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A b s t r a c t 
The problem of interpolation of function values and mean values with 

linear spline (polygon) on given knot set is discussed. The solution with 
minimal norm of function values or values of the derivative is discussed 
in analytic form (explicit expression for optimal free parameter) and two 
algorithms for computing such optimal solutions are discussed and demon­
strated (with difference equation or pseudoinverse matrix approach). 

K e y w o r d s : Optimal linear splines, interpolants with minimal norm, 
optimal interpolation of function, mean and derivative values. 

1991 Mathematics Subject Classification: 4A15, 65D05 

1 Statement of the problem 
Let us have given real d a t a 

x = {xf, i = 0 ( l ) n + 1, h{ = Xi+i - £ ; } ; g = { # , i = 0 ( l ) n + 1}, 

where x denotes a simple monotone set of knots on the real axis, g are function 
values prescribed in knots and hi are knotset stepsizes. If we consider the rase 
when these knots are points of interpolation, then there is unique linear spline 
s\\(x) = s(x) on the knotset x (linear polygon) interpolating given values g . 
This polygon realizes the unique minimum of the Z^-norm of the first derivative 
of functions interpolating prescribed values g (see e.g. [2]). 
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60 Jifi KOBZA 

In case that the prescribed values gi, i = 0(1 )n are 

• function values gi = s(ti) in the points ti G (xi,Xi+\) 

(points of interpolation between spline knots), (FVI) 

• the local mean values gi = ^- f*t+l s(x)dx , (MVI) 

• the derivative values gi = s'(ti) = sf(xi + 0), (DVI) 

then interpolating linear spline depends on one free parameter (e.g. we can pre­
scribe function value or derivative value in some spline knot). We can then 
search for such a value of the free parameter, which gives the "best" solution of 
our problem with respect to some criterion (e.g. some norm of function or deriva­
tive values or vectors of their values s(xi), s'(ti)). Some extremal properties 
are known for "natural cubic splines" for FVI problem and "natural quadratic 
splines" for MVI problem in K2-norm (see [2]). 

We will present an explicit analytic solution of several such problems and 
numerical algorithms for effective computing of the solution for such or similar 
problems. 

2 Function or derivative values interpolation 

2.1 Continuity conditions for local parameters 

Let us have given the mesh of spline knots Xi and points of interpolation U with 
prescribed function values gi = s(ti). We shall denote the local parameters of 
the polygon with the geometry parameters di = (ti — Xi)/hi, p{ = 1/di as 

Si = s(x{), s = [sift+Q, mi = s'(ti), m = [ra;]-L0- (1) 

It is easy to show the following relations for one kind of unknown parameters 

(Pj - 1)SJ + Sj+\ = pjgj , (1 - dj)sj + djSj+i = gd , (2) 

hj(l - dj)mj + dj+\hj+1mj+\ = gHl - gj , 

(xj+\ - tj)mj + (tj+\ - xJ+\)mj+l = gj+1 - gj (3) 

and relation connecting different local parameters s, m 

*j+i = SJ + h3mj = 9j + M 1 - dj)m3 > m3 = (9j ~ Sj)/(djhj). (4) 

We shall start with the discussion of polygons s\\ (x) = s(x) determined uniquelly 
by given data x, g and the function value s0 = s(xo) or derivative value 
m0 = s'(t0). 

2.2 Solutions depending on free parameter s0 

We can use the mentioned recursive relations (2) between local parameters Sj, gj 
of segments of the polygon s(x) written as 

Sj+\ = (1 - Pj)sj + pjgj , j = 0(l)n. (5) 
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Treating this reccurrence by induction or as the first-order nonhomogeneous 
difference equation we can obtain for the solution the explicit expression 

j - i 3 

Sj = soCo-1 + ^ P i P t c J + i , c? = J J ( 1 - pk), cj
i =

 1{ori> J- (6) 
t=0 k=i 

Using relations (4) we obtain for raj the explicit expression 

j-i 

djhjrnj = fli - Sj = gj - so4~l ~ J2 9iPi4+i - (7) 
i=0 

From continuous dependence of local parameters Sj, mj on initial value so de­
scribed by these expressions (values Qj are given; p*, /ij, d{ are parameters of the 
given mesh of knots and points of interpolation) we obtain 

§-=4r i=nci-«) , d , - ^ = - ^ = - n o - « ) . (8) 
i=0 i=0 

When we search for such a value of so which gives minimum to the functional 

n-hl 

F0(«o) = £ * ? = Nl2 = (s>8)2, (9) 
j=o 

then the necessary condition for minimum with respect to so, 

?-2E^^-° do) 
dso r-L dsv 

3-0 
with (6) and (8) used, gives for such an optimal value s® the relation 

n + l j-1 n-fl 
; - 1 \ 2 «8 = -[E^"1E^*i1]lE(c-"1: 

j=0 i=o j = l 

= -[X>ft.-E44+ 1 J/E^o"1)2- (ID 
k=0 i=k j=0 

When we want to find such a value of so which gives the minimum to the 
norm of vector m of first derivatives, then from conditions 

Fl(s0) = ±ml (^ = 2±mip = 0 (12) 
f-̂  J dso f-J ds0 
J=0 1=0 

and (7), (8) we can explicitly compute such an optimal value as 

»h = [±^A~l(9J-±4^9iPi)]/±wj(4>-1)2 (13) 
j=0 i=0 j=0 



62 Jiří KOBZA 

with 
j-1 

wj = l/(djhj), 4 = J ] ( l - P j b), (cj = 1, t > j). 

When we want to find such a polygon which minimizes (similarly as in case of 
interpolation in knots) the L2-norm ofthe first derivative s'(x) 

\W(x)\\l = r+l[s'(x)]2dx = f]/i im?, (14) 
Jx° i=0 

then we obtain for optimal parameter value s0 expression similar to (13), but 
with xvj = 1/dj. 

In the DVI problem we obtain from the first recursion in (4) with known 
values gi = mi and initial value s0 by induction the explicit expression for 
components of the vector s: 

j-i 

Sj;= so + ] T > m j . j~l(l)n (15) 
i=0 

The optimal value of s0 which gives minimum to the 2-norm of s can be then 
computed analogously with the result 

n 

(n + 2)s0 = - ] T ( n 4- 1 - j)hjmj . (16) 
j=o 

2.3 Solutions depending on parameter ra0 

We can use similar approach for obtaining explicit formulas for solution of our 
problem using relation between local parameters m of spline given by the for­
mula (3). When we treat this reccurence by induction or as nonhomogeneous 
linear difference equation with free parameter mo we obtain the explicit formula 

j-1 

djhjmj = (d0h0m0 - goK"1 + gj - ^ P i f t ^ 1 ; j = 0(l)n. (17) 
i=0 

The problem to find such an optimal value of mo which corresponds to the 
minimal 2-norm of the vector m leads to the relations 

E dmj „ dmj d0h0 7 - i 

mj-J-^ = °> "T-2- = -7-7-% 
dm0 dm0 djhj 

j — 0 J J 

which gives for the optimal value m y the expression 
n j — 1 n 

dohom0=go + [ ^ t o j c j - 1 {^Pi9i - J j j j / S ^ ^ " 1 ) 2 - (18) 
j=0 i=0 j=0 
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When we want to use the local parameter so for our problem, then its optimal 
value can be computed as SQ — go — hodorriQ . When we want to minimize 
the L>2 -norm of the first derivative given as a sum in (14), we obtain similar 
expression (weighting coefficients in sums are multiplicated by hj now). 

3 Problem of mean value interpolation 

In the case of polygonal interpolant the MVI problem with given mean values gi 
can be transformed into a special case of the FVI problem with ti = (xi+Xi+\)/2 
and gi = s(ti). We can obtain in a similar way the continuity conditions and 
explicit solutions, which have now some more simple form. 

3.1 Continuity conditions 

The local representations of MVI interpolant with different local parameters 
and the local variable q = (x — Xi)/hi can be written as 

s(x) = (1 - q)si + qsi+i = s{ + hiVfiiq = gt + himi(q - ±) = 2g{q + s{(\ - 2q). 

We can easily obtain the following reccurrences for the local parameters of mean 
values gi interpolating polygon s(x): 

SJ+SJ+! = 29j, j = 0(l)n; (19) 

hjnij + hj+lmj+1 = 2(gj+l - gj) , j = 0(l)n - 1; (20) 

2sj + hjnij = 2dj , j = 0(l)n. (21) 

From these reccurrences we can obtain by induction the explicit expressions for 
components of s, m dependent on initial values so, m o and data g as 

8;+! = (-1У+1з0 + 2^2(-1у-'91, з = 0(1)п, (22) 

. 7 - 1 

Н>т, = 2(-^У+18о + 2д^ + 4^2(-1У~^9г, 3 = 0(1)п, (23) 

1 *~1 

81 = (-1у+1(9о + -Ното)+2^(-1у+'-1д<, э = 1(1)тг + 1, (24) 
' 1 = 1 

3-1 

к3т3 = (-1)>тоЛо + 2(д3 + (-1Уд0) + 4 ^ ( - 1 ) ^ л , г = 1(1)п. (25) 
ś = l 

When we search for the initial values of s0, m 0 giving the minimum of the 
norm | | s | | 2 , we obtain in a similar way as in the foregoing such a results 

2 n 

E(-l)i[ffi-ffi--i + --- + (-l)^o] n + 2í=o 
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2 f>l)n + '(j+ !).*._.,•; (26) n + 2 -j=o 

2 
^ = ^ 2 [ E ( - 1 ) ' ( n + ! - ^ - n9o] • ( 2 7) 

i=i 
The optimal values of initial parameters for minimizing the norm of m are 

Ksk = 2'£jg[go-g1 + --- + (-iy-1gi-i + -(-iygj], (28) 
j—o •?' 

/i0H2m0 = 2 ^ ^ [ ( - l ) ^ 1 g , - ^ 0 + 2X;(-ir"f"1g^ (29) 
j=i i i=i 

with the notation H2 = zCr=o(V^f)-

4 Difference equations approach 

Let us use now the above mentioned difference equations approach to the recur­
sions for parameters Si,rrii. We can obtain a simple algorithms for computing 
optimal values of local parameters so, ^ o and corresponding sequences of their 
local parameters in that way. We can learn from the foregoing parts that the 
vector components of both local parameters s, m are solutions of nonhomo-
geneous linear difference equations of the first order. Let us remember some 
general features of such solutions which can be used in our problems. 

4.1 Solution of difference equation considered 

Let us have given the vectors of coeficients 

a = [a*], b = [bi], c = [a], i = 0(l)n. 

A general solution of difference equation (see e.g. [4]) 

o.iVi+1 = bijji + a , a(i) / 0, i = 0(l)n (30) 

can be composed from the corresponding solutions of homogeneous and non-
homogeneous equations (HE, NHE). For the particular solutions u of (HE) 
corresponding to the initial value uo — 1 and particular solution v of (NHE) 
wTith initial value vo = 0 we obtain the explicit formulas 

«i+i = I l £ . W'+1 = ES II £• (31) 
i=o x i=o l k=i+l K 

From the algorithmical point of view it is more important that we can easily 
compute such solutions using directly recursions (30). The solution y of (NHE) 
with initial value yo we can then write as 

y = yo u + v. (32) 
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When we search now for a solution of (NHE) with minimal norm (defined by 
some proper scalar product) as a function of initial value yo, then 

(y,y) = (you + v, y 0 u+ v ) - • rain is reached for y0 = - ( v , u ) / ( u , u). (33) 

Starting with this optimal value yo we can now compute recursively the optimal 
sequence y. Let us summarize the description of the algorithm mentioned. The 
possibility to use various types of the scalar product for different problems will 
be discussed in some details in the following section. 

Algorithm sllopt for computing optimal solution 

Input data: coefficients a{,bi,Ci of the reccurrence (30), 
type of the scalar product corresponding to the problem (norm). 

Steps of the algorithm: 
1. Compute the solution u of (HE) with uo = 1. 
2. Compute the solution v of (NHE) with vo = 0. 
3. Compute the optimal value of yo defined by (33). 
4. Compute recursively the optimal solution from yo and (NHE). 

Such an algorithm can be easily implemented (including the computing of the 
optimal value of the norm) and the results visualized e.g. in MATLAB. 

4.2 Applications to FVI, MVI, DVI problems 

We have mentioned basic recursions between given values gi and local param­
eters sumi for the problems of FVI, DVI and MVI with polygons in sections 
2.1, 3.1. To find the optimal initial value of so or ran which gives minimum to 
the standard 2-norm of local parameters under consideration, we can use now 
the Algorithm sllopt with proper chosen parameters of the recurrence and we 
find thus relatively simply the optimal solution of the problem. 

We can use this approach also in problems where we want to minimize L2-
norm of s(x)—we have to use a proper form of the scalar product in (33) only. 
Using Simpson's rule of numerical integration we can write (exactly) 

\\s(x)\\l = £ f [s{x)]*dx = I £ hi [,? + 4 ( ^ ± i ) 2 + Sf+1] 
t=0 Xi i=0 

1 n 1 
= 3 J2 M*i + Si*+i + 4FI ) = 3 s T R s (34) 

i=o 

with the tridiagonal symmetric positive definite matrix R = (n + 2,n + 2) with 
the main diagonal consisting of elements 

[h0, ho + hi, hi+h2,--, /i„_i + hn, hn] (35) 

and subdiagonals 

-[h0,hu...,hn]. (36) 
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When we define now the new scalar product (•, -)R as (u, V)R = (u, Rv), we can 
solve the problem of finding the initial value t/o minimizing I/2~norm of s(x) by 
the Algorithm sllopt for diffference equation (5) and scalar product (•, -)R . 

Quite similarly we can obtain the optimal value of the parameter ran giving 
minimum to the L2--K>rm of s'(x), 

\W(x)\\2
2 = f: [ x + 1 [*'(x)]2dx = J2 h * m i ( 3 7 ) 

i=0 J x i i=0 

We can see that the last sum in (36) is a quadratic form with diagonal matrix 
H = diag[hi\. Thus we can use the foregoing approach with the scalar product 
defined with the matrix H and difference equation (19). 

Generalizing the examples in the foregoing we can state the results in the 
following theorem. 

T h e o r e m To find the optimal solution of problems FVI, MVI or DVI, we can 
use the Algorithm sllopt with corresponding difference equation for the local 
parameters chosen and 

— standard scalar product in case of minimizing 2-norms of vectors s or m ; 

— the scalar product (•, -)R with the matrix R given in (35) in case of mini­
mizing norm | |s(x)| |2; 

— the scalar product (•, •)#, H = diag[/i;] in case of minimizing norm ||5/(.r)||2. 

Oð 

snil bilo2 - G S . 3 = ( I * ) Y rlíiw noQY-oq Ißmiiqo 

enil beííob - £=( t)y rlliw anoQYloq 

гпoQүloq rlíiw IV-1 Ißгпiłqo 
O ľ -

OS-
0£ ðЄ OЄ ðS OS ðľ 

Fig. 1 

Oľ 
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oє 

IV^ IfinoQyloq Ismiíqo 

GG.Or = m to rmon-S nim 

Gr. r r = eviiBvnsb to rmon-SJ nim 

0 Г -
Oi- ðЄ OЄ ӘS OS 

Fig.2 
er or 

Examples 

Example 1 (FVI problem) Let us take the data 

x = [ 0 2 6 9 14 20 23 25 30 36 40 ], 

t = [ 14 7 12 17 21 24 28 32 37], 

g = [8 5 1 6 12 20 17 13 15 9]. 

The interpolatory polygon with minimal 2-norm of s has initial value so — 5.29 
and norm equal to 40.76. We can see it plotted with full line on the Fig. 1, 
where also another solutions with initial values 4,6,10 are plotted. The optimal 
solution for L2-norm of s(x) has initial value 8o = 5.41 and the value of its 
norm is 40.79. The plots of this two solutions are very close together. When we 
compute the solutions with minimal norms of the derivative, we obtain similar 
polygons plotted on Fig. 2 with discrete 2-norm of the derivative equal 12.14 
and L2-norm 12.44. 

Example 2 (MVI problem) For the MVI problem with data 

x = [ 0 2 3 6 7 9 11 15 ], g = [ 4 7 1 1 6 2 8 5 ] 

we can see on Fig. 3 the optimal interpolating polygons with so = 3 and 2-norm 
of s equal 20.78 and another one with s0 = 2.23 and L2-norm of s(x) equal 
20.90. On Fig. 4 we se the result of minimizing of the 2-norm of the vector 
[s,m] with norms | |[s,m]| | = 25,55, | |s | | = 20.99, | |m| | = 14.56. 
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noQyloq rttiw IVM iBmitqo 

Fig. 3 

Example 3 (DVI problem) For the DVI problem with data 

x = [ 0 2 3 6 7 9 10 13 16 20 ], 
t = [ 1 2.2 5 6.6 8 9.3 11 15 19 ], 

m = [ 0.5 1 0.2 - 0.4 - 1 - 0.5 0 1 2 ] . 

we can on Fig. 5 see the optimal interpolatory polygon with 2-norm of the 
vector m equal 9.7 and initial value s0 = —2.08 and another solutions with 
initial values —4, —3,0 with norms equal to 11.5,10.2,11.8. 

Example 4 (FVI problems with different knotsets) Let us demonstrate 
the influence of the knotset x on the shape of interpolating polygon with iden­
tical points of interpolation and values prescribed. For the data 

x = [ 0 2 7 13 19 20.3 25.6 30.8 36.7 42.7 ], 
x l = [ - 1 3 8 13 18 22 25.5 30 35 40 ], 

t = [ 0.9 5.4 10.4 15.4 20 24.5 27 32 38 ], 
g = [ 12 32 66 79 13.5 98 32 56 33 ]. 

the quite different results of optimal interpolation are plotted on Fig. 6—norms 
of the vectors of function values are equal to 2747 for the knotset x and 464.6 
for the more centered knotset x l . 
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5 Another numerical approaches 
The problems under consideration can be stated as relatively simple optimiza­
tion problems and some more general optimization techniques known from op­
timization theory or linear algebra can be used for their numerical solution. 

5.1 Constrained optimization techniques 
The above mentioned problems of FVI, MVI or DVI with polygon of minimal 
2-norm or F2-norm are typical problems of constrained optimization—here spe­
cially of quadratic programming. Let us formulate some of them only in the 
following (variants of minimized norms are given in brackets): 

A) FVI problem—solution with minimal \\s\\l ( l l ^ ) ! ^ ) •' 

Find minimum of' ^ s? f | ( s , R s ) J under conditions 

(Pi - l)s{ + Si+i = Pigu i = 0(l)n. (38) 

B) MVI problem—solution with minimal | |m | | i (ll^'Mlli)-' 

Find minimum of Eiml ( ( m , H m ) ) under conditions 

hw + hi+irm+i = 2(0 i + 1 - 9i), * = 0(l)n - 1. (39) 
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C) D VI problem w—solution ith minimal 11ss11§ .-

Find minimum of Yli sl under conditions 

-Si + Si+i = himi, i = 0(l)n. 

D) Mixed MVIproblem—solution with minimal | |[s,m]| 12* 

Find minimum of Yli(sl + mjf) under conditions 

2si + hiVfii = 2gi, Si + Si+i = 2pi, i = 0(l)n. 

(40) 

(41) 

To solve such problems we can use standard algorithms of quadratic pro­
gramming (see e.g. [3] ). The classical technique for constrained optimization 
with Lagrange's multipliers can be also used (it results in some four block system 
of linear equations). 

5.2 Pseudoinverse matrix approach 

When solving the mentioned problems to find interpolating polygon with min­
imal 2-norm of vectors s, m or [s,m] we can use also the following statement 
from linear algebra (see [1], p. 15): 

L e m m a Given a matrix A = [ra,n] with m < n, vector b = [ra, 1], then 
the solution of Ax = b with minimal 2-norm is given as x = A + b , where A + 

denotes the pseudoinverse matrix of A . 
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The continuity conditions for all problems considered above have the form 
of underdetermined system of linear equations with respect to one or two kinds 
of local parameters of the polygon we search for. The coefficients of matri­
ces of such systems can be recognized from the recurrences given above. The 
two-diagonal structure allows us to write down easily the description of the ma­
trix coefficients and of the right-hand side of the system. The optimal solution 
we then obtain simply using known algorithms for pseudoinverse matrices (e.g. 
function pinv in MATLAB). In all examples mentioned in section 4 we have 
obtained identical results with Algorithm sllopt and with pseudoinverse matrix 
approach using MATLAB function pinv. This approach allows the unexperi­
enced user to find some "good" interpolation polygon without the care of initial 
values of local parameters. 
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