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Abstract 

Given a nine-element set A and a lattice L of permuting equivalences 
on A, it is shown that there exists a Malcev function A3 —> A that pre­
serves all members of L. The same statement was previously known 
to hold for | A | < 8 and to fail for \A\ > 25, and it remains open for 
10 < | A | < 24. 

K e y w o r d s : Malcev function, Malcev term, equivalence lattice, con­
gruence permutability . 

1991 Mathematics Subject Classification: 08B05 

1 Introduction and the main result 

Given a set A, a function p : A3 -» A is called a Malcev function on A if 
p(x,y,y) = p(y,y,x) = x holds for all x,y £ A. If, in addition, p(xi,X2,xs) = 
p(xi(r,X2a,X3<7) holds for all x\,X2,x% G A and any permutat ion a then p is 
said to be commutative . If an algebra A has a Mafcev function compatible 
with all congruences of A then A is known to be congruence permutable . A 
classical result of Malcev [5] asserts tha t the converse is also true when we 
consider a variety of algebras rather than a single algebra, and Gumm [3] points 
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out that this is not the case for a single algebra. Remarkably enough, Pixley 
[6] proves that there is another congruence property, the arithmeticity, when 
the known Malcev characterization for varieties works for single finite algebras, 
and Gumm [3] shows that arithmeticity is, in some sense, the only congruence 
property where the passage from varieties to single algebras is possible. 

For single algebras with a limited number of elements the situation is more 
pleasant. (The title of the paper refers to single small algebras, in short smal-
gebras.) Chajda [1] and later Chajda and Czedli [2] proved that if an algebra A 
has permuting congruences and \A\ < 4 resp. |^4| < 8 then there exists a Malcev 
function A3 -> A preserving all congruences of A. These proofs make heavy use 
of Pixley's ideas from [6]. In fact, [2] contains a bit stronger statement, namely 

Theorem A ([2]) Let A be a set with \A\ < 8 and let L be a sublattice of 
the lattice of equivalences on A. Then the equivalences belonging to L permute 
(i.e., p o v — v o p holds for all p,v £ L) iff there exists a commutative Malcev 
function on A which is compatible with every member of L. 

The authors have the feeling that numbers of the form km with integers 
k > 2 and m > 2 may play a distinguished role when investigating the existence 
of Malcev functions. This feeling is supported by the proofs presented here and 
in [2], in particular by Lemmas 6 and 7 in the present paper, by the fact that 
commutativity from Theorem A must surely be dropped when \A\ exceeds 23, 
cf. [2], and by Gumm's example showing that Malcev functions need not exist 
when |.A| > 25, cf. [3] and [2]. This leads to the question if the smallest number 
for which Theorem A without commutativity fails is of the form km (k,m > 2); 
this motivates the present investigation, which can also be of some interest in 
studying intersections of certain maximal clones on a finite set with less than 
ten elements. 

We intend to prove the following result. 

Theorem 1 Let A be a set with \A\ < 9, and let L be a sublattice of the lattice 
of all equivalences on A. Then the following two conditions are equivalent: 
(i) the members of L permute; 
(ii) there is a Malcev function on A which is compatible with each member of L. 

2 Lemmas and proofs 

While (ii) =-> (i) is well-known, cf. e.g. Malcev [5], the converse implication 
follows less easily. Firstly, we recall six lemmas from [2]. Notice that the proofs 
of Lemmas 1, 3, 4, 5 and 6 did not use the condition \A\ < 8. The original proof 
of Lemma 2 settles | A\ = 9, which is sufficient for the present paper. (Note that 
a more or less straightforward modification of the original proof yields Lemma 
2 for | A | > 9.) The general assumption in our lemmas is that A is a finite 
set and each permutable equivalence lattice on a set with less than \A\ ele­
ments permits a compatible Mafcev function. We will often consider diamonds, 
i.e., five-element non-distributive modular (sub)lattices, their elements will be 
denoted by CJ, a, /?, 7 and t such that UJ < a < t, UJ < (3 < t and UJ < 7 < t. 
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Lemma 1 If there exists a p G L\ {0} such that p < u holds for every diamond 
{cO,a,/3,7, t) in L then we are done. (I.e., then there is an A3 -> A Malcev 
function which is compatible with all members of L). 

Let us call an equivalence p G L semicentral if po v = pVJv (set theoretic 
union) holds for every v G L. (Note that p o v = p\/ v by permutability.) 
All references to the following lemma will use the fact that if p G L is not 
semicentral then v || p holds for some v G L. 

Lemma 2 If there exists a semicentral p G L \ {0,1} then we are done. 

Although the following assertion is evident, its notation, which comes from 
"shifting principle", gives an economic way of reference and of exploiting per­
mutability. 

Lemma 3 Let p,p G L, let B and C be distinct p-blocks, and suppose (B x 
C)np^0. Then 

SP(/i, p) : (V6 G B)(3c G C)(b p c), and (Vc G C)(3b G B)(b p c). 

For positive integers i\ > ii > • - • > it we say that an equivalence is of 
pattern i\ + %2 + * • • + it if it has exactly t blocks and these blocks consist of 
*i> hi • • •> U elements. Blocks with more than one element are called nontrivial 
blocks. 

Lemma 4 If L\ {0,1} has a member of pattern j + 1 H h i or a member of 
pattern 3 + 2 + 1 + - + 1 then we are done. 

Lemma 5 If there are p,v G L such that 

• p < v, 

• v has exactly two blocks, B and C, 

• \B\ > 1 and \C\ > 1, 

• C is a block of p as well, and 

• p has a singleton block 

then we are done. 

Lemma 6 Le£ M3 = {cO,a,b, 7, t) be a diamond in L such that \A/u\ < 8. 
Then the following three statements are true: 

(a) Each block B of I/UJ consists of a square number of elements. 

(b) If \B\ = 4 then the restriction of any of a/co, /3/u and 7/u; to B is of 
pattern 2 + 2. 

(c) If \B\ = 4 and B is the only nontrivial block of L/UJ then the interval [u, t] 
of L coincides with M3. 
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Let Z 3 = ({0,1,2},+) be the cyclic group of order three. Denoting the 
elements of Z 3 x Z 3 by xy or sometimes by (x,y), x,y G Z 3 , we generalize the 
previous lemma as follows. 

L e m m a 7 Let M3 = {cO,a,b, 7, t} be a diamond in L. Then (a), (b) and (c) 
of the previous lemma hold. Now let B b~e a nine-element block of t/uo, then the 
following two statements are also valid: 

(d) B is, up to a bisection, Z3 x Z3, and we have 

and 

xyax'y' <£=> x = x\ xy ft x'y' <=> y = y', 

xy 7 xy <=-> x — y = x — y . 

(e) If B is the only nontrivial block of t/uo then the interval [cO,/,] of L is either 
M3 or AI4 = M3 U {6} where 

xy S x'y <=> x -f y = x' + y'. 

Proof The argument given for Lemma 6 in [2] proves (a), (b) and (c) of the 
present lemma as well. We can assume that UJ = 0, for otherwise A/u and 
{p/uj : p G L, u < p} could be considered instead of A and L. Now Gumm [4, 
Lemma 2.3], and the fact that three-element loops are (isomorphic to) Z 3 yield 
(d). (Notice that Gumm prefers 5 to 7, but using the automorphism x »-> — x 
for the second component of Z 3 x Z 3 we can swap 7 and 5.) 

Now, to prove (e), we can assume that, in addition to UJ = 0, 1 = 1. Indeed, 
if B ^ A then, by SP(i,...), the members of L\B — {P\B • P £ L} permute, so 
we can work with B and L\B rather than A and L. We claim that 

a, /? and 7 are atoms in L. (1) 

It suffices to show that a is an atom. Then so is /3 by symmetry, and we can 
argue for 7 as follows. Let (ab,cd) G 7 \ v for some v £ L with 0 < v < 7. 
Then a / c or 6 / d. Let a 7-= c; the other case is similar by a-/3 symmetry. 
Then aO a ah v cd a cO and a0 ft cO shows that ft A (a V v) ^ 0. But /? is an 
atom, so ft < a Vv. Using modularity and the description of M3 let us compute: 
7 = 7A(aV/3) < 7 A ( a V a V i j ) == 7 A (a V l/) = v\/ (aA^f) = vVO = v, whence 
v = 7 and 7 is an atom. 

Now, to show that a is an atom, suppose that (xy,xz) £ v < a for some 
v G L \ {0} and x,y,z e Z3, y ^£ z. Then SP(/?, 1/) and z/ < a give (2/2/, 2/2) G v. 
From (00,1/?/) € 7> SP(7,i/) and 1/ < a we infer (00,0^) G *v where ii = z — y y£ 0. 
Repeating the previous ideas, SP(7,i/) gives ( M , (w,2?i)) G z/, then SP(/?, */) 
yields (0tz,(0,2u)) G 1/. Hence [00]i/ D {00,0?/, (0,2u)} = [00]a, and SP(0,t/) 
implies v = a, proving (1). 

Now we formulate the "dual" of (1): 

a, ft and 7 are dual atoms in L. (2) 
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Indeed, suppose that a < v < 1 for some v G L. Then v collapses two a-blocks 
[aO]a and [60]a, a ^ b. Since (aO, 60) G /?, (1A v / 0. From (1) we obtain 0 < v, 
and l = a V / 3 < . v V i / = i / i s a contradiction. The treatment for the rest of (2) 
is similar. 

Let M4 denote the six-element (abstract) modular lattice of length 2. From 
(1), (2) and modularity we conclude that L is also of length 2. Hence we obtain 
that _ 

for any v G L\ M3, M3 U {v} *. M<. (3) 

Now we claim that for any v G L 

v < ^ => v = 0; (4) 

here we do not assume that S G L. Suppose 0 < 1/ < 5. Since (5-blocks consist of 
three elements, v has a singleton block {xy}. Hence [xH](a V v) = [xy](z/ o a) = 
[xy]a i=- A, albeit a V v = 1 by (3). This shows (4). 

It is easy to check that for each xy G A, 

[xy]6 = {xy} U (yl \ ([xy]a U [xy]/? U [ ^ b ) ) - (5) 

Finally, let v G L \ M3. Since i /Aa = i/A/3 = i /A7 = 0by (3), we obtain 
z/ < S from (5), and (4) gives v = 6. This proves the lemma. • 

An element a G A will be called separated (with respect to L) if [a]l/ is a 
singleton for all v G L \ {1}. Given an equivalence v £ L and a subset Ar C j4, 
X is said to be v-closed if [y]v C A" for every y G X. 

L e m m a 8 If A has a separated element then we are done. 

Proof Let z G A be a separated element, and let B = A \ {z}. Since L\B — 
{ i / | j 3 . i /Gl /} i sa lattice of permuting equivalences over B and |J5| < \A\, there 
is a Malcev function q : B3 -> B which is compatible with L\B- Let us define 
p : A3 —> A by the following properties: p extends g, p(a, 6, z) = p(a,z,b) = 
p(z,a,b) = z for all a,b £ B, and p(x,z , z) = p(z ,x, z) = p(z ,z ,x) = x for all 
x G .A. Then p is a Malcev function, which is compatible with L. • 

Armed with the previous lemmas, the proof of Theorem 1 runs as follows. 
We can assume that L includes a diamond, for otherwise Lemma 1 is applicable 
with /x = 1. Let us fix a diamond A/3 = {a;,a,/3,7,1} in L for which u is 
minimal. By Lemmas 6 and 7 we do not have too many possibilities for M3 . 
Moreover, if we disregard from those settled by Lemma 4 (for t or u) or Lemma 
5 (for L and UJ) then it is easy to list the rest, and eleven cases remain. These 
cases are depicted in Figures 1-11. These figures indicate the t-blocks by closed 
polygons and the cO-blocks by closed curves, however, singleton blocks are never 
indicated. Whenever the elements of A are labelled, we always assume 

{(a ,d) , (6 ,c)}Ca, {(a,c), (6,rf)} C 0 and {(a,6),(c,d)} C 7. 

Hence our figures determine a, /? and 7, provided a, b, c and d occur as labels. 
Some t,-blocks are denoted by capital letters. Equivalences will often be given 
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by partitions, so formulas like p = {{a,6,c,d,e}, { / , < ? , / M } } should not cause 
any confusion. 

Now Case 1, cf. Figure 1, is clearly settled by Lemma 7, for the Malcev 
function p(x, y, z) = x — y -F z on the Abelian group Z3 x Z3 preserves the 
group congruences Q, /3, 7 and 6 described in the lemma. 

Figure 1 

Figure 2 Figure 3 

Figure 4 Figure 5 

In Cases 2,3,4 and 5 we are going to show that for any other diamond 
M3 = {u/, Q', /?', 7', */} in L we have cO < a/; then Lemma 1 applies with /i = a;. 
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Suppose u) ̂  u)1. By the minimality of u;, u)' \\ u)y so we can choose a pair (x, y) G 
u/ \ u). Using SP(a,u/) or SP(/3,u/) we can assume that x = d. If y € [a]u> 
then SP(u;,u/) yields [d]u/ D [a]uU{d}, and we infer from SP(/3,u/) that uj' has 
at most \[c]u\ + 1 < 3 blocks, which contradicts Lemma 6. Similarly, y £ [b]u 
implies [d]u)f D [b]u U {d} by SP(u;,u/), whence u/ has at most |[c]uJ| + 1 < 3 
blocks by SP(a,u/) . Hence [d]u/ \ {d} C [c]u. Repeating the previous argument 
with SP(cO,u/) and SP(a,u/) we obtain that [d]u)' = [c]u) U {d} and u/ has at 
most \[b]u)\ + 1 blocks. This settles Cases 2 and 4 by Lemma 6. Moreover, in 
Cases 3 and 5, u/ has exactly four blocks: [d]u)f and the u/-blocks of elements 
of [b]u). Clearly, u) A u' is of pattern 2 + 1 + • • • + 1, and Lemma 4 applies. 

Figure 6 Figure 7 

In Cases 6 and 7 we can assume that h is not separated, for otherwise Lemma 
8 is applicable. Hence there is a v e L \ {1} such that [h]v D (B U C) ^ 0. We 
infer from SP(i, v) that [/i]i/ fl J5 ^ 0 implies [% D B u { / i } and [% n C ^ 0 
implies [/i]z/ D C U {/i}. Hence J5 U {h} or C U {/i} is a block of v, and Lemma 
5 applies for t and t\/ v. 

Figure 8 

In Case 8 we claim that, for any p £ L>\ {1}, 

if 5 is not p-closed then [a]p = B u C o r [a]p = BUD. (6) 
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Indeed, suppose the contrary. Since the role of C and D is symmetric, 
p H (B x C) 7-- 0 can be assumed. From SP(t,,p) we conclude [b]p n C ^ 0, 
whence SP(uo,p) yields [b]p D {6, / , # } . Resorting to SP(^,p) again we obtain 
B U C C [6]p = [a]p. This inclusion cannot be proper, for otherwise SP(t,p) 
would lead to p = 1. 

Now let us observe that 

if B is not p-closed for some p fi L\ {l}then we are done. (7) 

Indeed, by (6) we can suppose [a]p = B U C. Then i V p = {B U C, D}, and 
Lemma 5 applies for cO and i\l p. 

Now Case 8 will be settled rapidly. By Lemma 2 we may suppose that i is 
not semicentral and, by (7), this is witnessed by some p (p || t,, p G L) such 
that B is p-closed. Then ^ V p = { J 3 , C U D } i s either semicentral and Lemma 
2 applies or B is not ^-closed for some v G L \ {1} and we invoke (7). 

Figure 9 Figure 10 

Figure 11 

Now we are left with Cases 9,10 and 11. In virtue of Lemma 1 and the 
fact that Cases 1, . . . , 8 have been settled we can assume that L includes two 
diamonds M3 = {cj,a,/3,7, t] and M3 = {cj /,a ,,/? ,,7 /,l,'} such that u \\ a/ and 
both M3 and M3 belong to Cases 9, 10 and 11. Apart from M3-M3 symmetry, 
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this gives rise to six possibilities, which will be handled separately. In what 
follows, figures 9, 10 and 11 will describe M3 while the elements a',b',... and 
subsets B',C,... of A together with the corresponding figure refer to M3. 

Cases 9-10 and 9-11: when M3 is of type 9 and M3 is of type 10 or 11. Let us 
take a pair (x,y) E uJ \UJ. Apart from labelling, (x,y) = (a,b) or (x,y) — (b,c). 
When (x,y) = (a, b) E UJ' then SP(cO,o/) cannot hold, for cO' has two-element 
nontrivial blocks only. Hence (x.y) — (b,c) E UJ', and SP(/3,UJ') leads to a 
contradiction, for (b,c) $ 0 and there are (numerous) singleton cO'-blocks. 

Cases 10-10 and 10-11, when M3 is of type 10 and M% is of type 10 or 11. 
By Lemma 4, UJ A UJ' = 0 can be assumed. If (x,y) E UJ' \ 0 then {x,y} C L? 
or {x,y} — {h,i}, for otherwise SP(L,UJ') would enlarge UJ!. Hence if (h,i) E UJ' 

then L AUJ' is of pattern 2 + 1 + • • • + 1 and Lemma 4 applies. Therefore both 
two-element cO'-blocks are included in B. So either |[a]cO'| = 2 or \[e]uj'\ = 2, 
which contradicts SP(cO,cO') and UJ A UJ' = 0. 

Case 9-9, when both M3 and M3 are of type 9. We focus our attention at 
the three-element blocks [a]cO and [a']a/. 

If [a]cO = [a']ujf then UJ A UJ' is one of the following patterns: 3 + 1 • • • + 1, 
3 + 2 + 1 + - - + 1 and 3 + 2 + 2 + 2. However, the last one is impossible by 
UJ ^ UJ', and the first two are settled by Lemma 4. 

If \[a]uj n [a']u/| = 2 then we can assume that a = a!, e' = e and / ' = c, i.e., 
[a']uJ = {a,e,c}. It follows from SP(a,cO') that UJ and UJ' have no two-element 
block in common. Thus UJ AUJ' is of pattern 2 + H hi , and Lemma 4 applies. 

If |[a]cOn[a']cO'| = 1 then let x E [a']u/\[a]cO and let y be the unique element of 
[X]UJ\ {x}. We have (x,y) <£ UJ', for otherwise SP(CJ,CJ') would enlarge u'. Then, 
however, SP(UJ,UJ') yields \[y]u' n [a]uj\ = 2, contradicting \[y]uj'\ < \[a']uj'\ = 3. 

If [a]cj n [a']cO; = 0 then there is an x E [a]uj such that \[X]UJ' n [a]cO| = 1 and 
|[.T]cO'| = 2. Let y E [a:]ci/\{x}, working with [a]u; and [y]uJ we get a contradiction 
by SP(UJ,UJ'). 

Case 11-11, when both M3 and M3 are of type 11. By Lemma 4 we can 
assume that UJ A UJ' = 0. First we show that 

B = IT or 5 n 5 ' = 0. (8) 

Indeed, suppose the contrary. Then there are elements X\ E BOB', x-z E B\B' 
and x3 E £ ' \ i?. Then \[X3]L\ = 2, for otherwise SP(t, i') would enlarge /,'. Let 
X4 E [x3]t \ {x3}. Then (x3 ,x4) E CJ, and SP(t,//) gives (x2 ,x4) E i'. Hence 
£4 $ 5 ' , and SP(L',UJ) clearly leads to a contradiction. This proves (8). 

Now let us assume that \[i]t'\ > 1. Prom SP(t, 1') we easily infer that \[i]t'\ 7-= 
2, whence [i]i' = B'. By (8) we can assume that B' = {i,e,f,g}. Then h £ B', 
and SP(L',UJ) leads to a contradiction. Therefore \[i]t'\ — 1, i.e., i — i'. 

By Lemma 8 we can assume that i is not separated. Hence there is a v E 
L \ {1} with |[i]i/| > 1. Suppose first that B n £ ' = 0, i.e., J5' = {e,f,g,h}. 
Since the role of AI3 and Af3 is symmetric, [i]v f) B ^ 0 can be assumed. Then 
[i]// D B b y SP(/,, v). Since [i]t/ n J?' / 0 would similarly imply [i]v D B' albeit 
v ^ 1, [z*]// = F?(j{i} and Lemma 5 applies for VVL' = {{a,6,c,rf,i}, {e,/,g,ft}} 
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and^W' = {{a,b ,c,d}, {i}, {e,/ ,#, /*}} . Secondly, let BOB' ^ 0, then B = B' 
by (8). Now, taking u A u/ = 0 into account, JB is the only nontrivial block of 
L A tf, and Lemma 4 applies. This proves Case 11-11, and also Theorem 1. 
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