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Abstract 

We characterize varieties of algebras having distributive lattices of 
quasiorders and those having quasiorders permutable with factor or de­
composing congruences. 
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By a quasiorder on an algebra A = (A, F) is meant a reflexive and transitive 
binary relation on A having the substitution property with respect to F. The 
set Quord .4 of all quasiorders on A forms an algebraic lattice with respect 
to set inclusion, see [1], [5]. Hence, if n is an odd integer and c o , c i , . . . , c n 

are elements of A, there exists the least quasiorder on A containing the pairs 
( c 0 , c i ) , (c2,c3), ..., ( c n _ i , c n ) ; denote it by Q({c0,ci),..., ( c n _ i , c „ ) ) . If n = 1, 
we denote Q((CQ,C\)) briefly by Q(co,Ci). Moreever, denote by R(CQ,C\) the 
least reflexive binary relation on A having the substitution property w.r.t. F 
and containing the pair (c*o,ci) (the set of all reflexive relations on A with the 
substi tut ion property forms a complete lattice also, see e.g. [1]). 

Of course, meet in the lattice Quord^l concides with intersection, the iden-
titity relation u is the least element of Quord .4 and the greatest element of 
Quord .4 is A x A. Denote by V join in Quord A 
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Lemma 1 Let n be an odd integer and c0,ci,...,cn be elements of an algebra 
A=(A,F). Let R,Se Quord-4. Then 

(a) Q((c0,ci),...,(cn-i,cn)) = Q(c0,c±) V • • •V(J (c n - i , c n ) ; 

(b) (a,b) G Q(c0,c\) if and only if there exists an integer k > 1 such that 

(a,b) G R(c0,ci) o R(c0,ci) o • • • o R(c0,ci) (k factors); 

(c) (a,b) G Q(co,c\) if and only if there exists an integer m > 1 and unary 
polynomials p\,... ,pm over A such that 

a = pi(c0), b = pm(ci) andpi(ci) = Pi+i(c0) 

for i = 1,... ,m — 1; 

(d) R\/ S = Ugi-R o 5 o R o ... (i factors in the i-th member). 

Proof The proof of (a) is almost evident. For (b), see e.g. [1], for (c) see e.g. 
[5]. The assertion (d) is also well-known. • 

We say that a variety V is quasiorder-distributive if Quord^4 is a distributive 
lattice for each A G V. It was shown in [4] that V is quasiorder-distributive 
whenever V contains a majority term m(x,y,z), i.e. m satisfies 

m(x, x, y) — m(x, y, x) = m(y, x,x) — x . 

G. Czedli and A. Lenkehegyi [5] found a weak Malcev condition characteriz­
ing quasiorder-distributive varieties of ordered algebras. We are going to give a 
similar characterization which works for any variety and it is a bit more simpler 
than that of [5]. 

For a variety V, denote by Fv(x0,... ,xn) the free algebra of V generated 
by the free generators xo,..., xn. For the sake of brevity, we denote by x the 
sequence xo,.. • ,xn. 

Theorem 1 A variety V is quasiorder-distributive if and only if for any even 
integer k > 0 there exists an integer n and (k -f 2)-an/ terms to, t\,..., tn and 
(k -F 2)-ary terms vl

0, v2,..., vk for i even and terms w\, w\,..., wl
k+l for i odd 

such that 

t0(x0,x) = x0, tn(xk,x) = xk, U(x0,x) = ti-i(xk,x) fori = l , . . . , n 

ti(x0,x) = vl
0(x0,x), U(xk,x) = vl

k_2(xk^ux), 

Vj(XJ , x) = Vj_2(xj~i, x) for i even and j — 2,4,..., k 

U(xo,x) =w\(xux), ti(xk,x) =wk_x(xk,x), 

wlj(xj,x) — wlj_2(xi-\,x) for i odd and j = 3, 5 , . . . , k + 1. 

Proof Let V be a quasiorder-distributive variety. Let A = Fv(xQ,... ,xk), 
Q = Q(xo,xk), R = Q((xo,xi),(x2,x3),...,(xk-2,Xk-i)) and S = Q((xux2), 
(x3 ,x 4 ) , . . . , (xk-\,Xk)) for even integer k. Applying our Lemma 1, we have 
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(x0,xk) G Q H (R U 5) thus also (x0,xk) G (Q n R) V (Q n 5). Applying (d) 
of Lemma 1, there exist an integer n > 1 and elements c0,c\,... ,cn oi A such 
that _o = c0, _A- = cn and (c,.,Cj+i) G Q H I2 for i even and (c;,Cj+i) £ Q D S 
for i odd, i.e. (ci,Ci+\) G <3 for i = 1,2,... ,n - 1, (CJ,CJ+I) G I? for i even 
and (cj,Ci+i) G 5 for i odd. Hence, by (c) of Lemma 1, there exists (A: -+- 2)-ary 
terms t0,t\,... ,tn such that t0(x0,x) = x0, tn(xk,x) = xk and ti-\(xk,x) = 
ti(x0,x) for i = 1 , . . . ,n. Further, (a,Ci+_) G R for i even yields the existence 
of elements d0,d

l
2... ,d\ which c? = dl

0, a+\ = dj, and (d0,d2) G Q(^o,«ri), 

( 4 > 4 ) € Q ( x 2 , x 3 ) , . . . , ( 4 - 2 ' d „ ) G 0(x„72,-c„_i). 
Hence, there exist (fe + 2)-ary terms v) satisfying V1J(XJ,X) = vlj_2(xj-i,x) 

for i even and j = 2 ,4 , . . . , A; and 

ti(x0,x) = c* = do = vJ(_o,x), 

*i(zfc,-c) = Cj+i = d\ = ^ ( x j f e - i , ^ . 

Analogously, (ci,Ci+\) G S for i odd yields the existence of elements e\,e\,..., 
el

k+x of A such that a — e\, ci+1 = el
k+x and (e|,e£) G Q(xi,x2), (e\,e\) G 

Q(x3,x ,4),...,(e^_1,ej|,+1) G Q(xk-\,xk), whence we infer the existence of 
(k + 2)-ary terms w) satisfying W)(XJ,X) = W)__2(XJ-I,X) for i odd and j = 
3 ,5 . . . , H 1 and ti(x0,x) = _>i(xi,„"), ti(xk,x) = _j£+1(_fc,x). 

Conversely, let V be a variety satisfying the term identities of the assumption 
and let A G V and Q,R,S G QuordA Suppose (o,6) G Q A(R\/ S). Then 
(a, b) e Q and, by Lemma 1, (a,b) e Ro S o • - • o Ro S with A: factors (without 
loss of generality we can suppose that k is even since R, S are reflexive). Hence, 
there exist elements a0,a\,.,. ,ak oi A with a — a0, b = ak and (aj,aj+_) G R 
for j even and (aj,aj+\) G 5 for j odd. Denote by a the sequence a0,... ,ak 

and set Q = ti(a0,a) and 

d) = v)(aj,a) for i even, j = 0, 2 , . . . , A: - 2, d\ — vl
k(ak-\,a) 

e) = w)(aj,a) for z odd, j = 1 ,3 , . . . ,* : - 1, e%
k+x = ^L'^+1(afc,a). 

Applying the identities, we have Co = a, cn = b and 

(ci,Ci+i) = (ti(a0,a),ti(ak,a)) = (ti(a,a),ti(b,a)) G Q 

for i = 0 , . . . ,n — 1. 
For i even we obtain c,; = d0, a+\ = d̂ . and 

(d),d)+v) G ̂ (a^a^+i) CI? 

for j = 0, 2 , . . . , k — 2. In account of transitivity, it yields (c^, c.;+i) G R. 
Analogously, for i odd we have a — e\, a+\ — ek+x and 

(cj,ej.+1) GQ(a j ,a j +i) 

for j = 1 ,3 , . . . , A: — 1 whence (a, Q + I ) G S. 
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Together, we obtain 

(a,b)e (QnR)v(QnS) 

finishing the proof. • 

Now, we turn our attention to another problem which has been recently 
studied for congruences in [3]. Let A\, A2 be two algebras of the same type. The 
congruences I l i ,n2 of „4i x A2 induced by the projections pr\,pr2 of A\ x A2 

onto ^4i or A2, respectively, are called factor congruences. A variety V has 
quasiorders permutable with factor congruences if for any A\,A2 of V and each 
Q G Quord.>4 

Q • IIi = IIi • Q and Q • n 2 = II2 • Q 

T h e o r e m 2 For a variety V. the following conditions are equivalent: 

(1) V has quasiorders permutable with factor congruences; 

(2) there exist (n -f- l)-ary terms t\,...,tk and binary terms r\,...,rn and 
ternary terms s\,... ,sn such that 

x = t\(x,r\(x,y),...,rn(x,y)) 

y = tk(y,r\(x,y),...,rn(x,y)) 

z = tk(y,s\(x,y,z),...,sn(x,y,z)) 

tj (y, r\(x,y),..., rn(x, y)) = tj+\ (x, n(x,y),..., rn(x, y)) 

tj(y, s\ (x, y,z),..., sn(x, y, z)) = tj+\ (x, s\ (x,y,z),..., sn(x, y, z)) 

for j = l,...,k- 1. 

Proof 
(1) => (2): Let A\ = Fv(x,y) and A2 = Fv(x,y,z). Let Q = Q((x,x), (y,y)) G 
Quord^i x ^42- Then 

(x,x)Q(y,y)U\(y,z) 

and, by (1), there is d of A2 such that 

(x,x)U\(x,d)Q(y,z) 

thus ((x, d), (y, z)) G Q((x, x), (y, y)). Applying Lemma 1, there are unary poly­
nomials Lp\,..., (fk over A\ x A2 such that 

(x,d) = tp\((x,x)), (y,z) = ifk((y,y)) 

and 

<Pj((y>y)) = Vi+i((»»«)) for j = 1 , . . . , * . (*) 

Since A\,A2 are free algebras, their elements are binary or ternary terms, 
respectively. Hence, there are (n -f l)-ary terms t\,...,tk and binary terms 
Ti,..., r n and ternary terms S\,..., sn such that 

ifj (v) = tj(v, (n (x, y), s\ (x, y, z)),..., (rn(x, y),sn(x, y))) 
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for each v G A\ x A2. Applying it in (*) and reading it coordinatewise, we 
obtain (2). 

(2) =-->• (1): Let A\,A2 G V and Q G Quord^i x A2. Suppose 

(ai,a2)Q(ci,fc2)IIi(ci,c2). 

Set d = ti(a2,b2,sx(a2,b2,c2),... ,sn(a2,b2,c2)). Then 

(ai ,di) = * i ( (a i ,a 2 ) , ( r i (a i ,c i ) , s i (a 2 ,6 2 , c 2 ) ) , . . . , ( r n (a i ,c i ) , s n (a 2 ,6 2 , c 2 ) ) ) 

(ci,c2) = *jfe((ci,6i),(ri(ai,ci),5i(a2 ,62 ,c2)), . . . ,(rn(ai,ci),sn(a2 ,62 ,c2))) 

and 

*j((ci ,62) ,(r i(ai ,ci) ,5i(a2 ,62 ,c2)) , . . . ) = 

= tj+i ((ai, a2), (n (ax, cx), sx (a2,b2, c2) . . . ) 

for j = l , . . . , f e - 1, whence (ai,d)Q(ci,c2). Thus (ai,a2)IIi(ai ,d)Q(ci,c2) 
proving Q • II i C II i • Q. Conversely, 

iii • Q c nx • (Q • no c ni • (ux • Q) = nx • Q . 

Thus also Q • Iii = Iii • Q. 
By interchanging of the first and second coordinate, we infer also Q • U2 = 

II2 • Q thus V has quasiorders permutable with factor congruences. • 

Example 1 For a variety V of lattices, take n = 2, k = 1 and ti(x+,x2,xs) ~ 
(xi A x2) V £3 and rx(x,y) = x V y, r2(x,y) = x A y, sx(x,y,z) = y A z, 
s2(x,y,z) = 2. 

Then 

ti(x,ri(x,y),r2(x,y)) = (x A (a: V y)) V (x A y) = x 

<i (y, ri (x, y), r2(x, y)) = (y A (x V y)) V (x A y) = y 

h(y,si(x,y,z),s2(x,y,z)) = (y A (y A z)) V z = z 

thus V has quasiorders permutable with factor congruences. Let us note that 
a nontrivial lattice variety have not permutable quasiorders since due to [4], V 
has permutable quasiorders if and only if V has permutable congruences which 
is not the case of V in general. 

Let A\,A2 be algebras of the same type and B be a subalgebra of ^4i x ^42. 
By the decomposing congruences of B are called the congruences 9\, 82 defined 
by the setting 

0i = {((bi,b2),(cuc2))£B2; h=Cl} 

02 = {((bi,b2),(Cl,c2))eB2- b2 = c2) 

A variety V has quasiorders permutable with decomposing congruences if for any 
A\,A2 of V, every subalgebra B of A\ x A2 and each Q G Quord.y4i x A2 it 
holds Q-el=6lQ and Q • 62 = 62 • Q. 
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Theorem 3 For a variety V, the following conditions are equivalent: 

(1) V has quasiorders permutable with decomposing congruences; 

(2) there exist 4-ary terms ti,..., tk such that 

x = ti(x,x,y,y), y = tk(y,x,y,y), z = tk(y,x,y,z), 

tj(y,x,y,z) = tj+i(x,x,y,z) for j = 1 , . . . , k - 1. 

Proof 
(1) => (2): Set AY = Fv(x,y), A2 = Fv(x,y,z) and let B be a subalgebra of 
A\ x A2 generated by the elements (x,x),(y,y),(y,z) of „4i x A2. Let Q = 
Q((x,x),(y,y)) e Quord/3. Then 

(x,x)Q(y,y)0x(y,z) 

and by (1), there exists an element (x,d) of B with 

(x,x)61(x,d)Q(y,z). 

By Lemma 1, there exists unary polynomials T\,..., Tk over B such that 

(x,d) = TI((X,X)), (y,z) =Tk((y,y)) 

and 

TJ((V, y)) = r,-+i ((x, x)) for j : = 1, . . , k - 1. 

Since # has just three generators (x,x),(y,y),(y,z), there exist 4-ary terms 
ti,...,tk with 

TJ((VUV2)) =tj((vuv2),(x,x),(y,y),(y,z)). 

Writing the foregoing identities componentwise, we obtain 

x = h(x,x,y,y), d= h(y,x,y,z), 

tj(y,x,y,y) = tj+i(x,x,y,y), 

tj(y,x,y,z) =tj+i(x,x,y,z) for j = 1 , . . . , k - 1, 

2/ = tk(y,x,y,y), z = tk(y,x,y,z). 

However, the 4-th identity implies the third one thus it can be omitted as well 
as the second one. The remaining identities are those of (2). 

(2) => (1): Let V be a variety satisfying (2) and let Ai,A2 E V and B be a 
subalgebra of A\ x A2. Suppose Q € QuordS and 

(ai,a2)Q(bi,62)r?i(ci,c2) . 

for some (ai ,a 2) , (h,b2), (ci,c2) of B. Take d = £i(a2 ,a2 ,c2 ,b2) . We infer 

(ai, d) = ti ((ai, a2), (ax ,a2),(cu c2), (ci, b2)) 

^•((ci,62),(ai ,a2),(ci ,c2),(ci ,62)) = 

= ^+i( (a i ,a 2 ) , (a i ,a 2 ) , (c i , C 2 ) , (c i ,6 2 ) ) for j = l , . . . , k - 1 

(ci, c2) = ^ ( (c i , 62), (ax, a2), (Cl, c2), (ci, 62)) 

whence (aud) € #5 and (ai,d)Q(ci,c2) proving Q • 6X C 0i • Q. The rest of the 
proof is a routine way. D 
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