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Abstract

This paper is concerned with the convexity of histogram. First the def-
inition of convexity and the necessary and sufficient criterion of histogram
convexity are presented. Then it is proved that this criterion is generally
global i.e. the whole histogram must be tested altogether. Finally are
treated algorithms based on this criterion.

Key words: Convex histogram, construction of convex histogram
interpolant.
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1 Introduction

In various applications it is often necessary to construct a smooth function that
interpolates prescribed data and preserves some shape properties of them. In
the last years many papers were devoted to such problems. The majority of
them treats the problems of positive (see e.g. [7], [10], [14]), monotone (see e.g.
(1], [2], [3], [4], [5], [6], [20]) or convex (see e.g. 3], [4], [8], [11], [13], [17]) spline
interpolation of prescribed function values. Only few papers (see e.g. [9], [12],
[15], [16], [18]) were devoted to problems of shape preserving interpolation of
histogram. They suggest that problems of positive or monotone histopolation
are only a little more complicated than equivalent problems of function values
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150 Pavel ZENCAK

interpolation and in case of polynomial splines they can be transformed to prob-
lems of monotone or convex function values interpolation by splines with order
increased by one (see e.g. [9], [12], [19]). But the convex histopolation seems
to be more difficult. The first question which arrises is when we can say that
histogram is convex. And the solution of such problem is the subject of this
paper.

The natural approach to that problem is based on existence of convex func-
tion interpolating given histogram. But this definition is too general and some
more simple criterion is needed. In [15], [16] the so called histogram in con-
vez position is defined as histogram which can be interpolated by convex linear
spline (the mesh is same as for histogram). But we can see (Fig. 1) that his-
togram G = {1.25,0.75,0.25,0.375,3,6} on the mesh {0,1,2,3,4,5,6} is not
convex according to this criterion although there exist convex linear splines on
refined mesh {0,1,2,3,3.5,4,5,6} which interpolate G (see Fig. 2).
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Figure 1: The nonconvexity of linear Figure 2: The convexity of linear in-
interpolatory spline on original mesh terpolatory spline on refined mesh

I-

It suggests that better criterion of histogram convexity is existence of convex
linear spline on refined mesh with one added knot to any interval of original
mesh. In section 2 is proved that this criterion is equivalent to the definition
which uses continuous function. Another question which arises is if previous
criterion is local or global. It is known that criterion of function values convexity
is local (all the second differences of date must be non-negative). But on the
contrary the criterion of histogram convexity cannot be decomposed in such way
and is global which is proved in section 2. In section 3 some properties of convex
linear splines interpolating histogram on refined mesh are proved. There are also
shown the algorithms for testing histogram convexity and finding interpolatory
convex linear spline on refined mesh based on criterion from section 2.
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2 Convexity of histogram

Let us have given histogram G = {g;}}-, on the mesh

(Az): x0<T <...<Tp<Tpyr, Wwithhi=zi41 -2z, 1=0(1)n.
Let us denote (A%z) = {z;}/) U {z; + a;hi}7, with 0 < @; < 1 and let
S11(A%x) be space of linear splines on the refined mesh (A%z).

Definition 2.1 We say that histogram G is convex if there exists convex con-
tinuous function f interpolating histogram G (i.e. f;‘“ f(z)ydz = h;g; for
i = 0(1)n) on mesh (Az).

Theorem 2.2 (Necessary and sufficient criterion of convexity) Histo-
gram G is convez if and only if there exist set of numbers {a;}7, and cor-
responding function p(z) € S11(A%z) which interpolates histogram G.

Proof 1. Let us have convex histogram G = {g;}}-, on the mesh (Azx) and let
f be convex continuous function which interpolates histogram G. Let us denote

fo=f@), 4= dim f), df = lim f(),
Bi = (fi + hidiyy = fix1)/(hi(dipy — 7))
Then we can define
pi(z) = fi+ (x — zi)(fir1 — fi) [ hi

PP (z) = fi+ (z — zi)df if z <z + hifli
' fiv1 = (g1 —x)d;;  others
ai(x) _ fz+($—$1)dz+ 1fz§:::,+hla,
i T firr = @ig1 — @) (i1 — fi — aihid?) /(1 = ai)hs) others
with a; € [0, 8] (see Fig 3).
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The function p]*(z) has the following properties:
1. p?‘ (z) < pf¥(z) < pi(z) for all z € [z, zi41] and all o; € [0, 3]
2. p is continuous with respect to parameter a; for all z € [z;, Ti41]
3. if @; = 0 then p{(z) = p;(z) Tor all z € [z;,zi41]
4. if a; = B; then p(z) = i‘(:c) for all z € [z;,xi41]

From convexity of function f(z) we obtain that p;*(z) < f(z) < pi(z) for all
z € [zi,xit1]. It implies that f ’“pﬂ Ydz < h;g; < f 1 pi(z)dz. This
result and properties of p{* 1mply that there exists a; € [0 Bi] such that p¢
interpolate mean value g; and function values f; and f;;1.
Then we can define linear spline p(z) = p{(z) if = € [z, zi41]. This spline
is convex function because p{* is convex on [z;, zs+1] for all ¢ = 0(1)n and
lim p'(z) <dg, <df, = lim p '(z).

x—):l+1 $_§1: i1
2. Convex p(x) € S11(A%x) which interpolate G is continues too. a

Theorem 2.3 There exists no local criterion of histogram convezity i.e. there
does not exist m € N such that for all n > m the convezity of histograms

= {g,}"f]'], Jj =0(1)n — m implies the convezity of G = {gi}1-¢-

Proof Let us denote |z] the nearest integer less than or equal z € R. Then
for all k € N, k > 3, n = 2k and for the mesh (Az) with z; = 7 for i = 0(1)n we
can construct histogram G = {gi}?, such that go = 10, g; = 6, g» = 2, g3 = 1,
gi = gi—y + 260721 4 olG=3)/2] for § = 4(1)n — 2, gn_y = gno + 2572 + 1,
gn = gn-1 +2¥72 + 1. Histograms G4 = {g;}}-7 and Gp = {gi}!-,,_, have
unique convex interpolants in S11(A%z) given by following sets of breakpoints

Ba = {(0.12),(3,0)}U{(3+2:, 3 27)}=2,

i=1
k-2 k—2
Bp = {(n-2,) 2 -2"2-05),(n+1,) 27" + 2671 4 25)}.
Jj=1 j=1 .

The uniqueness of these interpolants and their different function values on in-
terval [z,—2,Zn—1] imply the nonexistence of convex interpolant of histogram
G. But for histograms G; = {g;}?7) and G2 = {g;}, there exist convex
interpolatory linear splines given for example by following sets of breakpoints

B = BaU{(n sz+1+2k2 2)},

By = {(1,8.5),(2,3.5),(3,0.5)} U {(3 +14, Z2UJ+1>/2J +(-1)!/2}"-fUBp.
j=1
O
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Remark The previous proof (with k = 4) is illustrated on following figures.
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Figure 4: The nonconvexity of G: interpolant of G 4 is dotted, interpolant
of Gpg is dashed
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Figure 5: The convexity of G; and Gs: interpolant of G, is dotted, inter-
polant of G4 is dashed
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3 Algorithm of convexity testing

In this section we will show the relations between the function values and the
first one-sided derivatives in original knots which are consequences of necessary
and sufficient criterion of histogram convexity given in the theorem 2.2. Us-
ing these relations we will foremost show the algorithm for convexity testing
and than the algorithm for finding convex linear spline on refined mesh which
interpolate the convex histogram.

Let us have given histogram G = {g;}?, on the mesh (Az) and let p(z) €
S11(A%x) interpolate histogram G. Let us denote

si = p(zi) (1)
m; = p'(@i +0) = lim p'() (2)
m; = p'(z;—0) = lim_ p'(z) 3)

£ (sisea,mt) = $2,1 — 2(him] + si)sip1 + 2g:him{ + 57
m 1y 91 ’ 23 -

hi(2g; — 2s; — him]")

2 - -
S5 — 2si(si+1 - h,-miH) + 312+1 - 2h,~gimi+l

(4)

(%)

Fnlsirsivimig,) = hi(2siy1 — 2g; — him ;)
My

3.1 Some properties of interpolatory linear spline on the
refined mesh

The relations between parameters s;, m:r, gi> Si+1, m;y; will be specified in the
following lemmas and consequences.

Lemma 3.1 Let us have given s;, sit1, m; such that s; + s;11 # 2g; and

mf # 2(g; — si)/hi fori € {0,1,...,n}. Then

a; = (siy1 +8i — 29:)/(sit1 — 8i — him]) (6)
mz,, = fh(si,si41,m)) (7)
Proof From formula m_, = (sit1 — si — ashim})/(hi(1 — @;)) and from
interpolatory condition
aih; (1—-ai)h;
/ (si + mfz)dz + / (si + mj a;hi + m7 z)dz = h;g;
0 0
we obtain (6) and using it in formula for derivative m;,, we obtain (7). O

Lemma 3.2 Let us have given s;, siy1, m;,, such that s; + s;11 # 2g; and
ml # 2(g; — si)/hi fori € {0,1,...,n}. Then
@ = (2si41 — 29 — him;} 1)/ (siv1 — 8i — hymj,) (8)

mf = Fl(si,Siv1,mp) 9)



Some algorithm for testing convexity of histogram 155

Proof Can be followed similar way as in proof of lemma 3.1 from interpolatory
condition and from m] = (siy1 — si — (1 — a;)him1)/ (hia). |
Lemma 3.3 The necessary conditions of convezity of p(x) on [z;,Zit1] are
1. for unknown parameters s;y1, m;, -
sip1 > 2gi—s; and mg ;> (28i+1 — 2g:)/hs (10)
or
Siv1 =2g; —s; and m; ;= (28iy1 — 2g;)/h; (11)
2. for unknown parameters s;, mf.’
8; > 2g; — siy1 and m} < (2gi — 2s;)/hy (12)

or
$i =29; —sit1 and m} = (2g; — 2s;)/h; (13)

Proof

a) If p(z) is line on [z;, z;41] then from interpolatory condition (s;+1+5:)/2 = g;
and from formulas for derivatives m; = m;,, = (si4+1 —s$i)/h; are obtained (11)
and (13).

b) From convexity condition mj <mg ;= (sin1 —si—aihimf)/(hi(l—ai)) and
from condition 0 < a; < 1 we obtain (10). Similarly from convexity condition
(sit1—si—(1—ai)himy, )/ (hia;) = m; < m,, and from condition 0 < a; < 1
we obtain (12). |

Let us denote as D}, the following domain of parameters:
DfL = {(siy,8i41,m] ); 8i41 > 29; — 8i, m; < 2(g: —si)/hi} € R*  (14)

Lemma 3.4 The functions fi have following properties:

1. fi are continuous on Df’, (15)

2. fi are increasing with respect to all parameters on D f} (16)

3. fr(siysiv1,m) > 2(sir — gi)/hs (17)

4 lim fr(sirsipr,m}) =00 (18)
mf—(2(gi—s:)/hi)~

5. lm  f}(si,sie1,m}) = 2(si41 — 9:)/hs (19)

1ni+—)~oo

6. lim Fh(siysivr,m) = f1(29i — si1, Siv1,m])
si—=(2gi—si41)t

= 2(sit+1 — gi)/hi (20)
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Proof 1. Function f}, is not continuous only when m} = 2(g; — s;)/h; but
such points are not from D f} .

2. Using inequalities s;41 > 2¢; — s, mf’ < 2(gi — si)/h; and their consequence
Si+1 — Si — him;F > (0 we obtain

oft, _ 2(sit1 + 8i — 2gi)(siy1 — 8i — him}) >0 on Dfi.

0s; hi(2g; — 2%‘ — hym})?

6fm — 2(5i+1 - sz hi m >0 on sz
0sit1 hi(2gi — 2s; — him] )

Ofm _ Si+1+si_2gi >0 on Df}

omf T (2g; — 2s; — hym})?

(8i41 +5i — 2g;)?
hi(2gi — 2s; — hym})

Remaining statements can be proved simply by substitutions. O

3. finsiysivr,mf) = 2(siv1 — gi)/hi = >0 on Df}

Consequence 3.5

1. Let s;, m¢ < 2(91 — 8;)/h; be given. Then for any s;y, > 2g; — s; and
any mj,; > fi(si,si41,md) there exists one m} € [m¢, 2(g; — si)/hs)
such that p(z) € S11(A%x) defined by si, Sit+1, m+, My on [Ti, Tiy] is
convex here and interpolates mean value g;.

2. Let s;, m¢ = 2(g; — si)/h; be given. Then p(z) € S;;(A°x) is convex
on [z;,2:41] and interpolates mean value g; here only if s; 1 = 29; — s;,

+ s = md
m; =m;, =m{.

Consequence 3.6

1. Let s; and m¢ < 2(g; — s;)/hi be given. Then for any s;y, > 2g; — s
1+1 > fm(sl,s,+1, mg), ;_1 < 2(gi+1 — Si+1)/hi+1 there exists
m;} € [m¢,2(g; — si)/hi] and convez p(x) € Si1(A*z) interpolating mean
values gi, git1 such that p(z;) = s;, p(z; + 0) = m}, p(Tivo) = siy1,
p(zip1 +0) = m;:—l'

iy

2. Let s; and m¢ = 2(g; - s;)/h; be given. Then for siy1 = 2g;—s;, m} =md

and any m;;l > m, m;‘;l < 2(gi+1 — Si+1)/hi+1 there ezxists convex
p(z) € S11(A%x) interpolating mean values g;, gi+1 such that p(z;) = s;,

p(zi +0) =m{, p(zito) = sit1, P(Tit1 +0) =mf,.

3.2 Algorithm for testing histogram convexity

We will use the algorithm based on criterion from theorem 2.2 and on similar
idea as so called staircase algorithm (see (3], [13] and [17]). Let us have given
histogram G = {g;}}-, on the mesh (Az) and let us denote G; = {g:}]_, for
J=0(1)n.
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Algorithm 3.7 Let the sets W; C R?, j = 0(1)n + 1 be constructed according
to following rules:

1.

Wo = (so,mg) : 3 convex po(z) € S11(A%z) interpolating Gy
such that po(xo) = S0, pp(zo +0) = mg

2. for j = 1(1)n:

(sj;m}): 3 convex pj(z) € S11(A%z) interpolating G;
W; =

and 3(s;,m]") € W; for i = 0(1)j — 1 such that
pi(x;) = si, pi(z; +0) =m} for i = 0(1)j

(Sn+1, T_L+1) : 3 convex pn+1(1:) € Sll(AaIL‘)
W = interpolating G and 3(s;,m}) € W; for i =0(1)n
n+l —

such that p;(z;) = s;, Pi(z; + 0) = m;} and

Prnt+1(ZTnt1) = Sny1, 17'n+1($n+1 -0) = Myt

Ifall W; #0, j = 0(1)n + 1 then there exists convex p(z) € S1;1(A%z) interpo-
lating histogram G.

Theorem 3.8 The sets W; from algorithm 3.7 can be rewritten as

1.
Wo = {(so,mg) : m§ < 2(go — so0)/ho} (21)
2. for j =1(1)n:
(sj ;’ I(sj~1,m + _1) € Wj_1 such that
W]: 229 -1~ S85-1, ;_Zf;z:l(sj—lvsjam; 1)7 (22)
< 2(gj — s;)/h;
3.
(Snt1,Mpyy)  I(sn,mt) € Wy such that
Wpp = ((8n+1 > 2gn — sn) A (m;+1 > fr(sn,Sny1, ) (23)

V((8nt1 = 20n — $n) A (Mimyy = 2(gn — 5) /7))

Proof The statement (21) is consequence of necessary conditions in lemma 3.3.
The statement (22) (or (23) ) is implied by consequence 3.6 (or consequence 3.5)

O
The more precise description of W, will be given in the following conse-

quences. This description depends on properties of previous set W;_;. First the
description of W; will be given.
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Consequence 3.9
Wy = {(s1,m) : m{ > 2(s1 — go)/ho, mi <2(g1 — 1)/} (24)
Proof In (22) we have -
W, = { (s1,m7}): E(io,mg;)IE Wo suih tha.i s1 > 2go — So, }
my > fmiS0,81,mg ), mi <2(g1 — s1)/h

From (21) is obtained that s € R and m € (—00,2(go — s0)/ho]. If s = o0
then using s; > 2go — so we obtain s; > oo. If mg — —oo then using m;” >
£2 (s0,81,m¢) and (19) we obtain m; > 2(sy — go)/ho. O

Now for i < n and Wj_; such that W;_; # 0 and int W;_; = () we obtain
following two consequences.

Consequence 3.10 Let us have given i <n, s¢ |, m¢_| <2(gi_1 —s¢|)/hi_,

and the set
Wioi = {(si—l’m;‘tl) ¢ 8i-1 = 3?—1: m;tl € [m‘ii_],2(gi_1 - s‘ii—l)/hi—l]}

Then the following implications hold:

1. If 2(9i — (29i-1 — 5%-1))/hi < 2(gi-1 — s%_1)/hi1 then W; = 0.
2. If 2(gi — (2gi—1 — s§— 1))/h =2(gi—1 — 8{_1)/hi-1 then
Wi = {(29i-1 “sz 1, 2(gi-1 — 5 1)/hi- 1)} (25)

8. If 2(g: — (29i-—1 —3 N/ hi > 2(gi1 *‘S 1)/hi-1 andm = 2(gi—1 —
54 1)/hi—1 then

_[omi) s si=2gi — sy, mf >mi ),

Wi= { mi < 2(gi — s¢)/hs)) (26)

4. If 2(gi — (2gi-1 — s&1))/hi > 2(gi—1 — s¢_1)/hiz1 and md_, < 2(gi_, —
Sf_l)/hz 1 then

W-:{(S" m}): 3,22g, 1 —st,, mf <2(g,-—s)/hl,}

+ >fz l( st 1, s,mé (27)

&

Proof The lemma 3.4 implies that

m™ := min{m; | : 3s;_; such that (s;_,,m fe Wi_1}
=2(gi-1 — 31‘—1)/’11'—1,
s := min{s; : Im; such that (s;,m}) € W;} = 2¢;_, — iy,

m*** := min{m} : 3s; such that (si,m;*) € Wi} =2(g; — s™™) /h;
=2(9: — (2gi-1 — s7_1))/ hi.
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If m™ > m™e® then there can not exist convex interpolant and W; = 0.

If m™ = m™%® then the only convex interpolant on interval [z;_1, ;1] is
line and this implies (25).

If m™ < m™2% then (26) and (27) are obtained from consequence 3.6. O

Consequence 3.11 Let us have given si, m% < 2(g, — s?)/h, and the set

gt’ mrt € [ﬂli,?(gn - s‘rjl)/hn]}

W, = {(sn,m: S, =8
Then the following implications hold:

1. If m¢ =2(gn — 52)/hn then
Witr = {(29n — 327 2(gn - Sr(,iz)/hn} (28)
2. If m¢ < 2(g,, — 5%)/hy, then

(Sn+1,Mp51) : ((Sn41 = 29n — 53)
Wi = Amy 1 =2(gn — 8%)/hn)) V ((Snt1 > 2gn — 33)/\ (29)
(Magr > fh (s, Snt1,m5))

Proof Can be followed similar way as in proof of consequence 3.10, using
consequence 3.5 instead of consequence 3.6. O

Now for i < n and W;_; such that int W;_; # @ we obtain followirg two
consequences.

Consequence 3.12 Let us have given i <n, —oo < sf_l < 00, the increasing

continuous function r;i_1(si—1) such thatr;_(s?_;) < 2(gi—1—sL,)/hi, mL, =
ri—1(s%_,) and the set

W, = { (sici,mi ) sioy > 88, mi, <2(gic1 — sim1)/hica,
mi_y >rici(sioy)

Let be si, such that r;_1(s]*,) = 2(gi—1 — s{*,)/hi—1. Then the following
implications hold:

1. If 2(9,‘, - (29,‘_1 - S:ril))/h, < 2(9,'_1 - Sﬁl)/hi—l then W; = 0.
2. If 2(9: — (2gi-1 — 871)) /by = 2(gi—1 — s7%1)/hi -1 then

Wi ={(29i-; — 521, 2(gi-1 = $7%1)/hi-1)} (30)
8. If 2(gi — (29i—1 — si%1))/h;i > 2(gi—1 — s721)/hi—1 then

(Sivmi+) P8 > 29, — S?ila mj < 2(91' - Si)/hia
W, = if $i <2¢;_ 1 — s‘ii_l then m} > 2(s; — gi—1)/hi—1 (31)
+ i d
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Proof The lemma 3.4 implies that

m*" .= min{m} | : 3s;_1 such that (s;_1,m;_ ;) € W;_1}

=2(g9i—1 — 8;21)/hi-1,

min{s; : 3m; such that (s;,m}) € W;} =2g;_, — s* |,

mi*® .= min{m; : 3s; such that (s;,m]) € W;} = 2(g; — s/""")/h;
= 2(9i — (2gi-1 — 5i%1))/hi-

If m*n > m™a% then there can not exist convex interpolant and W; = §.

If m?}}" = mm” then the only convex interpolant on interval [z;—1,Zit+1] is
line and this 1mp11es (30).

If m{'ﬁl" < m*** then we obtain (31) from consequence 3.6 and from proper-
ties of f/~! given in lemma 3.4. If s; > 2g;_; —s¢_, then sl > 2g;—1—s;*,; and for
all (s;—1,m;_;) € W;_; we can compute fe 1(s2 1,8i,m; ;). From (16) we ob-
tain that fi—'(s;_1,s;,m} ) > f (s, 8;,md ) for all (8i—1,m;_;) € Wi_y.
If2g; 1~s"; <s; < 291_1 —s% | than we can compute fi~!(s;_1, s, m?_l) for
all (s;—1,m;_;) € W;_; such that s;_; > 2¢;_1 — s;. From (20) it is obtained
that m;" > 2(81 - gi—l)/hi—l' m

min .
Si

Il

Consequence 3.13 Let us have given —oo < s& < 0o, the increasing contin-
uous function r,(sn) such that r,(s8) < 2(gn — 5%)/hn, md = r,(sd) and the

set
W — (Sn,m:) - Sn Z s('i“ m: S 2(g7l - Sn)/h"'H
e mj{ > Tn(sn)
Let be s such that 7,(s7") = 2(gn — $7*)/hn. Then
Wai1 = {290 — s7,2(gn — 8n)/ I}

(Snt1,Mpyy) : Sny1 > 290 — SO,
U if spy1 < 295, — SZ then m;t-H > 2(Spt+1 — gn)/hn (32)

else m:+1 2 fryrll(s'riv sn+1’m(riz)
Proof Can be followed the similar way as in proof of consequence 3.12, using

consequence 3.5 instead of consequence 3.6. O

Remark The functions r;(s;) for ¢ = 1(1)n in previous consequences can be
given by one of the following rules:

1. ri(s;) = 2(si — gi—1)/hi—1
2. ri(si) = ,’;,_l(sf_l,s,‘,mg_l)

f’ 1( 851, Si,mj_ ]) ifsi>29i_1—sf_1
3 Tl(S) { ( — Gi- 1)/h’l 1 others

where s¢ ; and md_; are given by set W;_,
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3.3 Algorithm for finding convex p(z) € S;;(A%z) interpo-
lating G

Let us have given sets W; # @ for i = 0(1)n+ 1 from algorithm 3.7 and functions
Fi, from (5) for i = 0(1)n. Let us denote

s = min{s; : Im} such that (s;,m}) € W;} fori =0(1)n+1 (33)
m¢ = min{m] : (s¢,m}) € W;} for i = 0(1)n (34)
mi = min{m_ ¢ (shy1,Mmnp) € Wi} (35)

Algorithm 3.14

1. Choose some (Sny1,My 1) € Wiy

2. for j =n(-1)1 do: '
choose some (sj,m}) € W; N F},(sj,8541,m7,,)

if s; = s then put m; =m{ else choose mj such that (sj,m;) € W;

3. Choose some (so,m(J{) e Wy N F,?,(so,sl,ml_)

Remark The choices in algorithm can be done for example in the following
way:

1. The choice of 8,41 and m,, ¢ Sny1 = 8E,1, Mpy1 = 2gn — Sn41

2. The choice of s; and m} for j = 0(1)n:
if 29; — sj41 < S? then s; = S? else s; = 2g; — sj41

+ — Fi(c. <. -
m} = F},(sj,8541,m4,)

3. The choice of m; for j = 1(1)n: m; = mr

4 Numerical example

Example 4.1 The histogram G was obtained as mean values of function sin(z)
on mesh (Az) = {r + im/10}!2,. The algorithm find that histograms is convex
on interval [, 27 + 7/10] in which the interval of convexity of function sin(z)
is contained (see Fig 6).
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