ak - dkAk~i 

6ł_лм-чг> 
l í l + ЉdП Ч 

if cfc т- 0 

( l + d * « i f ) - 1 d l k ( Л . _ 1 ) T i V i f Ç f c - - 0 . 
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Then for k = 2 , . . . , m — 1 is 

At = (At_1-N-ibT
kdkN-1bT

k) 

and 
A+ = (A+_, - N-Hldrn N-lbT

m) Dl'2UT. 

Matrix A^\ is Chipman pseudoinverse of matrix A for given p.d.s. matrices 
M,N. 

6 Optimal properties of some cubic splines 

Let us have given function values ^ , i = 0 , l , . . . , n + l i n spline knots 

(Ax) : XQ < x\ < x2 < ... < xn < xn+i. 

The cubic splines S31 (x) £ C2 interpolating prescribed values have two free 
parametres which can be used for some boundary condition. In spline theory is 
known, that the minimum of the functional 

Xn + l 

J(s) = \\s"\\l= j [s"(x)fdx (34) 

is attained by interpolatory natural cubic spline on the class of interpolants from 
W2

a(see[6]). 
With local parametres g\ = s (xi) and Mi = s" (xi), we can state the conti­

nuity conditions as recurrences (see in [6]) 

fc-iAfi-i + 2 (hi-! + hi) Mi + hiMi+1 = / , , i = 1 (1) n (35) 

where 

fli = Xi+i Xij J i = o - -
Hi n^-i 

Recurrences (42) we can write in vector notation as 

AM = / (36) 

with tridiagonal matrix A of size n x (n + 2) , rank(yl) = n, 

/ / io 2(/io + hi) h\ 
Лi 2 ( / ц + Л 2 ) 

Л = 

Л2 

V 
and vectors 

Лn_2 2 (Л n _ 2 + Л n _i) Л n _i 
Л n _i 2(Л n _i + Лn) Л n / 

M = (Дío, Mi , M 2 , . . . , M „ + i ) т , / = (/i, / 2 , . . . , / n ) т 
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Functional (41) we can rewrite 

J( s) = E T (Mi + M M + ! + M ^ i ) = I M T f i M (3?) 
i=o n i D 

with p.d.s. matrix i? of size (n + 2) x (n + 2). 
So owing to (5) there is 

J(S) -= g||«"|& 

We want to find the minimum of the functional 

J(s) = MTRM (38) 

owing to 
AM = f. (39) 

In other words, we want to find such vector M of second derivatives of interpo­
l a t o r cubic spline, which minimizes functional (38). 

In regard to Theorem 2.7 we can state following 

Theorem 6.1 Let us have given spline knots (Ax) and values gi in knots X{, 
i = 0 , l , . . . , n + l . Then functional (38) is minimized, in the class of cubic 
splines on the given knotset (Ax) for data gi, by interpolatory cubic spline, 
whose local parametres Mi are given as R-least squares solution of equation 
(39), so 

M = A+Rf, (40) 

where matrix A+
R is Chipman pseudoinverse of matrix A (see Theorem 2.4). 

This cubic spline is unique. 

7 Numerical results 

We compare computing Chipman pseudoinverse of random matrices by given 
methods: 

1. Rank factorization 

2. Iterative method 

3. Generalized Greville algorithm 

Note, that for computing by Rank factorization and Iterative method we must 
know rank of matrix, but for computing by Generalized Greville algorithm is 
not necessary. 

Denote Af as Chipman pseudoinverse computing by i-th method for matrix 
A and fixed p.d.s. matrices M, jN of corresponding size. Now let 

v(l) = max (AAfA - A) 

v(2)=max(AfAAt-Af) 

v(S) = max ((MAAff - MAAf) 

v(4) = max ((NAfA)T - NA+A) 
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and v = maxjf(i) , now V{ denotes v computed by z-th method and U denotes 
time necessary for computing Chipman pseudoinverse by z-th method. 

Follow numerical computing were given on computer Intel Pentium II, 333 
MHz, RAM 64 MB, HDD 4.8 GB for matrices with random numbers from 
interval (0,1) of size m x n, with variant rank = r . P.d.s. matrix M, N are full 
matrix. Computing Chipman pseudoinverse by Iterative method use q = 15, see 
section 3 . For computing by Generalized Greville algorithm we use sequence of 
identity matrices, then we count by algorithm given in Remark 5.3. 

m,n r Vi V-2 ^з 

50,100 50 1.87 10-1 0 1.51 Ю" 1 0 

75,100 50 2.10 10-1 0 2.52 Ю" 1 0 3.74 10"9 

100,100 50 5.59 ІO" 1 0 9.62 H Г 1 0 1.92 10-8 

150,100 100 4.48 10"9 2.60 10"7 2.42 10-8 

150,100 50 1.15 10~9 2.95 10-9 5.89 10~8 

250,100 50 1.69 10-9 7.20 10-9 7.68 10-8 

250,100 100 5.07 10-9 1.42 10"7 3.79 10-9 

250,250 250 1.26 10-6 2.68 10-5 — 

800,800 600 1.15 Ю~5 1.24 HГ 5 — 

m,n r h Í2 Һ 

50,100 50 0.22 5.6 6.97 

75,100 50 0.22 7.69 5.38 

100,100 50 0.28 9.94 6.36 

150,100 100 0.55 16.64 28.18 

150,100 50 0.6 24.11 20.44 

250,100 50 0.99 51.96 34.11 

250,100 100 1.04 31.53 30.48 

800,800 600 3.74 102 2.87 103 — 

From these two tables we can see, when we know rank of matrix, then com­
puting by Rank factorization gives very good results. Generalized Greville algo­
rithm gives good results too, but this method need more time. This algorithm 
is in place to use, when we do not know rank of matrix. 



Chipman pseudoinverse of matrix, its computation and application . . . 157 

References 
[1] Albert, A.: Regression and the Moore-Penrose Pseudoinverse. Acаdemic Press, New 

York аnd London, 1972 

[2] Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM, Philаdelphiа, 1996. 

[3] Chipman, J. S.: Specificаtion problems in regression аnаlysis. T. L. Boullion, P. I. Odell, 
Proceedings of the Symposium on Theory and Applications of Generalized Inverses of 
Matrices, Texas 1968, 114-176. 

[4] Davis, P. J.: Circulant Matrices. J. Wiley, New York, 1979. 

[5] Djordovič, D. S., Stanimirovič, P. S.: Universаl iterаtive methods for computing gener-
аlized inverses. Acta Mathematica Hungarîca 79 (1998), 253-268. 

[6] Kobza, Ј.: Splаjny. VUP, Olomouc, 1993 (textbook in czech). 

[7] Kubáček, L.: Notice on the Chipmаn Generаlizаtion on the Mаtrix Inverse. Acta Univ. 
Palacki. Olomuc, Fac rer. nat. 36 (1997), 95-98. 

[8] Machalová, Ј.: Výpočty pseudoinverzních mаtic. Dept. Math. Anal. and Appl. Math., 
Fac Sci., Palacki Univ., Olomouc, Preprint series 9, 1998. 

[9] Peška, P.: The Moore-Penrose Inverse of а Pаrtitioned Morphism in аn Additive Cаt-
egory. Folia Fac Sci. Nat. Univ. Masaryk. Brunеnsis, Math. 9 (to appеar). 

[10] Rao, C R., Mitra, K. S.: Gеnеralizеd Invеrsе of Matricеs and Its Application. J. Wiley, 
New York, 1971. 


		webmaster@dml.cz
	2012-05-03T23:28:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




