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Abstract

We establish existence results for second order functional differential
equations with fully nonlinear two point boundary conditions. Sufficient
conditions are formulated only in terms of sign conditions. Results are
proved by the topological degree theory.
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1 Introduction

Let J =[0,T], ¢ : R — R be an increasing homeomorphism with inverse g~!

9(0) =0 and
F:C%J) x C'(J) x R = L1(J), (2,9,a)+— (F(z,y,a))(?),
be an operator with the following properties (see [S1]):

(@) (F(=,y,2(1)))(t) € Ly(J) for z,y,2 € C°(J),
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124 Svatoslav STANEK

(b) tgngo(zn,yn,zn) = (z,y,2) in C°(J) x C°(J) x C°(J)
= lim (F(2n,yn, 22 (1)) () = (F (2,9, 2(¢)))(¢) in L1 (]),

(c) for each b € (0, 00), there exists k» € L1(J) such that z,y € C°(J), a € R,
=]l + [lyll + lal < b = |[(F(z, y, a)) ()] < k() for ae. i € J.

Here ||z|| = max{|z(t)|; t € J} is the norm in the Banach space C°(J).
Consider the boundary value problem (BVP for short)

(9" ®)) = (F(=, 2, 2'(1)))(®), (1)

p1(2(0),2'(0), 2(T),z'(T)) =0,  p2(2(0),2'(0),o(T),z"(T)) =0 (2)
where p1,pa € C°(R?).

We say that z € C1(J) is a solution of BVP (1), (2) if g(2'(t)) is absolutely
continuous on J, z satisfies boundary conditions (2) and (1) is satisfied for a.e.
teJ.

The special cases of the operator equation (1) are the equations

(9= (1)’ = @z, 2)(OFt, 2(0), 2'(0), (1)) + (@22, 2))(1),
0O = £(t [ (@(e2))(6) s, 2(0), (1) + (Qala, )0,

where f : J x R — R satisfies the Carathéodory conditions on J x R3, Q; :
CO(J) x C°(J) = L1(J) (i = 1,2) are continuous and for each b € (0, c0) there
exists [, € L1(J) such that z,y € CO(J), ||z||+ ||yl < b = |(Qi(z,9)) ()] < l(t)
forae. t€J.

There are many papers devoted to the consideration of existence results for
BVP (1),(2) where (1) is ordinary differential equation & = f(t,z,z’) with f
either continuous or satisfying the Carathéodory conditions on J x R? and (2)
are fully nonlinear two-point boundary conditions (see, e.g., [BL], [GM], [GGL],
[LL], [Ki], [T1], [T2] and the references cited therein). Existence results are
proved by the method of lower and upper solutions. By this method one can
proved existence results if compatibilities conditions between boundary condi-
tions (2) and the lower and upper solutions hold and, in addition, f satisfies
assumptions guaranteeing a priori bounds on the derivatives of solutions. Com-
patibility conditions were in detail studied in [T;] and [T2]. A priori bounds on
z’ follow, for example, if f satisfies either Bernstein-Nagumo growth condition
with respect to z’ (see [B], [N]) or its one sided generalizations (see [GK]).

Gelashvili and Kiguradze [GK] considered a system of first-order functional
differential equations with the boundary conditions zk(tk) = @k (21, Z2,...,Zn)
(k = 1,2,...,n). Here g : C°(J) x...x C°(J) = R are continuous func-

n
tionals. They gave sufficient conditions for the existence (and uniqueness) of
this BVP. These conditions are of the type of one sided growth restrictions
on the right members of the system and both sided on the functionals ¢
(k=1,2,...,n).
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We observe that Thompson [T;] and [T3] and Kiguradze [Ki] considered
as well BVPs with boundary conditions (z(0),z'(0)) € Qo, (z(T),2'(T)) €
where g, Q; are closed connected subsets of R”.

The second group of papers formulates sufficient conditions for the existence
results only in the terms of sign conditions, that is without growth restrictions
(see, e.g., [Ke], [RS1], [RS2], [RT], [S2]). But two-point boundary conditions
have usually the linear form. Solutions of the equation ¢” = f(t, z, ') with
the Neumann, Dirichlet or mixed boundary conditions were considered in [Ke]
and [RT]. Solutions of a second order functional differential equation with the
above boundary conditions were studied in [RS;], [RSs] and with functional
boundary conditions in [RS;] and [S2].

The aim of this paper is to consider BVP (1), (2) with fully nonlinear bound-
ary conditions (2). Sufficient conditions for the existence of solutions are for-
mulated only in terms of sign conditions. Results are proved by the topological
degree method (see, e.g., [D]).

Throughout the paper we will need the following assumptions:

(H1) There exist constants Ly < 0 < Ly, My < M2,e € {—1,1}andd € {-1,1}
such that
(F(z,y,L2))(t) <0 < (Fe,y,L1))(1) ()
for a.e. t € J and each z,y € C°(J), My — LT < z(t) < My — LT,
Ly <y(t) < Ly fort € J and

ep1(u, L1,w,z) < 0 < ep1(u, Lo, w, 2), (4)
Jpg(u,v,Ml,z) < 0 S 6p2(u1 U’M2’Z) (5)

for u (S [M1 - LzT, Mg - LlT], v,z € [L],Lz] and w € [M1,1M2]-

(H2) There exist constants L1 < 0 < Lo, M1 < My, € € {-1,1}andd € {-1,1}
such that
(F(z,y, L1))(t) <0< (F(z,y,L2))(2) (6)

for a.e. t € J and each z,y € C°(J), M1 + LiT < z(t) < My + L,T,
Ly < y(t) < Ly fort e Jand

ep1(My,v,w,2) < 0 <ep1(Ma,v,w, 2), (M
dpa(u,v,w, L) < 0 < dpa(u, v, w, Ly) (8)

for u € (M1, M), v,z € [L1, L2) and w € [My + Ly T, My + LoT).
:i{:::al‘k 1 The special case of boundary conditions (2) are boundary condi-
2(0) = 61(='(0)),  2(T) = a('(T)), @)
2(0)=4:(2(0)), +(T) = pal(e(T)), @)

1

2(0) = ¢3(2'(0)), &/(T) = y3(=(T)) 2)
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and

1

2'(0) = ¢4(2(0)), &(T) = ¢a(e'(T)), 2)

where ¢i,¥i € C°(R) (i = 1,2,3,4). It is easy to check that inequalities (4)
and (5), e.g., for (21) are equivalent to M; < 91(v) < M, for v € [Ly, L2]
and either ¢1(Ly) > My — L1T, ¢1(La) < My — LT or ¢1(L1) < My — LT,
¢1(L2) > My — LT, and inequalities (7) and (8), e.g., for (2") are equivalent
to L1 < ’¢’2(U) < Ly for v € [Ml + LT, Ms + L2T] end either ¢2(M1) < Ly,
¢2(Mz) > L or ¢3(Mi) > Lo, ¢2(Ma) < Ly.

‘The paper is organized as follows. First, we define two auxiliary BVPs de-
pending on the parameters A € [0,1] and n € N. These BVPs are constructed
accordingly if assumption (H1) or (Hz) is satisfied. We next prove a priori
estimates for solutions of our auxiliary BVPs (Lemma 1 and Lemma 2). Ap-
plying the topological degree theory (see, e.g., [D]), the existence of a sequence
{un(t)} of solutions for BVPs with A\ = 1 is proved in Lemma 3 and Lemma 4.
Finally, by the Arzela—-Ascoli theorem, the existence of a subsequence {uy, (¢)}
converging to a solution of BVP (1), (2) is proved (Theorem 1 and Theorem 2).

2 Notation, lemmas

Let My, Mo, Ly, La,€,8 be constants in assumption (H1) (and (Hz)). Fo‘l; each
z € CYJ), a,U,V ER, U <V and n € N, define z,2*,& € C°(J), aIU €R
and ¢n(-;U, V) : R = R continuous by the formulas

My — L1 T for .’l?(t) > My — I T
i(t) = x(t) for My — LT < .’l:(t) < M, - LT
M, — LyT for .’L’(t) < My — L-T,

My + LT for Z‘(t) > My + LT
z*(t) = ¢ 2(t) for My + LT < z(t) < My + LT (9)
My + LiT for ®(t) < My + L7,

Lz for Ic(t) > Lz
Z(t) = ¢ z(t) for L1 < z(t) < L2
Ly for z(t) < Ly,

Viora>V

v

al, = a forU<a<V (10)
Ufora<U
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and
-1 forv>V+1

V—UforV<v§V+%
tn(v;U,V)=40  forU<o<V (11)

U—vforU——%gv<U

1
n

forv<U——%.

Let Fi : CO(J) x CO(J) x R = Ly(J), pip,ph, :R* >R (i=1,2,n¢€ N)
be defined by

L,

(Fen)0 = (o)) 0+ nei ), o)

(F2(o,,0))(t) = (F(“"’??’“'?

1

)) () = gn(a; Ly, La), (13)

. Mo—L1T Lo M, L»
Pin(u, v, w,2) = epy (u L ML L L;) = 4n(v; L1, La),
(14)
L Mo—I14T L, M, Lo,
pZn(uxv:w’Z):5p2 u M,—LBT,v Llwal’le _Qn(w§M1aA/[2)1
9 M; (L2 Ma+L;T  |L» '
P}, (u,v,w,2) =epy UIMl,v P PP, Ll) — qn(u; My, Ms),
' (15)
N ( 6 M, L2 Mo+ L,T ’Lz L L )
= u v w b — :
Pon u,v,w,z) P2 M‘v le M1+L1T’ |L1 Qn(z, 1 2)-
Consider BVPs (for n € N)
(9(2' (1)) = A(Falz, 2’ &' (1)), Ae0,1], (165)x

pin(2(0),2'(0),2(1), 2" (1)) =0, p3a((0),2'(0),2(T), 2 (T)) =0 (17,

and

(9@’ @) = AFR (=, 2", ' ))(1), A€ 0,1], (18,)x

Pia(2(0),2'(0),2(T),2'(T)) =0, p,(2(0),2(0),(T),&'(T)) =0 (19,)

depending on the parameters A and n.
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Lemma 1 (A priori estimates) Let assumption (H1) be satisfied and u be a
solution of BVP (16,)x, (17,) for some A € [0,1] and n € N. Then fort € J,
My — (Ly+ )T < u(t) < My — (Ly — )T,
Li— 2 <u(t)< Lo+ 1, (20)
M, <u(T) < M,.
Proof Assume u'(0) > Ly. Then

pin(u(O), u’(0)7 u(T), uI(T)) =€m (u(()) M2—InT

Lo, u’(T)IZ)

— gn(u'(0); L1, La) > —ga(w/(0); L1, L2) = —max{Ly — u'(0), -1} > 0,

Mz ' L2
()]
M, 1

= n(u'(0); L1, L2) > —qn(u’(0); L1, Lo) = —min{L; — w'(0), 2} <0,

M,—-L,T

which contradicts p},, ((0), u'(0), u(T), ' (T)) = 0. If w'(0) < L1, then

My;—-L,T

P u(0),(0), (1), (1)) = eps (w7 ()

M,-Ly

which contradicts p}, (u(0), v'(0), u(T), «'(T)) = 0. Hence

If A = 0 then (g(u’(¢))) = 0, and so w/(t) = S for t € J, where S is a
constant, L1 < S < Ly (see (21)).

Let A € (0,1]. Assume u'(§) = max{v/(t);t € J} > Ly+ L foraé € J. Then
(cf. (21)) € € (0,T] and there exist ¢o € (0,7) and vg > 0 such that u/(t0) = Lo,
uw(to +vo) = Lo+ % and Ly < v/(t) < Ly + % for t € (tg,to + o). Integrating
the equality

(9(u' () = MFL(u, o',/ (t)))(t) forae teJ (22)

from #g to tp 4 vo we obtain (cf. (3), (11) and (12))

to+vo B
9t (to + w0)) — 9(¥/(to)) = A / (2w, o (1)) (1) it

to+vo - to+vo
Y (F (@, o, Ls))(t) dt + A / 4 (£); Ly, L) dt
to to
to+vo to+vo
O w0 I L de = A/ (Ly - '(t)) dt <0,
o to

contrary to g(u/(to + o)) — g(u'(t0)) = (L2 + £) — 9(L2) > 0.
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Assume u'(g) = min{u/(t); t € J} < L1 — 2 fora ¢ € J. Then (cf. (21))
¢ € (0,7] and there exist ¢, € (0,T) and v1 > 0 such that u'(t1) = Ly, u'(ty +
v) =Ly — % and L; — % < u'(t) < Ly for t € (t1,t1 + v1). Integrating (22)
from 11 to t1 +v; we have (cf. (3), (11) and (12))

136 272
o+ ) = g () = A [ (Bl @) 0)

t14v1 - ity
= (F(ﬁ, u’,Ll))(t) dt+/\ qn(u’(t);Ll,LQ) dt
t1 i1
ti+vy to+ro
> A gn(u'(t); L1, Lo) dt = /\/ (L1 = 4/(t)) dt > 0,
to

ty

contrary to g(w'(t; + v1)) — g(v'(t1)) = g(L1 — L) — g(L1) < 0.
We have proved

Li—Li<d(t)< Lo+, teld (23)

Assume u(t) > Ms. Then (cf. (5), (14) and (21))

My—L,T

My-LsT’

,u'(0), Mo, u T)] )

P ((0), w(0), u(T), /() = 6ps (u( )
= qn(u(T); My, M3) > —qn(u(T); M1, M3) = — max{Ms — u(T), -1} > 0,

which contradicts p3, (u(0), '(0), u(T),u'(T)) =0
If u(T) < My, then
M-

M,—LgT u(O) Ml’ (

P 0(0), (0, u(T), /(7)) = 8ps (u(0) )
— ¢n(u(T); My, Ma) < —qn(u(T); M1, My) = —min{M; — u(T), 1} <0,
which is impossible. Hence
My < u(T) < M. (24)
From (23) and (24) it follows
u(t) = u(T) = [ w(s)ds < M — (Ly — 1)(T—t) < My — (L — 1T, )
u(t) = u(T) — [ w'(s)ds > My — (Lo + 2)(T ~t) > My — (Ly + 3)T

for t € J. Thus (cf. (23)-(25)) inequalities (20) are satisfied. o
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Lemma 2 (A priori estimates) Let assumption (H2) be satisfied and u be a
solution of BVP (18,)x, (19,) for some A € [0,1] and n € N. Then fort € J,

M+ (L — DT < u(t) < Mo+ (Ls + 2)T,
Li—&<u(t)<La+y, (26)
My <u(0) < Ms.
Proof Assume u'(T) > L,. Then

L,

)

L

P (4(0),4'(0), u(T), w/(T)) = dps <u(o)]Zj’ul(O) MLt )

M4+L, T

—¢n(W(T); L, L2) > ~gn(w/(T); L1, L) = —max{Lz — u'(T), — 3} > 0,
which contradicts p3,, (v(0), w/(0), u(T), '(T)) = 0. Let w/(T') < L1. Then

P (0(0) 0,/ () = B (w0 w0t 1)

Mi+L, T’

—qn(UI(T); Ll, Lg) S -—qn(u'(T); Ll, Lg) = - min{L1 — u’(T), %} < 0,
which is impossible. Thus
Ly <d/(T) < Ls. (27)

If A =0 then «/(t) = V for t € J, where V is a constant, V € [L1, L2] (see
(27)). Let A € (0,1]. Assume v/(¢) = max{u'(t);t € J} > Lo + L for some
& € J. Then (cf. (27)) € € [0,T) and there exist to € [£,T) and g9 > 0 such that
ul(to) = La+ %, U"(io + EQ) = Ly and Ly < U’(t) < Lo+ -}l- fort € (to,to +€0).
Integrating the equality

(9(¥' (1)) = M(F2(u, o', w'(t)))(t) forae teJ (28)

over [to, %o + €0] we obtain (cf. (6), (11) and (13))

to+vo
mwm+m»—mwm»=xl (F2(u, o, (1)) () dt

totvo - toteo
- ,\/ (F(u*, ', L)) (t) dt — A 4 (' (1); Ly, L2) dt
to to
to+co toteo
> _,\/ 4 (0 (0); L1, Ly) dt = —A (Ly = /(1)) dt > 0,
to to

contrary to g(u'(to + €0)) — g(u'(t0)) = g(L2) — 9(L2 + 1) < 0.

Assume u'(v) = min{w'(t);t € J} < Ly — L for a v € J. Then (cf. (27))
v € [0,T) and there exist ¢; € [v,T) and &1 > 0 such that w'(¢1) = Ly — &,
)

w'(ty + 1) = Ly and Ly — £ < w/(t) < Ly for t € (t1,t + €1). Integrating (28
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from t; to t; + &1 we have (cf. (6), (11) and (13))

tite1
0w (6 + 1)) — 9o/ (1)) = A / (F2(u, ol o (£))) (8)
tit+er

ti+e -
- ,\/ (F(u*, o, L)) (1) dt — A g (0 (); v, L) dt
t1

ty

t1+e1 toteo
< —A/ g (1 (t); L1, Lo) dt = —,\/ (Lt — (1)) dt < 0,
i1 to

contrary to g(u'(t1 +¢1)) — g(v'(t1)) = 9(L1) — g(L1 — %) > 0.
Summarizing, (23) is satisfied.
Assume u(0) > M>. Then (cf. (7), (15) and (27))

P (u(0), (0, w(T), (7)) = eps (%, (0)

T )

Mi+L,T

L,
vl
~n (0(0); My, Ma) > =g (u(0); My, Mz) = = max{My — u(0), ~ £} >0,

which is impossible. If u(0) < M; then (cf. (7), (15) and (27))

)

P2, (w(0), 4'(0), u(T), ¥ (T)) = ep <M1,u'(0) M4 LT

L2
yu(T
L,

—gn (u(0); My, M3) < —gn(u(0); M1, Ms) = —min{M; — u(T), 1} <0,

a contradiction. Hence

My < u(0) < Mo, (29)
and so (cf. (23))

u(t) = u(0) + fy u'(s) ds < Ma + (Lo + )t < Mo+ (Lo + )T, a0
30
ut) = u(0) + fy u'(s)ds > My + (L1 — 1)t > My + (Ly = 2)T
for ¢ € J. Inequalities (26) follow from (23), (29) and (30). (]

Lemma 3 Let assumption (H,) be satisfied and n € N. Then BVP (16,);,
(17,,) has a solution u(t) satisfying the inequalities (20).

Proof Let

L=max{~L1, Lo}, K =(L+1)T +max{|M], |Mz]},

G(v) = max{—g(~v), g(v)} for v € [0,0). (31)

Then K, L are positive constants and

lg@)I < G(l), veR. (32)
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Set,
Q= {(2,9,2,4,b); (z,y,2,a,b) € C°(J) x C°(J) x C°(J) x R?,

(33)
llell < K+ 1[Il < L+ 1 jlell < L+ 1 Jal <K +1, [o] < G(L + 1)}

and define the operator W : [0,3] x © — C°(J) x C°(J) x C°(J) x R? by
(A(a+9-1 )t 971(),971(9),0,0) for A € [0,1]

(a +g71(b)t, g1 (b), g7 (b),
Wy ziah) = 4 O~ Dla—Ph(a(0),3(0), 2(T),y(1))),0) for A (1,2]
(a+g710)t,9710), 6710,

@ = Pha(2(0),4(0), 2(T), y(T)),
(A= 2)(6 — Pl (2(0),4(0), 2(T), y(T)))  for A€ (2,3].

\

We now show that
D(I‘W(3,',‘,‘,‘,');Q;O): 1) (34)

where “D” denotes the Leray-Schauder degree and I is the identity operator
on C°(J) x C°(J) x C°(J) x R%. Since W(0,2,y,2,a,b) = (0,0,0,0,0) for
(z,y,2,a,b) € Q, and so D( — W(0,+,-,-,-,-),9,0) = D(Z,Q,0) = 1, to prove
(34) is suffices to verify, by the degree theory, that

(i) W is a compact operator, and
(i) W(X 2, 9,2,a,b) # (,y,2,a,b) for (A, z,y,2,a,b) € [0,3] x 0.

From the continuity of g~1,pl,, p}, and the Bolzano-Weierstrass theorem it
may be concluded that W is a compact operator. We verify the property (ii) of
W. Assume

W (Ao, o, 9o, Z0, @0, bo) = (20, Yo, 20, ao, bo)

for some (Ao, Zo, Yo, 20, @0, bo) € [0,1] x 8. Then

o(t) = Mo(ao + 97" (bo)t),
(z5(t) =) yo(t) = 20(t) = Xog™ (bo), @0 =bo =0,
and consequently zo(t) = yo(t) = 2o(t) = 0 for ¢ € J. Thus (xo, yo, 20, @0, bo) =
(0,0,0,0,0) € 09, a contradiction.
Let
W(A1, 21,31, 21,01, b1) = (21,91, 21, a1, b1)

for some (A, 1,41, 21,01,b1) € (1,2] x Q. Then
ei(t) =ar+g7 (bo)t,  (21(8) =) w(t) = 21 (t) = g7 (ba),
a1 = (A1 = 1)(a1 = pa(e1(0),41(0), 21(T), w1 (T))), b1 =0,
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and so
xl(t) = ay, yl(t) = Zl(t) =0
fort € J, a1(2— A1) = (1= X1)pi,(a1,0,a1,0). Hence (cf. (14))

My—L,T

2-A)=(1-\) |6 0,01
ax( - 1)—( - 1)[?2(G1M 1.7’ , @1

1= 1

If @, > max{0, M»} then a;(2 — A1) > 0, which contradicts (cf. (5))

My—IL1T
10’ ay

(1= ) [51)2 (o ,0) = galar; My, Mz)]

1— L2 1

Mo—L,T

=(1-X) [5112 (al o

If a1 < min{0, M1} then a;1(2 — M\1) < 0, which contradicts (cf. (

1—4L2

L—x 5 My—L:iT 0
( - 1)[P2(01M T) ;A1

(5))
M,
u ,0) — g 01,M1,M2)]

1—L2 1

My—L,T
=(1-X\) [Jpz(al 0, ) min{M; — ay, }] > 0.

Thus min{0, M1} < a; < max{0, M5}, and consequently

1— L2

Jai] < max{|M;|, |Ma|} < K

which yields (1, y1, 21, a1, b1) = (@1,0,0,a1,0) & 09, a contradiction.
Let
W(A2) r2,Y2, 22,02, b2) = (172, Y2,22,02, b?)

for some (Az, z9, ¥s, 23, az, b2) € (2,3] x 0Q. Then
za(t) = az + g7 (ba)t,

(25(t) =) 92(t) = 2a(t) = g7 (2),
p%n(xz(O),yz(O), z2(T), y2(T)) =0,

b2 = (A2 — 2) (b2 = Pin(22(0), %2(0), 22(T), %o (T)).
From (14), (35), (36) and (38) we deduce that

b2(3 — X2) = (2 = A2)pi,(az, g7 (b2), a2 + g7  (b2)T, g1 (b))

My=InT 1L
=(2- )\2)[6171 (dz 97 (b2) L

1

M,-LsT

- qn(!)_l(bz);Ll,Lz)]-

. ,0) ~ qn(a1;M1,Mz)] .

T,O,MQ,O) — max{M, — al,—-%}] <0

133

@+ 97 0T, o7 0a)]))
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Assume by > g(Ls), resp. by < g(L;). Then b2(3—A2) > 0 (resp. b3(3—X;) < 0),
which contradicts (cf. (4) and (14))

My—I,T -1 Lo -1 : M, 1 Ly
ep | as Y (bz)lLl,(az +yg (bzﬂ)’Ml,g (b2) L1>
= g9 (b2); L, L)
M,-L,T 1 M, 1 1
=epy (az oo @zt (bZ)T)lMl’L2> —max{Ly —-g~'(bs), -1} > 0,
resp.
IMZ—L,T 1 Lo - M2 Ly
oo (] ™00 0207 0D 0710
~ an(g7 " (b2); Ly, L)
My-L\T -1 M, . 1 1
=£&Mm (az M|—L7T’ 1L (a2 +9 (bZ)T)‘MIaLl) - mln{Ll -9 (b2)7 ;;} <0.
Hence

L1 S g_l(bg) S Lz. (39)
If az 4+ g~ (b2)T > My (resp. a, +971(b2)T < M) then (5), (11), (14), (37)
and (39) imply

0= p%n(xz(o), yZ(O)’ ‘1“2(T)1 y2(T))

M;-L,\T _l(b )le -1 BT M,y 1 B Ly
7] e kg ) o))

= 6 9 | A2
D2 M1—L2T,

= qn(az + g7 (b2)T; My, My)

M3—L,T
-1 — _
= 0p3 (az Y (b2), M2, g 1(bz)) —max{My~as—g~'(bs)T, -1} > 0,
resp.
0= pén(l‘z(O), yZ(O)’ (l?z(T), yQ(T))

Ma=LT » .
= 5172 (aZ ' 9 (b2)5 Ml)g (b2)) - mln{Ml —az — g—l(bZ)Ty %} < 0)

My~L,T )
which is impossible. Thus

M, <ay +g—1(bz)T < Mo, (40)

and so (cf. (32), (35), (36), (39) and (40))

laz| < K, |bs] < G(L),
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2a(t)] < max{|My — g7 (b2)(T — )], |My — g7 (b2)(T — 1) [}
< max{|M| + LT, |Mi|+ LT} < K,
ly2(t)] = |z2(O)| < L, te€,

which contradicts (z2, ys, 22, as, b2) € 0Q.

We have verified that the properties (i) and (ii) of the operator W are sat-
isfied, and so (34) holds.

Let now the operator Z : [0,1] x © — C°(J) x C°(J) x C°(J) x R? be given
by the formula

Z(\z,y,2,a,b) = (a+/0tg-1(b+/\/os(F,}(x,y,z(l/)))(V) du) ds,

t
0

(o f e, 20 ds), a7 (b2 [ (e, (00 5) )

a ~ 3 (2(0), y(0), 2(T7), y(T)), b~ pi,(z(0), y(0), =(T), y(T))) :

BVP (16,)x, (17,) and y = z = 2’, a = 2(0), b = g(2'(0)), and conversely, if z is
a solution of BVP (16,)x, (17,) with a A € [0,1] and (z,2’, 2/, (0), g(2(0))) €

the inequalities (20) are satisfied for any solution u of BVP (16,)x, (17,) with
AE [0) l]a and so Z(/\,m,y,z,a, b) 7& (-’l},y, z,a,b) for any (A,(C,y, z,a,b) € [0) 1] X
o9Q.

The proof is completed by showing that Z is a compact operator. In this

case we have
D(I — Z(]-) ERERERS) )yQ’O) = D(I - W(31 ERERERS] )1970) (: 1 by (34))

From the assumptions imposed on F, g, p1 and P2 it follows that Z is a continuous
operator. Let {(\;,2;,y;,2j,a;,b;)} C[0,1] x Q and set

(uj,vj,wj, Aj, Bj) = Z(Xj, 25,95, 25,05, b;), j €N
Then (for j € N)
uj(t) = aj + o 97 (b5 + X3 Jo (Pl (5,95, % () (v) dv) ds,
(w(t) =) v; (1) = wj(t) = g7 (b5 + 5 [y (Fi (5,95, 23(5)))(s) ds,
Aj = aj — pha(25(0), 95 (0), ;(T), y;(T)),
Bj = bj = pln(2;(0), 4 (0), z;(T), y;(T))-

(41)
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Let
P(v) = max{—g~Y(-v), g7 (v)}, v€[0,00). (42)

Then P € C°([0,0)) and
s () < P(l), veR. (43)

By the property (c) of the operator F, there exists k € Ly (J) such that (cf. (11)
and (12))

[(Fi(zj,u5,2(t))(t) < k(t) forae. t€Jandeach j €N, (44)
which yields (cf. (14), (32), (41)—(44) and the definition of the set )

()| < K +1+ TP(G(L+ 1)+ /T k(1) dt),
0

T

()] = [o; ()] = w; (2)] 5P(G(L+1)+/; k() dt),

loos(02)) = a(os(t2))] = la(uws 1)) = gt )| < | [ ko) e,

|4;] < K + 1+ max{[pz(, 8,7,8)|; Ja| < K, |8] < L, |v] < K, )| < L} + 1,
1Bj| < G(L + 1) + max{|pi(e, B,,8]; |o| < K, |8 < L,[7| < K, |6 < L} +1

for t,t1,t € J and j € N. Thus {u;()}, {v;(t)}, {w;(t)} are uniformly
bounded and equicontinuous on J and {A4;}, {B;} are bounded. By the Arzela-
Ascoli theorem and the Bolzano—Weierstrass theorem, there exists a subsequence
{(uj,,vjn, Wi, Aj,, Bj,)} converging in C°(J) x C°(J) x C°(J) x R?. Hence Z
is a compact operator. This completes the proof. O

Lemma 4 Let assumption (H;) be satisfied and n € N. Then BVP (18,)1,
(194) has a solution u(t) satisfying the inequalities (26).

Proof Let the constants K, L and the function G be defined by (31) and let
the set Q2 be given by (33). Define W* : [0, 3] x 2 — C°(J) x C°(J) x C°(J) x R?
by

(A(a+g~1(b)t,g—1(b),g-1(b),o,o) for A € [0,1]

T

W Ovagziad) = d A1 ~ P3(2(0), 4(0), 2(T), y(T))),0) for A € (1,]

(a+aO)t970),970),
a = p2a(2(0), 4(0), 2(T), ¥(T)),
[ (A= 2)(b ~ p3,(2(0), 5(0), 2(T), ¥(T)))) for A€ (2,3].
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(j) W* is a compact operator, and
@) W*(\ z,y,2,a,b) # (z,y,2,a,b) for (\;z,y,2,a,b) € [0,3] x 9.

It is easily seen that W* is a compact operator and W*(A, z,y, z,a,b) #
(z,y,2,a,b) for (A, z,y,2,a,b) € [0,1] x OQ (see the proof of Lemma 3).
Let
W*(A1, 21,91, 21,01, 01) = (21,41, 21, a1, b1)

for some (A1, 21, Y1, 21, a1, b1) € (1,2] x Q. Then
21(t) = a1 () + 97 (b)), (21(t) =) 3i(t) = 21(t) = g7 (b),
= (M = 1)(a1 = pF,(21(0), 91(0), 21(T), 11(T))), b1 =0,
)=

and consequently z1(t) = a1, y1(¢t) = z1(t) =0 for t € J,

a1(2—- M) = (1~ ’\I)p%n(alaovaho)'
From the last equality we see that (cf. (15))

M
,0,(11
My

My+L,T

ai(2=X)=(1-X\) [apl (a1 ,0) -—qn(a1;M1,M2)] .

M,+L,T
If @1 > max{0, My} then a;(2 — A1) > 0, which contradicts (cf. (7))

M
,0,a1
M,

Mo+ LT

(1 - /\1) [Ep1 (al ,O) - Qn(al; ]le’w?).1

My+L,T

Mo+L2T

:(1—-A1) [Epl (Mz,o,a.l ,0) —max{Mz—-al,—%} < 0.

Mi+I,T

If a; < min{0, M} then a;(2 — A1) <0, which contradicts (cf. (7))

M Mo+LT

,0,(11
1

(1-—)\1) {apl (al ao) _qﬂ(al;Ml:M2):

M+L\T

May+L,T
0) -

=(1=X\) [epl(Ml,O,alM mm{M1~a1,n}] > 0.

1+
Hence min{0, M} < a; < max{0, M2}, and consequently
la1| < max{|Mi],|Ma]} < K

which yields (21, ¥1, z1, a1, b1) = (a1,0,0,a1,0) & 0%, a contradiction.
Let
W*()\z, xo,Y2,%2,02, bZ) = (wZ) Y2, 22, a2, b2)

for some (Ag, &2, Y2, 22, az, ba) € (2,3] x 9. Then
z2(t) = az + g7 (b2)t, (45)
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(23(t) =) ya(t) = 22(t) = g7" (ba), (46)
Pia(22(0), y2(0), 22(T), y2(T)) = 0, (47)
by = (A2 — 2)(ba — p3,.(€2(0), ¥2(0), 22(T), y2(T))) (48)

and from (15), (45), (46) and (48) we conclude that

b2(3 = X2) = (2 = No)p3, (az, 97 (b2), a2 + g~ (b2)T, g~ (b2))

),)

Mo+ LT 1
g7 (by

= (2~ ) [m (agle g~1(b2)|L"’ (a2 + g~ 1(b)T)
M’., L;’ M1+L1T’

—qn (97 (b2); L1, Lz)] .
(49)
If b2 > g(L2), resp. by < g(L1). Then b3(3 — Az) > 0, resp. 62(3 — X2) <0,
which contradicts (cf. (8), (11) and (49))

(2 = X2)p3n(az, g7 (bs), a2 + g7 (b2) T, g~ (b2))

— max{Ls — g~ (bs), ~1 ] <0,

resp.

(2 - /\Z)Pgn (C‘?» ggl(bZ)! az + g_l(bZ)T, g_l (bz))

Mo+ L,T
)

My
=(2- '\2)[5P2(02|M v L1, (a2 + 971 (b2)T) s’
1 ' 1 1

—min{L; — g7} (bs), %}] > 0.

Hence the inequalities (39) are satisfied.
Assume ay > My, resp. ay < Mi. From (7), (11), (15), (39) ang (47) we
deduce

0= pin(22(0), y2(0), 22(T), (1))
_ 1 1 My+L,T -1
= e (M2,7 ), (02 + 7 D07 0)) = i, M)

> —max{M2 —as, —%} >0,

a contradiction, resp.
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0 = p?,(2(0), y2(0), 22(T), v2(2))

-1 -1 Mat+L.T
=ep1 (Ml,g (b2), (az+ ¢~ (b2)T) g7 (b2) | = gnlaz; My, My)

Mi+I,T'
< —min{M; - as, £} <0,
a contradiction.

Therefore
M, <ay < My, (50)

and consequently (cf. (32), (39), (45), (46) and (50))
laz] < max{|Mi|, |Ma|} < K, |b2] < G(L), @2(t)] < K, |ya(t)] = |22(t)| < L
for t € J, which contradicts (2, 2, 22, az, bs) € Q. We have verified that W*

Let Z* : [0,1] x © = C°(J) x C°(J) x C°(J) x R? be given by the formula

Z*(\, z,y,2,a,b) = <a + /Otg“l(b+ /\/OS(F,%(:L', y,z2(v)))(v) dl/) ds,

t

5 (002 [ (Fe v 26 ds), 0 (b4 [ R w661 ),

a — pta (2(0), y(0), z(T), y(T)), b~ p3a(x(0),y(0), z(T), y(T))) :

analogously to the proof of Lemma 3 to show that Z* is a compact operator
and

Z*(/\,:c,y,z,a, b) # (a:,y,z,a,b), (/\,r,y,Z,a,b) € {0; 1] x ON2.

Then u(t) is a solution of BVP (18,)1, (19,) satisfying the inequalities (26). O

3 Existence results

Theorem 1 Let assumption (H.) be satisfied. Then BPV (1), (2) has a solu-
tion u(t) satisfying the inequalities

My — LT < u(t) < My — I47T, L < U’(t) <Ly, M < u(T) < M, (51)

forte J.
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Proof By Lemma 3, for each n € N there exists a solution u.(t) of BVP
(16,)1, (17,) satisfying the inequalities (20) (with u = u,). By the properties
(a) and (c) of F, there is [ € L1(J) such that

{(FX (un, uly, un(t))(t)] <1(t) for a.e.t € J and each n € N,

From (20) (with v = u,) and the equalities

t s
wn(t) = un(0) + / (w0 + / (F (s () ) v ) ds (52)
0 0
where t € J and n € N we deduce that

fun())] < S+ TP(L+1 +/0Tl(t) dt),
lup(¥)] < P(L+ 1+ /OT It) dt),

i (t) ~ g(ufea))| < | [ 1) |

for t,¢1,t3 € J and n € N, where S = max{|M1|+ (Lo+1)T, |Ma|+ (1 — L1)T},
L = max{—L;, Ly} and the function P is defined by (42). By the Arzela-
Ascoli theorem, there exists a subsequence {ug,(t)} converging in C1(J), say
limg, 00 wg, = u. Clearly, u € C(J), u satisfies the inequalities (51) and
taking the limit in (52) (with k, instead of n) as n — oo, it follows that (cf. the
property (b) of F, (12) and (51))

u(t) = u(0) +./Ot g-l(u'(O) +/OS(F(u,u',u'(V)))(u) du) ds, teJ. (53)
Then u is a solution of (1). Since (cf. (14) and (51))

Tim ph, (s, (0), w, (0), w, (7), (7)) = ep1 u(0), w/(0), u(T), w'(T)),

Jim py, (uk, (0), g, (0), ue, (T), g, (T)) = 6p2(u(0), w'(0), w(T), g’(T)),

we have py(u(0), u/(0), u(T), W(T)) = 0, pa(u(0), % (0), u(T), w/(T)) = 0. Hence
u satisfies the boundary conditions (2). O

Theorem 2 Let assumption (H,) be satisfied. Then BPV (1), (2) has a solu-
tion u(t) satisfying the inequalities

My + LiT <u(t) < Ma+ LT, Ly <u'(t) <L, M;<u(0) <My (54)

forte J.
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Proof By Lemma 4, for each n € N there exists a solution uy(t) of BVP
(18,)1, (19,) satisfying the inequalities (26) (with u = uy). Let

[(F2(un, tly, un(t)))(t)] < k() for a.e.t € J and each n € N,

where k € Li(J). The existence of k is guaranteed by the properties (a) and
(c) of F. We conclude from (26) (with u = u,) and the equalities

) =@ + [ 57 (60 + [ Em @) ) ds (59

where t € J and n € N, that

un(t)] < S* +TP(L+ 1 +/(;T k(t)dt),
ul, (1)] < P(L+ 1 +/OT k(t) dt),

9t 1) — st ) < | [ ey

for t,¢1,t2 € J and n € N, where S* = max{|M|, |M2|}, L = max{—Ly, L2}
and the function P is defined by (42). Going if necessary to a subsequence, we
can assume, by the Arzeldi-Ascoli theorem, that {u,} converges in C*(J) to a
u € C'(J). Then u satisfies the inequalities (54) and taking the limit in (55) as
n — 0o we obtain the equality (53). Then u is a solution of (1). Since (cf. (15)
and (54))

Jim p (10 (0), 44 0), s (1), 5 (7)) = epa (u(0), w(0), u(T), (7).

Jim_ p (un (0), 47, (0), un(T), up (T)) = 8p2(u(0), w'(0), w(T), w/(T)),
we see that p1(u(0), w'(0), u(T), v (T)) = 0, p2(u(0),v’(0), u(T), ' (T)) = 0, and
consequently u satisfies the boundary conditions (2). m]
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