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Abstract
The problem of interpolation of function values and mean values with
linear spline (polygon) on given knot set is discussed. The solution with
minimal norm of function values or values of the derivative is discussed
in analytic form (explicit expression for optimal free parameter) and two
algorithms for computing such optimal solutions are discussed and demon-
strated (with difference equation or pseudoinverse matrix approach).

Key words: Optimal linear splines, interpolants with minimal norm,
optimal interpolation of function, mean and derivative values.
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1 Statement of the problem

Let us have given real data
x={z;; :=0U)n+1, hy =241 —x;}; g=1{gi, 1 =01)n+ 1},

where x denotes a simple monotone set of knots on the real axis, g are function
values prescribed in knots and h; are knotset stepsizes. If we consider the case
when these knots are points of interpolation, then there is unique linear spline
s11(x) = s(z) on the knotset x (linear polygon) interpolating given values g .
This polygon realizes the unique minimum of the L,-norm of the first derivative
of functions interpolating prescribed values g (see e.g. [2]).
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In case that the prescribed values g;, i = 0(1)n are

e function values g; = s(t;) in the points t; € (z;, Ti+1)
(points of interpolation between spline knots), (FVI)

e the local mean values g; = 7 ['*" s(z)dz, (MVI)

o the derivative values g; = s'(t;) = s'(z; + 0), (DVI)

then interpolating linear spline depends on one free parameter (e.g. we can pre-
scribe function value or derivative value in some spline knot). We can then
search for such a value of the free parameter, which gives the “best” solution of
our problem with respect to some criterion (e.g. some norm of function or deriva-
tive values or vectors of their values s(z;), s'(t;)). Some extremal properties
are known for “natural cubic splines” for FVI problem and ”natural quadratic
splines” for MVI problem in Ly-norm (see [2]).

We will present an explicit analytic solution of several such problems and
numerical algorithms for effective computing of the solution for such or similar
problems.

2 Function or derivative values interpolation

2.1 Continuity conditions for local parameters

Let us have given the mesh of spline knots z; and points of interpolation t; with
prescribed function values g; = s(t;). We shall denote the local parameters of
the polygon with the geometry parameters d; = (t; — ;)/h;, p; = 1/d; as

S; = 8(1‘,‘), S = [Si]?iol, m; = Sl(t,‘), m= [m,];‘___o (1)

It is easy to show the following relations for one kind of unknown parameters

(pj — 1)sj + sj11 =pjgj, (1—dj)sj +d;sjua = gj, (2)
hi(1 —dj)m; +djihjvimjyy = gjp1 — g5,
(zj+1 = tj)m; + (Lt — Tjr1)mjpr = gjt1 — gj 3)

and relation connecting different local parameters s, m

Sj+1 =8 + hym; = g; + hj(1 —dj)m;, m; = (g; — s;)/(d;h;).  (4)
We shall start with the discussion of polygons s11(2) = s(z) determined uniquelly
by given data x, g and the function value s = s(zo) or derivative value
mg = 5'(to).
2.2 Solutions depending on free parameter s,

We can use the mentioned recursive relations (2) between local parameters s;, g;
of segments of the polygon s(z) written as

sj+1 = (1 —pj)s; +pigi, J=0(1)n. (5)
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Treating this reccurrence by induction or as the first-order nonhomogeneous
difference equation we can obtain for the solution the explicit expression

Jj-1 J
s; = soch | + Zgipicf;ll, c = H(l -p), c=1fori>j (6)

i=0

Using relations (4) we obtain for m; the explicit expression

djhjm; = g; — s; = g; — s0¢) " 2 gipiclyy- (7)

From continuous dependence of local parameters s;,m; on initial value so de-
scribed by these expressions (values g; are given; p;, hi,d; are parameters of the
given mesh of knots and points of interpolation) we obtain

ds =l dm =
——];z ‘_l= — D; 5 '——Z-Z—Lj—lz—- —Pi)-
d%‘% gupm dih; 55 ; gﬂm)(&

When we search for such a value of sy which gives minimum to the functional

n+1
Fo(so) = 3 52 = IIsll? = (s,9)2, 9)
i=0
then the necessary condition for minimum with respect to sg,
dFy _ ~  ds;
™ —zzs, =0 (10)

with (6) and (8) used, gives for such an optimal value s the relation

n+1 n+1

[Z‘ZMMVZWV

7=0

H

50

n+l

[ ngl)k Zcock+1 ]/Z (11)

When we want to find such a value of sy which gives the minimum to the
norm of vector m of first derivatives, then from conditions

= dF, " dm;
Fi(s))=Y.m?, St=2Y"mT%=0 (12)
] =0

dS()

and (7), (8) we can explicitly compute such an optimal value as

= [ij‘%— ( ]_Zl ey gzpz)]/Zw, -1 (13)
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with
w; = 1/(d;h;) H(1 pr), (ch=1,i>j).
k=1

When we want to find such a polygon which minimizes (similarly as in case of
interpolation in knots) the Lo-norm of the first derivative s'(z)

Wi = [l @l =3 b, (14)

To =0
then we obtain for optimal parameter value sy expression similar to (13), but
with w; = 1/d;.
In the DVI problem we obtain from the first recursion in (4) with known

values g; = m; and initial value sy by induction the explicit expression for
components of the vector s:

j—1

sj =80+ Zhim,-, Jj=1(1)n. (15)

=0

The optimal value of sy which gives minimum to the 2-norm of s can be then
computed analogously with the result

n

(n+2)so=—» (n+1—j)hjm;. (16)
j=0

2.3 Solutions depending on parameter m,

We can use similar approach for obtaining explicit formulas for solution of our
problem using relation between local parameters m of spline given by the for-
mula (3). When we treat this reccurence by induction or as nonhomogeneous
linear difference equation with free parameter mg we obtain the explicit formula

j—1
djhjmj = (dohomo - go)Cé_l + gj - Zpigic'}_:ll; _7 = 0(1)n (17)
=0

The problem to find such an optimal value of mg which corresponds to the
minimal 2-norm of the vector m leads to the relations

“~ dm; _ dmj dohy j_,
Z::m’dm =0 e = @k, 0

which gives for the optimal value m} the expression

dOhOmo =go+ [ wa (szgz g])]/zw (CJ )2- (18)

]._



Optimal polygonal interpolation 63

When we want to use the local parameter sy for our problem, then its optimal
value can be computed as s§ = go — hodom} . When we want to minimize
the Lo-norm of the first derivative given as a sum in (14), we obtain similar
expression (weighting coeflicients in sums are multiplicated by h; now).

3 Problem of mean value interpolation

In the case of polygonal interpolant the MVI problem with given mean values g;
can be transformed into a special case of the FVI problem with t; = (z;+x;4+1)/2
and g; = s(t;). We can obtain in a similar way the continuity conditions and
explicit solutions, which have now some more simple form.

3.1 Continuity conditions

The local representations of MVI interpolant with different local parameters
and the local variable ¢ = (z — z;)/h; can be written as

5(z) = (1 = q)si + gsi1 = 8i + himig = gi + hymi(q — ) = 29:9 + s:(1 — 2q).

We can easily obtain the following reccurrences for the local parameters of mean
values g; interpolating polygon s(z):

sj+sjr1 = 2g;, Jj=0()n; (19)
hjm; + hjiimjtr = 2(gj+1 —95) , J=0(1)n—1; (20)
2s; + hym; = 2g;, j=0(1)n. (21)

From these reccurrences we can obtain by induction the explicit expressions for
components of s, m dependent on initial values sg, mo and data g as

J
sjiv1 = (1) o +2) (1Y 7Mgi, j = 0()n, (22)
1=0
j—1
hjm; = 2(=1)7*'so +2g; + 4 (=1 7'g;, j = 0(1)n, (23)
1=0
j—1

sj = (1) (g0 + 5 homo)+2Z< g, j=11)n+1, (24)

i=1
hjm; = (—1Ymoho + 2(g; + (—1)’ o) +4Z 1)7*ig;, i = 1(1)n. (25)

When we search for the initial values of sg, mg giving the minimum of the
norm [|s||,, we obtain in a similar way as in the foregoing such a results

= n+2Z( 1Y[g; = gj—1 + -+ (=1)7 go]
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2 n

= HJ;)(—I)”“(J' + g ; (26)
hom = —— [ S (<1 + 1~ f)g; - ngo). 1)
j=1 -

The optimal values of initial parameters for minimizing the norm of m are

1 1
Hys) = 22 7 [go —gi+-+ (=1 gi 0+ 5(—1)Jgj], (28)
j=0 "3
n 1 ) Jj—1 '
hoHamy = 2y - [(—1)J+1gj — g0+ 22(-1)’“;,4, (29)
j=1 "1 i=1

with the notation Hy = Y"1 (1/h?).

4 Difference equations approach

Let us use now the above mentioned difference equations approach to the recur-
sions for parameters s;, m;. We can obtain a simple algorithms for computing
optimal values of local parameters sg, mo and corresponding sequences of their
local parameters in that way. We can learn from the foregoing parts that the
vector components of both local parameters s, m are solutions of nonhomo-
geneous linear difference equations of the first order. Let us remember some
general features of such solutions which can be used in our problems.

4.1 Solution of difference equation considered
Let us have given the vectors of coeficients
a=la], b=[b], c=[a], i=0(1)n.
A general solution of difference equation (see e.g. [4])
a;iYi+1 = byi +ci, a(i)#9, i=0(1)n (30)

can be composed from the corresponding solutions of homogeneous and non-
homogeneous equations (HE, NHE). For the particular solutions u of (HE)
corresponding to the initial value uy = 1 and particular solution v of (NHE)
with initial value vy = 0 we obtain the explicit formulas

7 b,’ J C; ) bk
“J’+1=H;, Uj+1=z—-_ H —. (31)
i=0 ¢ i

From the algorithmical point of view it is more important that we can easily
compute such solutions using directly recursions (30). The solution y of (NHE)
with initial value yo we can then write as

Yy = you+v. (32)
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When we search now for a solution of (NHE) with minimal norm (defined by
some proper scalar product) as a function of initial value yo, then

(y,y) = (you+v,you+v) - min is reached for yo = —(v,u)/(u,u). (33)

Starting with this optimal value yo we can now compute recursively the optimal
sequence y. Let us summarize the description of the algorithm mentioned. The
possibility to use various types of the scalar product for different problems will
be discussed in some details in the following section.

Algorithm s1l1opt for computing optimal solution

Input data: coefficients a;,b;,c; of the reccurrence (30),
type of the scalar product corresponding to the problem (norm).

Steps of the algorithm:

1. Compute the solution u of (HE) with up = 1.

2. Compute the solution v of (NHE) with vy = 0.

3. Compute the optimal value of yo defined by (33).

4. Compute recursively the optimal solution from yo and (NHE).

Such an algorithm can be easily implemented (including the computing of the
optimal value of the norm) and the results visualized e.g. in MATLAB.

4.2 Applications to FVI, MVI, DVI problems

We have mentioned basic recursions between given values g; and local param-
eters s;, m; for the problems of FVI, DVI and MVI with polygons in sections
2.1, 3.1. To find the optimal initial value of sg or mgy which gives minimum to
the standard 2-norm of local parameters under consideration, we can use now
the Algorithm s1lopt with proper chosen parameters of the recurrence and we
find thus relatively simply the optimal solution of the problem.

We can use this approach also in problems where we want to minimize Lo-
norm of s(x)—we have to use a proper form of the scalar product in (33) only.
Using Simpsor’s rule of numerical integration we can write (exactly)

s | xm [TiH ‘ 1 ¢ 8i + Sit1)?
2 _ 2 I | o2 i i+1 2
@l = 3 / | b@Pds=g3on [2 +4(252) + 52
1¢ 2 2 l o
=3 E hi(s; + sisip1 + s54,) = 3S Rs (34)
i=0

with the tridiagonal symmetric positive definite matrix R = (n + 2,n + 2) with
the main diagonal consisting of elements

[hO» h0+h17 hl +h‘27“'1 hn——l +hna hn] (35)

and subdiagonals :
3 [ho, h1y- .. hy). (36)
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When we define now the new scalar product (-, -)g as (u,v)g = (u, Rv), we can
solve the problem of finding the initial value yo minimizing Lo-norm of s(z) by
the Algorithm s11opt for diffference equation (5) and scalar product (-,-)g -

Quite similarly we can obtain the optimal value of the parameter mg giving
minimum to the Ls-norm of s'(x),

Is'@)I3 =Y /xm[S'(x)]gdm = him}. (37)
i=0 Y Ti i=0

We can see that the last sum in (36) is a quadratic form with diagonal matrix
H = diag[h;]. Thus we can use the foregoing approach with the scalar product
defined with the matrix H and difference equation (19).

Generalizing the examples in the foregoing we can state the results in the
following theorem.

Theorem To find the optimal solution of problems FVI, MVI or DVI, we can
use the Algorithm s1lopt with corresponding difference equation for the local
parameters chosen and

— standard scalar product in case of minimizing 2-norms of vectors s or m;

— the scalar product (-,-)r with the matriz R given in (35) in case of mini-
mizing norm ||s(z)||2;

— the scalar product (-, -)u, H = diag[h;] in case of minimizing norm ||s'(x)||2.

T T T T T T T 0e

\ onil biloe — €S.28=(I)y Atiw nopyloq Ismitqo

i \ ¥* onil betiob ~ d=(T)y Atiw 2nopylog 1o»
\
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\ ! onil berlesb — 3=(I)y

» \ onil Job-rzsb — Or=(r)y

anopyloq dtiw IV Ismitqo
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Fig. 1

0S-
0



Optimal polygonal interpolation 67

1V Isnopyloqg Ismitqo

ee.or = mto mon-S nim

=T

er.rr = gvitsviieb to mon-S nim

oh ag o€ es os er or e (o]

Fig. 2

Examples

Example 1 (FVI problem) Let us take the data

x =[026914 202325303640 ],
t=[14712172124283237],
g=[851612201713159).

The interpolatory polygon with minimal 2-norm of s has initial value so = 5.29
and norm equal to 40.76. We can see it plotted with full line on the Fig. 1,
where also another solutions with initial values 4, 6, 10 are plotted. The optimal
solution for Le-norm of s(z) has initial value sy = 5.41 and the value of its
norm is 40.79. The plots of this two solutions are very close together. When we
compute the solutions with minimal norms of the derivative, we obtain similar
polygons plotted on Fig. 2 with discrete 2-norm of the derivative equal 12.14
and Ly-norm 12.44.

Example 2 (MVI problem) For the MVI problem with data
x=[0236791115], g=[47116285]

we can see on Fig. 3 the optimal interpolating polygons with so = 3 and 2-norm
of s equal 20.78 and another one with sp = 2.23 and Ls-norm of s(z) equal
20.90. On Fig. 4 we se the result of miaimizing of the 2-norm of the vector
[s, m] with norms ||[s, m]|| = 25,55, ||s|| = 20.99, ||m]|| = 14.56.
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Example 3 (DVI problem) For the DVI problem with data

x=[02367910131620],
t=[122566893111519],
m=[05102-04-1-05012]

we can on Fig. 5 see the optimal interpolatory polygon with 2-norm of the
vector m equal 9.7 and initial value so = —2.08 and another solutions with
initial values —4, —3,0 with norms equal to 11.5,10.2,11.8.

Example 4 (FVI problems with different knotsets) Let us demonstrate
the influence of the knotset x on the shape of interpolating polygon with iden-
tical points of interpolation and values prescribed. For the data

x ={027131920.3 25.6 30.8 36.7 42.7 |,
x1 =[—-13813182225.5303540],

t =[0.954104 15420 24.527 32 38 ],

g = [ 12326679 13.5 98 32 56 33 .

the quite different results of optimal interpolation are plotted on Fig. 6-—norms
of the vectors of function values are equal to 2747 for the knotset x and 464.6
for the more centered knotset x1.
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5 Another numerical approaches

The problems under consideration can be stated as relatively simple optimiza-
tion problems and some more general optimization techniques known from op-
timization theory or linear algebra can be used for their numerical solution.

5.1 Constrained optimization techniques

The above mentioned problems of FVI, MVI or DVI with polygon of minimal
2-norm or Lo-norm are typical problems of constrained optimization—here spe-
cially of quadratic programming. Let us formulate some of them only in the
following (variants of minimized norms are given in brackets):

A) FVI problem-—solution with minimal ||s||3 (||s(z)||§) :

Find minimum of y_; s? (%(S,RS)) under conditions
(pi — 1)8; + 8it1 = pigi, ¢ = 0(1)n. (38)
B) MVI problem—solution with minimal |jm||3 (ns'(x)ug).-

Find minimum of 3_; m} ((m, Hm)) under conditions

hymi + hiximivr = 2(gip1 — gi), i=0(1)n -1 (39)
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C) DVI problem w—solution ith minimal ||s||3:

Find minimum of 3_, s? under conditions

~8i + Sit1 = him;, 1 =0(1)n. (40)

D) Mized MVI problem—solution with minimal ||[s, m]||3:

Find minimum of >_,(s? + m?) under conditions

2s; + hym; = 2g9;, Si+ Si+1 = 29;, 1 = 0(1)7), (41)

To solve such problems we can use standard algorithms of quadratic pro-
gramming (see e.g. [3] ). The classical technique for constrained optimization
with Lagrange’s multipliers can be also used (it results in some four block system
of linear equations).

5.2 Pseudoinverse matrix approach

When solving the mentioned problems to find interpolating polygon with min-
imal 2-norm of vectors s, m or [s,m] we can use also the following statement
from linear algebra (see [1], p. 15):

Lemma Given a matriz A = [m,n] with m < n, vector b = [m, 1], then
the solution of Ax = b with minimal 2-norm is given as x = A%b, where A+
denotes the pseudoinverse matriz of A .
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The continuity conditions for all problems considered above have the form
of underdetermined system of linear equations with respect to one or two kinds
of local parameters of the polygon we search for. The coefficients of matri-
ces of such systems can be recognized from the recurrences given above. [he
two-diagonal structure allows us to write down easily the description of the ma-
trix coefficients and of the right-hand side of the system. The optimal solution
we then obtain simply using known algorithms for pseudoinverse matrices (e.g.
function pinv in MATLAB). In all examples mentioned in section 4 we have
obtained identical results with Algorithm silopt and with pseudoinverse matrix
approach using MATLAB function pinv. This approach allows the unexperi-
enced user to find some “good” interpolation polygon without the care of initial
values of local parameters.
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