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Abstract
The characterization for a class of functions of useful parameters which
are estimable under the model with nuisance parameters and under the
model, where the nuisance parameters are neglected and estimators of
which have the same variance in both mentioned models is given in the
paper.
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1 Introduction

Let R™ denote the space of all n-dimensional real vectors, let u, and A, ,, de-
note a real column p-dimensional vector and a real m x n matrix, respectively.
The symbols A’, AY)| Z(A), #(A), r(A), Tr(A) will denote transpose, j-th
column, range, null space, rank and trace of the matrix A, respectively. Fur-
ther vec(A) will denote the column vector ((A(l))’, cen (A("))’)' created by the
columns of the matrix A. The symbol A® B will denote the Kronecker (tensor)
product of the matrices A, B. A~ will denote an arbitrary generalized inverse
of A (satisfying AA~A = A), A will denote the Moore-Penrose general-
ized inverse of A (satisfying AATA = A, ATAAY = AT (AAT) = AAT,
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(AT A) = AT A). Moreover P, and Q4 will stand for the ortogonal projector
onto #Z(A) and Z*(A) = N (A’), respectively. A* will stand for any matrix
such that Z(A*') = Z*(A). The symbol I denotes the identity matrix.

If Z(A) C #(S), S p.s.d., then the symbol Pi_ denotes the projector
projecting vectors in %Z(S) onto Z(A) along Z(SA™). A general representation
of all such projectors P35 is given by A(A’S™A)~ A’S™ + F(I — §57), where
F is arbitrary, see [4], (2.14). Q3 =1 - P5 .

Let
Yn,m = Xn,kBk,lZl,m + En,m (1)

be a multivariate linear model under consideration.
Here Y is an observation matrix, X, Z, are known nonzero matrices, € is a
random matrix and B is a matrix of unknown parameters

B = (BlaB2)7

where B is a k X 7 matrix of useful parameters which (or their functions) have
to be estimated from the observation matrix Y and B; is a k£ X s matrix of
nuisance parameters. Thus we consider the model

Y = X(By, B,) (?) +e. (2)
2

Similarly as in [3] (where the linear model Y = X BZ + SGT + ¢ under the
assumption var(vec(Y')) = I ® X was considered), the purpose of this paper is
to characterize the class of all linear functions of the useful parameters vec(B,)
which are unbiasedly estimable under the model with nuisance parameters and
under the model, where the nuisance parameters are neglected and estimators

of which have the same variance in both models mentioned.
A parametric function p’vec(B;) is said to be unbiasedly estimable un-

der the model (2) if there exists an estimator L' vec(Y), L € R™, such that
E[L'vec(Y)] = p’ vec(B,), VY vec(B}),¥ vec(B3).

2 Auxiliary statements

Lemma 1 The model (2) can be equivalently written in the form

vee(Y) = [Z,® X, Z} ® X] ( zz‘c’gg;; ) + vec(e). 3)

where a r x m matriz Z1 and a s X m matriz Zs are known nonzero matrices.
Proof is obvious by virtue of the following statement
vec(ABC) = (C' ® A) vec(B), 4)

valid for all matrices of corresponding types. m]
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Suppose that the observation vector vec(Y) has the mean value

E(vec(Y)) = [Z,® X, Z}, @ X] (zzgég% ) ,

and the covariance matrix
var[vec(Y)] = Zpm ® I,

where I (the covarince matrix of any row of the matrix Y') is obviously at least
p.s.d.
In this paper we consider the linear model (see [4])

MBI = |vec(Y), (Z, © X, Z, ® X) (zgzgg;;) Y I] ,

with nuisance parameters and the linear model
ML I) = [vec(Y),(Z] ® X)vec(B1), 2@ I],

where nuisance parameters are neglected.
Assume X be such that

Z2(Z72X,Z2,9X)CZ(XI). (5)
This condition is warranted by
Z(Z)C2Z) & Z(Z,)CZ(Z), (6)
that will be supposed throughout. Under the assumption (5)
vee(Y) € Z(E®I) (a.s.).

Notation 1 Let, according to [4], 6, and & d.note the sets of all linear func-
tions of vec(B1) which are unbiasedly estimable under the model /,(X @ I)
and #(X ® I), respectively. The index a will indicate, that the estimator is
considered in the complete model, i.e. in the model with nuisance parameters.

Obviously
E={p'vec(B,) :peZ(Z,® X")}. (7)

Remark 1 The considered function p’vec(B;) can be expressed in another
form: p = (p},...,p;)’, where p; are k-dimensional vectors, j = 1,...,r. Let
P’ = (p,,...,pr). Using the fact that

(vec(A")) vec(B) = Tr(AB),

we have

.' p' vec(B1) = (vec(P")) vec(B1) = Tr(PBy).
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Remark 2 In view of the relation (4)
PER(Z:1®X') <= FAmn, p=(Z:9X')vec(A') & JAn s, P=Z,AX.
Let us consider the class &.

& = {p' vec(By) :p € R*", AL € R"™, Vvec(B,) € R*",
Vvec(B,) € R**, E [L'vec(Y)] = p' vec(B1)}-

The equality
E[L'vec(Y)] = L'(Z}, ® X) vec(B1) + L'(Z% ® X) vec(B2) = p’ vec(B1),

Vvec(B1),V vec(Ba),
is fulfiled if and only if

p=(Z,9X\L & (Z:® X')L=o,
which is equivalent to
P=(Z1®X")Qzgxu, u€R™.
Thus

Lemma 2

& = {p/ vec(B1) : p € Z[(Z1 ® X')Qz,x]}
= {p' vec(B1) : p € 2(2:1Q 7, ® X')}. (8)

Remark 3 Using the matrix P from Remark 1 we get
PER(2:1Qz @ X') <= JAp, such that P = Z:1Q7,AX.
Comparing (7) and (8) it is obvious that
&, C 6.
Moreover,
Lemma 3
E,=6 = R(Z,9X)NR(Z)® X) = {0} > #(2;)N%(Z3)={o}.
Proof Under the condition 2 C &
=6 0=r(Z; 0 X")-r[(Z:1® X')Qz;eox]
= dim [ﬂ(z'1 ® X) mgi(Qz;M)] — dim [2(2, ® X) N 2(Z5® X)],
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using the fact that (see [4], (2.4))

r(A) — r(AB) = dim[2(A") N Z~*(B)]. 9)

b= = 0=1r(Z19X")-r(Z:Qz ® X))
= 0=r(Z;) — T(Zle;) =

dim [#(Z}) N %L(QZ;)] = dim [2(2}) N %(2)],

where r(A ® B) = r(A)r(B) was taken into account. o

We assume throughout that
2(Z\ 9 X)¢ Z(Z,e X).

f%(2,®X)CZ(Z,® X), then #(2:Qz ® X'y ={o}.
Notation 2 Denote vec/(-El) and vec(/El)a an (X~ ® I)-LS estimator of the
parameter vec(B;) computed under the linear model #Z(X®I) and A,(EQ1I),
respectively (see [1], p. 161). .

According to the assumption (6) p’ vec(B;) and p’ vez(\Bl)a is the BLUE of
the function p’ vec(B;1) € & and p’ vec(B1) € &,, respectively (see [1], Theorem
5.3.2., p. 162).

Lemma 4

p'vec(By) = p' [(Z:572,)" 2,57 © (X'X)™ X'] vec(Y),

if p'vec(By) € &, (10)
P’ vec(Bi)s = P/ {[zlz-qgg Z" 7579 © (X’X)-X’}vec(y),
if p'vec(B1) € &, (11)
varlpvec(B1)] = p' [(2:272)” ® (X'X)7] p,
if p’'vec(B1) € &, (12)
var [p' vec(B1)a] = p' (2157 QF, 21)” @ (X'X)"| p,
if p'vec(B1) € &,. (13)

These expressions are invariant to the choice of g-inverse matrices.

Proof Under .#, we have
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1
—(Z, e X ZoX) el (ZoX 2eXx) (29%
1 y #2 1 )y <2 Zz@X

X (E@ I)™ vec(Y')

[z2> 2,0 X'X, 2,5 2,9 X'X| (Z:3" X v "
[zgz-zg@)x’x, Z,5"Z, X'X Z5- o x' ) VoY) (14)

The estimate obtained by a substitution of this expression into unbiasedly es-
timable function is given uniquely.

Using the following Rohde’s formula for generalized inverse of partitioned
p.s.d. matrix (see [2], Lemma 13, p. 68)

A, B\  _
B, C -
(A" +A B(C-B'A"B)"B'A", —A‘B(C—B'A“B)‘)
- —(C-B'A"B)"B'A", (C-B'A™B)~
_ (A-BC B')~, —(A-BC™B')"BC~ >
=\ -Cc"B'(A-BC™B)~,C  +C B'(A-BC B')"BC™ )’
we get the first row A1, Ay of the g-inverse matrix in (14):

Ay = [(212'2'1 ® X'X)

(21T 2@ X'X) (2,5 250 X' X) (22572, ® X’X)}

I

[(Z:2-(1- P32 @ X'X)) = [2:27Q5; 21 & x'x| .

In view of (6) we can choose ¥~ p.d., so we have ng = Zy(Z257Z5) " Z%".

A= -[(2:37Q%, Z)" © (x'X)"]
x (2127250 X'X) [(2.5725)” ® (X'X)7]
-~ [(2:37Q3, 20" 2,5 2425 7)) © (XX) X' X(X'X)7].
Thus

——

vec(B1) = {[(2:27QF; 7)) @ x'X)"| (22" 9 X')
- [(sz‘QEZ Z))" 2,5 22,57 25)" ® (X’X)—X'X(X'X)—}
X (Zy2” ® X')}vec(Y)

= [(212-622; Z\)"Z:57Q%, ® (X'X)—X'] vee(Y).
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We have proved (11).
varlp' vee(B1)a] = 9 { (2127 QF; 21)" 2,37 QF, © (X' X) X|Z@ 1]
< [(QF)S"24(21(QF,)'>2))” © X(X'X) ]} p
= P'{[leth Z\1712,27Q3, Z1][2:X7Qz, Z}]”
B(X'X)"X'X(X'X)" p=p'{(Z:5Q%, Z1)” & (X'X) }p,
where the assertion
uEZ(B)CZ(A) > WA TAA u=u' A u,

was utilized. The assumption p € 2(Z1Q,, ®X') C 2(Z:27Qz, Z1© X'X)
is satisfied. The invariance of (10)—(13) to the choice of g-inverse matrices can
be proved if we take the following assertion (see [2], Lemma 8, p. 65)

AB™ C is invariant to the choice of the g-inverse B~
«— Z(A)C#%(B') & #%(C)c Z(B), (15)
into account.

Remark 4 (10)-(13) are equivalent to
Tr(PB,) = Tr [P(X'X)"X'YS"Z)(2,5"2})7], it Tr(PB)) € &,
TH(PB)s = Tr [P(X'X)" X'YQ, £~ Z,(2:2Q}, Z})" |
if Tr(PB;) € &,
var[Tr(PB,)] = Tr[P(X'X)"P'(Z,5~Z|)"), i Tr(PB;) € &

var[Tr(PB1),] = Tr[P(X'X)”P'(2,5"Q}, Z})7], if Tr(PB1) € &..

3 Efficiently estimable functions

Let, according to [4], é5(X ® I) denote the subset of &, consisting of all those
functions of p’ vec(B1) for which the BLUE under model (X ® I) posseses
the same variance as the BLUE under model .#(X ® I), i.e.

& (Z® I) = {p' vec(B1) € &, : var[p’ Ve/cTBl)] = var[p’ ve?(\Bl)a]}‘

Theorem 1 If p' vec(B1) € &,, i.e. if there exists a matriz Ug such that P =
Z].QZ;UQX, then

p'vec(B1) €6(2Q 1) X'U()QZ;P%— Z,=0.
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Proof Let p'vec(B;) € &,, by (8) it is equivalent to p = (Zleé ® X ")ug for
some vector o € R™". Under this condition the equality of variances

varlp! vee(B1)] = varlp’ vee(B1 )a], (16)
stands for :
w(2:Qz 0 X'y {[(2:27@%; 7)) ~ (2,2 2) ] @ (X'X)" )
x (ZIQZQ®X/)’U,0:0, (17)

Let us denote _
W =(2:27Q%, 2,)” — (Z2:%72})".

Using the implication (see Rohde’s formula)

(g; g) psd. =» (A-BC B')"=A"+A B(C-B'A"B)"B'A~,

to the matrix
ZIE-ZQ, Z]_Z_le
ZgE"ZIl, ZQE*ZIQ ’
we obtain
W = (2,57 2Y)" 2,57 Z5[Z:7 Q% 23] 2,57 Z1(2:57 ZY)".
In view of (6), (15) and [2], Lemma 16, p. 69
Z>%7 QY Zy = Zo[St - £V Z0(2,512Y) 72,5712 = Z5(Q4, Q)" 25,

i.e. this matrix is p.s.d.
One of the choices of the matrices

V™ =(2:57Q% 2y)” and U™ =(X'X)"

can be p.d. (i.e. regular) matrices. Thus V™ = JJ', U~ = KK', where J, K
are regular. Therefore (17) is valid if and only if

(Z2(P3; Y Qz; ® X'Juo = o. , (18)

Let uo = vec(U}). Using matrix P (cf. Remark 1) and (4) we see that (18)
is equivalent to

X'U,Qz P32y =0. o
Theorem 2 The class &(X ® I) is given by
&S0 1) = {p' vec(B1) : p € Z[(Z157 2, © X' X)Qz,3-zppx'x1] |

- {Tr(PBl) .P = 2,57 2,Qy,5-7,VX'X, for arbitrary matriz V} .
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Proof The class &(Z ® I) includes functions p’ vec(B1) € &, (i.e. functions,
where p = (Z1 ® X')Qg1pxu, u € R™"), satisfying (16).
By (17) and by the proof of the Theorem 1 the equality (16) holds for such
functions if and only if
u/QZ;@)X(Z’l ® X){[(le—Z'l)‘ZlZ‘"Z'ZJJ'ZZE‘le(le"Z'l)_] ® KK'}
X (Z]@X’)Qzé@)x’u:o, (19)

where K, J, are regular. It is equivalent to
WQyzex[21 (2,57 24)" 2,572, ® X] = 0.
By using X = PxX = X(X'X)~X'X we see that (19) holds if and only if
Qrexul 2{(Z\ © X)[(210 X') (5~ © I)(2} ® X)]~
x (2,0 X')(=" 9 I)(Z,® X)}
=2(Z1 0 X)N[Z" (2~ @ I)(Z} ® X)) + (2, © X)).

The last equality follows by [4], Lemma 2.1. and (2.15).
Thus

Quoxu € Z(Qzi9x) +[2(27 21 © X)NZ(Qz:6x)]-
It implies that
Qzox¥ = Qz;ex%+ Qggxb= Quexa+ (X7 Zi®X)e.

Since
(Z29 X\ (27Z, ® X)jec =0,

we have c € «@(Qzlz-z;@.x'x), and so

pP= (Zl ® XI)QZ;@XU’ = (le_le ® XIX)QZ;E'Z;@X'X'U! v E Rks,
1.e.

(9"’0(2 ® I) = {PlveC(Bl) ‘pPe g[(212~Z’1 ® XlX)QZ]E“Zé@X'X]}‘ (20)
By the matrix P (cf. Remark 1)

é’o(Z ® I) =
={Tr(PB;): P= ZIE_Zinlz_Z;VX'X, for arbitrary matrix V}. 0
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Theorem 3 dimé& (2 ® I) = r(X)[r(Z:1) — r(Z.27 Z3)].
Proof In view of (9) and (20)
dim&EQI) =r [(zlz- Z' e X’X)QZIE_Z;M,X]
= r(Z157 2} © X'X) - dim [#(Z:27 2} X'X) N #*(Qz5-z0x0x)]
=r(Z,Y7Z2)® X'X)~dim [2(Z,X" 2| @ X'X)NR(Z:£~ 2, ® X'X)].
The assumption (6) yields that Z(Z,%~27) = %(Z,). Thus

dimé&ERI) =
=r(Z)r(X')~dim [Z(Z2,:27 2, X'X)] =r(Z1)r(X")—r(Z,27 Z})r(X).
The assertion
Z(A) CZ(B) & Z(C)CZ(D)=>Z(A®C)C Z(B®D),

was utilized. ]
Remark 5 In this paper we have used the same procedures as in [3]. Model
(1) is the special case of the linear model considered there. It is impossible
to rewrite directly the results given in Lemma 4, Theorem 1 and Theorem 2
because different var(vec(Y')) were assumed. In comparison with [3] new result
about the dimension of the class é3(X ® I) was proved (see Theorem 3).
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