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Abstract 
Four kinds of an independence on 1-groups are studied in connection 

with order properties of 1-groups and notions of generators and a direct 
product of subgroups. 
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The linear independence of vectors is a basic notion in the theory of vector 
spaces. A general notion of independence (called "algebraic independence"), 
which contains as special cases majority of independence notions used in var­
ious branches of mathematics, was introduced by E. Marczewski [3] in 1958. 
However, there are independence notions which are not covered by this scheme, 
although they have much in common with it, such as linear independence in 
Abelian groups (see [2]). 

In this paper we shall pay attention to properties of independence in lattice 
ordered groups (briefly 1-groups). The methods of the research of the indepen­
dence in 1-groups come from ideas about the independence in vector spaces and 
Abelian groups and take advantage of the lattice order. The theory of 1-groups 
useful in this paper is contained in the book of L. Fuchs [1]. 

Notation 1. Let G be an 1-group and M C G be a set. Then [M], ( < M > , 
resp.) denotes the normal subgroup (the 1-ideal, resp.) in G generated by M. 
We shall write [g] instead of [{g}] and <g> instead of <{#}>, for g G G. 

2. If g G G then gc denotes a conjugated element with g, i.e., gc — —a + g + a, 
for some a G G. Let us remark that | — a + g + a\ — — a + \g\ + a holds. 

3. Let us remark thet a sum is equal to zero in the case that the superscript 
is less than the subscript. 

1 Q 
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Definition 1 A subset M of an 1-group G is called independent (l-independent, 
resp.), when M is a non-empty set and jV C M => [jV] C [M] (jV C M => 
<jV> C < M > , resp.) holds. 

On the other hand, i.e., if a subset jV of M exists such that jV ^ M and 
[TV] = [M] (<jV> = < M > , resp.)- then M is called dependent (l-dependent, 
resp.). 

Remarks 1. This definition is an analogy of the linear independence in vector 
spaces, where < M > is the vector subspace generated by M. 

2. If 0 G M C G then M is dependent and 1-dependent. Namely, [M] = 
[M\{0}] and < M > = <M\{0}> hold. 

Proposition 2 Every non-empty subset N in an independent (l-independent, 
resp.) set M in an l-group G is independent (l-independent,resp.). 

Proof Let Ar be 1-dependent, i.e., there exists jV' C jV such that <jV'> = 
<jV>. Then N' U (M\jV) C M and we shall prove that <jV' U (M - jV)> = 
< M > . If x G <M> then 

<í>l m -
i=l 

for m i , . . . , rrtj G M\jV, m j + i , . . . , m n G iV and natural numbers p i , . . . , pn (see 
Notation 2). The fact <jV'> = <jV> implies an existence of htl,..., hln( G N' 
and natural numbers qix,.- -,qin such that 

Kl <]>>J/i;cJ 
fc=l 

holds for all / G {j + 1 , . . . , n} . Finally, we have 

Щ 

M<X>KI + £ Pi(E^l^eJ)e<Nu(M\iV)> 
i=l i=i-|-l k=l 

and < M > = <jV' U (M\jV)>, which is a contradiction. 
The proposition for the independence can be proved similarly. • 

Proposition 3 A non-empty set M in an l-group G is independent (l-inde­
pendent, resp.) if and only if every non-empty finite subset of M is independent 
(l-independent, resp.). 

Proof The proposition will be shown for the 1-independence. 
=>: It follows from 2. 
<=: If M is 1-dependent then a set jV exists such that jVcM,<jV> = < M > . 

It means that \x\ < SlLiP«lm i l holds for x G M\jV, where m i , . . . , m n G 
jV and p i , . . . , p n are natural numbers (see Notation 2). This facts imply 
{ m i , . . . ,m n } C {mi , . . . ,m n , x} C M and < m i , . . . ,m n , : r> C < m i , . . . , m n > , 
i.e., { m i , . . . ,mn,x} is an 1-dependent set, a contradiction. • 
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Proposition 4 Let M be a non-empty set in an l-group G. Then M is inde­
pendent (l-independent, resp.) if and only if it holds m non G [M\{ra}] (m non 
G <M\{ra}>. resp.), for all m G M. 

Proof =>: If ra G M exists such that ra G <M\{ra}> then < M > = 
<Af \{ra}>, a contradiction. 

<=: If M is 1-dependent then N C M exists such that <jN> = < M > , and 
thus ra G M\N exists with the property ra G < M > = <jN> C <Af\{ra}>, 
a contradiction. 

The proposition for the independence can be proved similarly. • 

Remark If 0 non G M is a non-empty subset in an l-group G and [ra] D 
[M\{ra}] = {0} holds for all ra G M, then M is independent. The linear 
independence on vector spaces with scalar products is equivalent with the upper 
property. From these reasons the independence on 1-groups is not equivalent 
with the upper property. 

Definition 5 A set M in an l-group G is called linearly independent (linearly 
l-independent, resp.) when 0 non G M, M is a non-empty set and [ra] fl 
[M\{ra}] = {0} (<ra> H <M\{ra}> = {0}) holds for all me M. 

If an element m e M exists with the property [ra] fl [M\{ra}] ^ {0} 
(<ra> fl <M\{ra}> 7-= {0}, resp.) then M is called linearly dependent (lin­
early l-dependent, resp.). 

Proposition 6 Let M = {ra i , . . . , ran} be a finite subset of an l-group G. Then 
it holds: 

a) M is linearly dependent if and only if integer numbers p\,... ,pn exist such 
that 

n n 

J ^ P j m 5 = 0 and ] T p j # 0. 
j = i j = i 

b) M is dependent if and only ifi€{l,...,n} and integer numbers pi,... ,Pj-\, 
Pj+i,... ,pn exist such that 

i-l n 

™i = SPjm<;+ J2 PjmCj-
j=l j=i+l 

c) M is linearly l-dependent if and only if0^xeG,ie{l,...,n} and natural 
numbers h,pu... ,Pi_upi+1,... ,pn exist such that 

*- i 

\x\<h\mc\A('£ipj\m<\+ £ p.\mc.\). 

J= l j=І+l 
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d) M is l-dependent if and only ifi G { 1 , . . . ,n} and natural numbersp\,... ,Pi-\, 
Pi+i,... , p u exist such that 

i — \ n 

\mi\<^pj\m
c\+ J2 Pj\mj\-

j — \ j=i+l 

Proof We can prove all propositions a)-d) similarly. Let us prove the prop. 
a): M is linearly dependent if and only if an index i G {1, . . . ,n} exists such 
that [mi] n [M\{m^}] ^ {0}. This fact is equivalent with the existence of 
an index i G { l , . . . , n } and non-zero integer number U and integer numbers 

p i , . . . ,p i_ i ,p i+ i , . . . , p n such that kmc = J2)Z\ PjmC + E j U + i Pim) ( s e e N o " 
tation 2). • 

Corollary 7 a) All non-empty subsets in a linearly independent (linearly 
l-independent, resp.) set M of an l-group G are linearly independent (linearly 
l-independent, resp.). 

b) A non-empty set M of an l-group G is linearly independent (linearly 
l-independent, resp.) if and only if all non-empty finite subsets in M are linearly 
independent (linearly l-independent, resp.). 

Proof a) If N is a linearly l-dependent non-empty subset in M then n G N 
exists such that < n > n <N\{n}> ^ 0 and thus <n> n <M\{n}> / 0, a 
contradiction. 

b)--->: It follows from a). 
<=: If M is linearly l-dependent then mi G M exists such that < m x > n 

< M \ { m i } > ^ {0} holds. It means, that li\m\\ A £j_2Pj1mjl ^ 0 holds for 
suitable natural numbers /i,I>2, ••• ,Pn and elements m 2 , . . . ,m n G M\{mi} (see 
Notation 2). 

Finally, < m i > n < m 2 , . . . , m n > ^ 0 and therefore the set { m i , m 2 , . . . , m n } 
is linearly l-dependent, a contradiction. 

The corollary for linear independence can be proved similarly. • 

Remark If G is an l-group and a subset {a, b} in G is dependent (independent, 
resp.) in the sense of upper definitions that we can say that elements a, b are 
dependent (independent, resp.) of the corresponding type. 

Corollary 8 Let G be an l-group and a, b G G, a ^ 0 7-= b. Then it holds: 
1. Elements a,b are independent if and only if normal subgroups [a], [b] are 

incomparable. 

2. Elements a,b are l-independent if and only if l-ideals <a> , <b> are incom­
parable. 

3. Elements a, b are linearly independent if and only if [a] n [b] = {0} holds. 
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4. The following propositions are equivalent: 
a) Elements a, b are linearly I-independent. 
b) <a>H<b> = {0}. 
c) Elements ac, bc are orthogonal (i.e., \—g + a + g\A\—h + b+h\=Q 

for all g, h £ G. 

Proof It follows from 6. • 

Proposition 9 A non-empty set M in an l-group G is linearly l-independent if 
and only if\—g + a + g\A\ — h + b + h\ = 0 holds for all a, b £ M,g, h £ G, a / b. 

Proof =>: It follows from 7, b and 8, 4 a) => c). 
<=: If { m i , . . . , m n } is a finite subset in M then it is sufficient to prove that 

{ m i , . . . ,m n } is linearly l-independent (see 7, b). Namely, if {mi , . . . ,m n } is 
linearly 1-dependent then 0 / x G G,i G { l , . . . , n } , a natural number li and 
natural numbers Pi , . •. ,P i - i ,P i+i , . . . , p n exist (see 6, c)) with the property 
W < h\mci\ A (£}=! Pj|rac| + Ej=»+i PilmjD- Finally, the fact |mc | A |mc | = 0 , 
for j = 1 , . . . , i - l , i + l , . . . ,n implies ^ I m ^ A ^ * " * Pjlmjl + E j U + i Pjlmjl) = ° 
(see Notation 2), a contradiction. • 

Theorem 10 Let G be an l-group and M be a subset of G. Then 1° => 2° => 
3° =z> 4° /iOW for the following assertions: 

1° M is linearly l-independent. 
2° M is l-independent. 
3° M is linearly independent. 
4° M is independent. 

Proof Let (i) ((h) resp., (hi) resp., (iv) resp.) means that the set M is depen­
dent (linearly dependent resp., 1-dependent resp., linearly 1-dependent resp.). 
Let us prove that (i) => (ii) =-> (Hi) => (iv) hold: 

(i) => (U): There exists N C M such that [iV] = [M]. Therefore an element 
0 # m £ M\A^ exists with the property m £ [JV] C [M\{m}]. Clearly, [m] n 
[M\{m}] = [m] n [M] = [m] / {0} holds. 

(ii) => (m): An element 0 / m £ M exists such that [m] n [M\{m}] ^ {0}. 
This fact implies 

n 

X = kmc = ^2 limi 
i=\ 

for suitable elements 0 / x £ G, m i , . . . ,m n £ M\{m} and integer numbers 
fc,/i,... , / n . Therefore 

|mc| < |k||mc| = |Ä;mc| = | j^Z ť mГi 

i=i 

holds (see Notation 2). It is clear that m £ <M\{m}> and <m> C <M\{m}>. 
Finally, we have < M > C <M\{m}>. 

(Hi) => (i^): We can prove similarly as (i) => (ii) for 1-ideals. • 
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Remark If a, b are linearly dependent elements then [a]fl[b] 7̂  {0} and <a> C 
<b> follows from the previous proof ((ii) -=> (in)). Similarly <6> C <a> holds 
and thus <a> = <b>. 

Corollary 11 Let a, b be non-zera elements of an abelian l-group G. Then it 
holds: 
1. [a] = [6] if and only if a = b or a = —b. 

2. a, b are dependent if and only if an integer number k exists such that a = kb 
or an integer number I exists such that b = la. 

3. a, b are linearly dependent if and only if non-zero integer numbers k, I exist 
such that ka = lb. 

4- <a> = <b> if and only if natural numbers k,l exist such that \a\ < k\b\ and 
\b\ <l\a\. 

5. a, b are l-dependent if and only if a natural number k exists such that \a\ < 
k\b\ or a natural number I exists such that \b\ < l\a\. 

6. a, b are linearly l-dependent if and only if \a\ A |b| ^ 0. 

Proof It follows from 6, 8 and the previous remark. Clearly, [a] = [b] if and only 
if integer numbers k,l exist such that a = kb,b = la and therefore a = kb = kla 
and a(kl — 1) = 0 hold. The fact that G is torsion free implies kl = 1 and 
k = l = 1 or k = / = - 1 . • 

Proposition 12 A union of an increasing chain of independent (l-independent 
resp., linearly independent resp., linearly l-independent resp.) subsets of an l-
group G is again independent (l-independent resp., linearly independent resp., 
linearly l-independent resp.) in G. 

Proof We shall prove only for the independence. Let {Mi : i G / } be an 
increasing chain of independent subsets in G, M = VJ^iMi and let us prove that 
all non-empty finite subset K in M is also independent. If K = {k\,..., kn} 
then subsets Mj exist such that kj G Mj for j = l , . . . , n . Therefore K C 
U"=1Mj C Mi for some / G / and K is independent. • 

Corollary 13 Every independent (l-independent resp., linearly independent resp., 
linearly l-independent resp.) set of an l-group G is contained in a maximal inde­
pendent (l-independent resp., linearly independent resp., linearly l-independent 
resp.) set in G. 

Proof Follows from 12 and the Zorn's lemma. Q 

Definition 14 We say that a subset M of an l-group G generates (l-generates, 
resp.) the l-group G when [M] = G(<M> = G,resp.) holds. The elements from 
M are called generators (I-generators, resp.) of the l-group G. 

Proposition 15 All maximal independent sets of an l-group G are systems of 
I-generators in G. 
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Proof Let L be a maximal independent set in G and let g G G\L. Then 
L U {g} is dependent and thus a finite dependent subset F = {/i,..., fn} exists 
in L U {#}. Clearly g G F and we can choose g = f\. Proposition 6 implies the 
existence of i G { 1 , . . . ,n} and integer numbers p i , . . . ,p;_i ,P i+i , . . . ,Fn such 
that 

/. = !>/;+ X>I7-
j=i j = i + i 

If i = 1 then 
i—1 n 

9 = Y,pjfj+ E ft// 
j = l j=i+l 

and thus # is 1-generated by elements from L. If i ^ 1 then 

i —1 ?i 

fi = Y,Pif!+ Y,Pifj+Me 

j=2 j = i + l 

and thus 

I/I < iPiiisci = IPI/I = i/i - S > / ; - E w/ici 
j=2 i=»+i 

(see Notation 2). Finally, g G < F > C <L> and L is a system of 1-generators 
of G. • 

Theorem 16 Let G be an l-group, I be a non-empty set and M = {m« : i G 1} 
be a subset of G. Then G is a direct product of subgroups <nti> if and only if 
M is linearly l-independent system of I-generators ofG. 

Proof Recall that G is a direct product of subgroups H{(i G I) if and only if 
all Hi are normal subgroups in G, G is generated by subgroups Hi and 

^ n ^ Hj = {0} 
jei\{i} 

holds for all i G / . 
=>: For all g G G it holds \g\ = Yl?=i -̂> where hi G <m/>, i.e., 

71 71/ 

M<EX>KI. 
1=1 j=l 

where p^n,n\ are natural numbers (see Notation 2). Finally, M is a system of 
1-generators in G. 

Further, \m\\ A \mc-\ G <m^> fl <m,j> = {0} for all mi,mj G M, m* 7-= m7 

and Proposition 9 follows that M is a linearly l-independent set. 
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<=: 1-ideals <m^> are normal subgroups (for i G I) and g+ < zCjLiPjlmjl> 

"9" ^ /CjLiPJImjCl h°'d for suitable elements mj,m'j G M and natural num­

bers pj,Pj,n,n'. Corollary 2, p . 105, [1] follows the existence of elements 

hj.h'j e G such that 0 < hj < Pj\mCj\, 0 < h'j < P^|m/| and g+ = £ " = 1 fy, 

—g~ = S j L i ^j- Therefore 

n n' 

p = g++^- = E ^ ~ E / i i 
j=i j=i 

and G is generated by subgroups <m^>, i G I. Finally, # =: /ii H I- /it holds 
for all g G <m?:> n zCjeI\{i} <mj>> where /^ G < m j > , j = 1 , . . . , / , j ^ i. 
Thus 

M A 1̂ 1 < 5^PfcK| A^g/ilft/jl, 
ib=i h=i 

where Pk,qh,u,v are natural numbers and ak (&h, resp.) is conjugated with 
mi (raj, resp.). Proposition 9 follows that \dk\ A \bh\ = 0 (for k = l , . . . ,w , 
/ = 1, . . . , T / ) and thus |s|A|.fy| = 0 (j = 1,... ,/). We have \g\ = \g\A\h1 + -- + 
hi] = 0, g — 0 and together G is a direct product of subgroups <m^>. • 

Rema rk Let M = {m* : z G / } be a non-empty subset of an 1-group G. Then 
we can prove similarly, that G is a direct product of subgroups [mi](i G I) if 
and only if M is a linearly independent system of generators in G. 

Let us investigate a linearly 1-independent system of 1-generators of an 1-
group G in the last part of this paper. We could take this system for an 1-basis 
of G but the following propositions show that an introduction of that notion is 
not acceptable. 

Corollary 17 A linearly l-independent system S of l-generators of an I-group 
G is a maximal linearly l-independent set and a minimal system of l-generators 
in G. 

Proof If H is a linearly l-independent subset in G, S C FT, then \h\ < 
zC?=i Pj\s<j\ for h ^ H\S, where Pj are natural numbers, Sj G S for j = 1 , . . . , n 
(Notation 2). Proposition 9 follows \h\ = \h\ A ££=iPj l 5 j l = 0, i.e., h = 0, a 
contradiction. Thus 5 is a maximal linearly l-independent set in G. 

If L is a system of l-generators of an 1-group G, L C 5, then |s| < X ^ i Pj K?I 
for 5 G 5\I/, where pj are natural numbers and l3; G L for j = 1 , . . . , n. Propo­
sition 9 follows |s| = \s\ A X^jLiPjI'jl = 0? i-e-> 8 = 0, a contradiction. D 

Remark A minimal system of l-generators, which is l-independent but is not 
linearly l-independent, exists in the additive 1-group of all real functions on [0,1]. 
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Proposition 18 Let G be an I-group and M be a system of I-generators in G. 
Then the following assertions are equivalent: 

(i) M is a minimal system of I-generators in G. 
(it) M is an l-independent set in G. 
(Hi) M is a maximal l-independent set in G. 

Proof It follows from definitions immediately. • 

Example 19 Let G be a linearly ordered group and 0 < / G G , / / 0 . Then 
Igl < / o r / < |g| for all g G G, i.e., {/,#} is 1-dependent. {/} is a maximal 
l-independent set and a maximal linearly l-independent set in G. If {/} is a 
system of 1-generators in G then \g\ < nf holds for all g G G and suitable 
natural number n. Finally, if G is totally non-archimedean, in the sense that 
for all a G G there exists b G G such that n\a\ < b holds for all natural numbers 
n, then G has no l-independent system of 1-generators. If a finite system of 
1-generators exists in an 1-group G then a minimal system of 1-generators exists 
i nG . 

Example 20 The additive group K of complex numbers is an archimedean 1-
group with the positive cone K+ — {a + bi : 0 < a, 0 < b}. Then K = <1 + i> = 
<1> + < i> and {l + i} ,{ l , i} are linearly l-independent systems of 1-generators 
in K (see Theorem 16). Thus 1-groups exist with finite (linearly) l-independent 
systems of 1-generators which have different numbers of elements. 

Proposition 21 Let M, N be infinite l-independent systems of l-generators of 
an I-group G. Then sets M and N have the same cardinality. 

Proof A finite subsets Na in N exist such that a G <Na> for all a G M. It 
means that G = < M > C < U a G M JVa> and TV C UaeMNa C N holds from 18. 
Finally, N = UaeMNa and \N\ < £ a G M |j\Ta| < K0 |M| < \M\ hold. We have 
|7V| < \M\ and similarly \M\ < \N\. • 
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