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Abstract

In this paper an incidence structure on the projective space is defined.
The closure spaces induced by that structure are investigated, especially
the problems of existence and cardinality of bases in them.
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Definition 1 Let P be a set and P be a family of its subsets. Then the pair
(P, P) is called a closure space if P is closed under intersection and P € P. The
elements of P are said to be closed sets.

If X C P, then the intersection (X) of all closed sets containing X is called

the closure of X.
A closed set A is said to be generated by a subset X C P if A = (X).

If (P,P) is a closure space and X,Y C P, then it is obvious that X C (X),
X CY = (X) C(Y), (X)) =(X).

Definition 2 Let (P,P) be a closure space. A set X C P is said to be inde-
pendent if ¢ ¢ (X — {z}) for all z € X.

Remark 1 Allsubsets of any independent set are independent. In what follows,
we put X, := X — {a} fora € X.
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114 Vladimir SLEZAK

Definition 3 A set B C P is called a basis of the closure space (P,P) if B is
independent and B generates P, i.e. (B) = P.

Definition 4 If a basis of cardinality & exists in (P,P) and no other basis has
greater cardinality, then we say that (P,P) has dimension & — 1.
We will write dim(P,P) =« — 1.

Let G and M be sets and I C G x M. Then the triple (G, M, I) is called an
incidence structure. If A C G, B C M are non-empty sets, then we denote

A'={me M | gIm Vg € A}, Bt ={g€G|gIm ¥Yme B}.

For the empty set we put 7 := M, ¢ := G. And moreover, we denote A™ :=
(AN, BY = (BYY, gt = {g}T, m* = {mP for ACG, BC M and g € G,
me M.

Let J = (G, M, ) be an incidence structure. Then it is easy to show (see
[1]) that
ACC=cCtcAat for A,C C G,

BC D= D'*CB* for B,D C M,
AC AN BC BV for ACG,BC M,
ANT = AT BN =Bl for ACG,BC M,
(UAa)'=nNAT  for4Ca,

i€L i€
(U B)*=N B} for B; C M.
i€L 3

Theorem 1 Let J = (G, M, I) be an incidence structure. If we put
Gr={ACG|A=4a"}, My={BCM|B=B"}
then the pairs (G,Gyz), (M, M) are closure spaces. (See [2].)

Remark 2 If A C G, B C M, then (A) = AN and (B) = BY in (G,Gs) and
(M, M 7), respectively.

Definition 5 Let V be a vector space over a field K, dimV =n+1, n > 2.
The system consisting of all subspaces of V is called a projective space and will
be denoted by P". ’

Projective dimension of the subspaces of P" is defined with a help of dimen-
sion of the subspaces in V' by the formula

dimp U =dimy U — 1

for any subspace U in V.

Then the projective space P” has projective dimension n. The subspaces
of P™ with projective dimension 0 (1,2,n — 1) are called points (lines, planes,
hyperplanes).
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The empty set is a subspace of P™ and dimp §§ = —1.

Let us denote ), e Ui the intersection of all subspaces of P” containing the
set {U; | ¢ € L} of subspaces. Obviously, 3., U; is also a subspace.

In what follows we will consider the notion of dimension of a subspace in
the projective sense. However, we put dimp U := dim U, i.e. the index P will
be omitted.

Remark 3 If U and V are subspaces from P”, then
dimU +dimV = dim(U + V) +dim(U N V).
(See [3].)

Remark 4 Let B be a set of all points of the projective space P™. Then
(B,P") is a closure space. The closed set generated by A C B is a subspace in
P, denoted by [A].

Let us consider independent sets and bases in (B, P") according to Definition
3 and 4. Every basis has cardinality n+1 and the closure space has dimension n.

In what follows we will not exactly distinguish between the projective space
P™ and the closure space (B,P"). So, we can speak about independent sets in
P™, bases in P" etc.

Remark 5 Let P be a subspace and U be a hyperplane of the projective space
P™ such that P € U. Then there exists a point of P which is not contained in
U, so dim(U + P) = n. We obtain n —1+dim P = n+dim(U N P), from which
dim(U N P) = dim P — 1 follows.

Theorem 2 Let Uy,...,Ux, 1 < k < n+ 1, be hyperplanes in the projective

space P™. Then
k
dim (ﬂ U,-) >n—k.

i=1
Proof If k =1, then dimU; =n—1=n—k. Let k = 2. For U; = U, we get
dimU;NUz =n—-1>n—2. If Uy # U, then dimUy NUs =n—-2=n—k by
Remark 5.

Let us assume that the presented inequality is valid for a certain k such that
1<k<n+1. Let Uy,...,Ux,Uks1 be hyperplanes. We put W = ()., <, Us
and V = y¢jchp1 Ujys0 V.= W Ukqr. fW C Ugqa, then V = W and
dimV = dimW >n—k > n—(k+1). For W € Ugq1 we get dimV =

dim(W NUg41) = dimW —1 > n — (k+ 1) by Remark 5. O
Theorem 3 Let Uy,...,Ux, 1 < k < n+ 1, be hyperplanes in P"* and np =
{1,...,k}. Then the following conditions are equivalent:
Viene: () UigU (1)
jenk—{i}
dim (| Uj=n—k (2

JEnk
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Proof We denote A= {Uy,...,Uy} and Va =;¢,, Uj-

(1I)=>(2) Obviously, for k=1 we get dmU;=n—-1=n—k Ifk=2,
then U; # Uz and dimVy =n—-2=n—k.

Let us assume that the condition (1) implies (2) for a certain &, 1 < k < n+1.

Let the set B = {Uq, ..., Ug, Uk+1} has the property (1) and consider U; € B.
Then for W = nJEnH; 3 U; we obtain dimW = n — k by the assumption.
From W € U; we get dimVp = dimWNU; = dimW —1 = n—(k+ 1) according
to Remark 5.

(2) => (1) Let us take U; € A and denote W =, iy U.

We will assume that W C U;. Hence, because of V4 = }] N W we have
Va = W and dimW = n — k. However, according to Theorem 2, dimW >
n—(k—1)=n—k+ 1. That is a contradiction. o

Remark 6 Let U be a subspace of dimension k; in the projective space P" and
ko be a natural number such that ky + k2 < n. Then there exists a subspace V
of dimension ky such that UNV = 0.

Now we define an incidence structure J = (Gk, M,,I) on the projective
space P" of dimension n > 3 in the following way:
Gy contains all points of a subspace of dimension & in P*, 0 < k < n,
M, contains all subspaces of dimension r in P?, 0 <r <n—1 and
I is the incidence relation from P™ restricted to the set G x M.

Remark 7 Consider a subset A C Gg. Then AT is a set of subspaces from M,
which contain A.
If m € M., then m* is a set of points of the subspace m contained in G.
We will denote subspaces m € M, by usual symbols U,V etc. It means we
put m := U, where m* = UNGj. So, for B C M, we get B¥ = (N U)NGr.

First we will consider a closure space (Gx,G7), where G7 = {ACGi | A=
AM™}. For a subset A C Gy we obtain [A] C Gx and dim[A] < k.

(a) Assume that dim[A] < r. Then A™ is the intersection of all subspaces
containing A from M,. Thus A™ = [4] and it follows {A) = [A] for the closure
(A) from (Gx,G7).

(b) If dim[A] > r, then AT = . This implies A™ = G and Gi = (4) # [4]
(for A C Gy).

Theorem 4 A set A C Gy is independent in (Gk,Gz) if and only if A is
independent in P* and dim[A] <r+ 1.

Proof Let A be independent in (Gx,Gs). Then a ¢ Al} for an arbitrary
a € A. Thus A # Gi and dim[A,] < r according to (b). From (a) we
obtain [A4] = AN and a ¢ [As]. Hence A is independent in P™ and we get
dim{A,]+ 1 = dim[4] <r + 1.

Conversely, let A be independent in P* and dim[A] < 7+1. Then dim[44] <
rfora € Aand [A,] = Al according to (a). Therefore, a ¢ [A,) impliesa ¢ AT
and A is independent in (Gk,gy). 0
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Theorem 5 In the closure space (Gi,Gyg) there always exist bases and all of
them have the same cardinality.

If r < k, then cardinality of bases is r+2. Ifk <r, then cardinality of bases
sk + 1.

Proof 1. Let r < k. First we will prove the existence of a basis in (G, G7).

Because of r 4+ 1 < k < n, there exists a set A C Gy, |A| = 7 + 2, which
is independent in P". Then dim[A] = r + 1 and A is independent in (G%,Gy)
by Theorem 4. We obtain A™ = Gy according to (b) and so A is a basis in
(Gk,G7).

Now we show that every basis consists of r + 2 elements. Let A be a basis
in (Gk,G7). Then A is independent in (Gx,G7). Thus A is independent in P
by Theorem 4 and dim[A] < r + 1.

Consider dim[A] < r. Then [A] = A™ according to (a) and since A is the
basis in (G%,G7) we obtain A™ = [A] = Gi. Hence dim[A] = k and k < r, a
contradiction.

So dim[{A] =7+ 1 and |[A| =7+ 2.

2. Let k < r. If A is a basis of the subspace G in P”, then A is independent
in P” and [A] = Gy, |A| = k+1. Aisindependent in (Gg,G7) (Theorem 4) and
[A] = A™ according to (a). From this A™ = G and A is a basis of (Gk,G7).

Every basis in (Gk,G7) has cardinality k£ + 1: Let A be a basis in (Gk,G7).
Then A C G, A is independent in (Gk,G7) and A is also independent in P
by Theorem 4. We know that dim[A] < k. Assume that dim[A] < k. Then
dim{A4] < r and AN = [A] according to (a). Hence A™ # Gy, which implies
that A is not a basis in (Gx,G7), a contradiction.

So dim[A] = k and |A] =k + 1. =]

Now we will deal with the closure space (M,, M 7).

For B C M, we denote Vg = ﬂUEBU and Wp = (Nyep U NGk = Ve N Gy
Then BY = Wp and BV = {U € M, | Wg CU}.

If B={Ui,...,U;} C M,, then we put

W;; = ﬂ UjﬂGk
j€Eny—{i}
forien ={1,...,1}.
We get Bf" = (U € M, | W, CU} for B; = B — {U}.

Theorem 6 The set B = {Uy,...,U;} C M, is independent in (M,, Mz) if
and only if Wy # Wpg for all i € n;.

Proof If B is independent, then U; ¢ B}Jr for alli € n;. Assume that Wi = Wg
for certain i. Since Wp C U;, we obtain W§ C U; and U; € B;LT, a contradiction.

Conversely, let W}; # Wp for all { € n;. We will assume that U; € Biw for
certain i. Then Wj C Ui. Since Wi C U; NGy for all j € ny, j # 4, we get
Wi C U, NGy for all p € n; and Wi C Wp. Hence Wi = Wp, which is a
contradiction. So U; ¢ B,-“ and B is independent in (M., M 7). (]
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Remark 8 An incidence structure J1 = (G, M,,I), where G is a set of all
points of the projective space P”, is a special case of the structure J =
(Gk, M, I). Then k = n.

If we put Vj = Mien,—giy Uj for B = {U1,...,U}, then we get a criterion
of independence as the special case of Theorem 6:

The set B is independent in (M,, M) if and only if Vi # Vp for all i € ny.
From this Theorem 7 follows immediately.

Theorem 7 If a set B is independent in (M., M), then it is independent in
(M'l‘ ) M.71)'

Theorem 8 The mazimal basis in (M,, M), i.e. the basis of mazimal cardi-
nality, has v + 2 elements for r < k and k + 1 elements for k < r.

Proof 1. Let r < k. First we will construct a basis of cardinality » + 2: There
exists a subspace R in G, dimR = r + 1. Hyperplanes in R are subspaces
of dimension » and so they belong to M,. By Theorem 3, there exists a set
B = {U1,...,Urq2} of hyperplanes in R such that Vg = ) U; = 0 and
Vi = Njen,yayiy Ui # O for all i € nryn = {1,...,7+2}.

Since U; C Gy for all i € n,45, we obtain Vg = Wg and Vg. = Wg for all
i € npyg. Hence B is independent in (M,, Ms) by Theorem 6. Because of
BY = W}, = 8" = M, B is a basis in (M, Mz).

Now we show that every basis in (M,, M) has at most » + 2 elements:
Consider Uy, Us € M, Uy # Us. If we put Wy = Ui NUy, then dim W, < r. Let
us take Us € M, such that {U;,Us,Us} is an independent set in (M,, Myg,).
Thus Wa = U1 N U2NU;z = Wo N Us and Wy # Wa. This implies dim W3 <
dim W, and so dimW3 < r — 1.

If we continue in the same way, then dimW; =7 — (i — 2). {U3,...,U;}isa
basis in (M,, Myz,) if dimW; = —1. Thus ¢ < r + 3. So, a basis in (M,, Mz,)
has maximal cardinality r + 2.

Let B = {Uy,...,Ur43} be a basis in (M,, M7). Then B is independent in
(M,,Mgz) and it is independent also in (M, My,) by Theorem 7. However,
that is a contradiction because a basis is the maximal independent set.

2. Let k < r. First we will construct a basis of cardinality ¥ + 1. Because
of r < n — 1 there exists a subspace R containing G in P”, dimR = r + 1.
Hyperplanes in R belong to M,. Each subspace in R is an intersection of
hyperplanes in R. We can take hyperplanes Ui,...,U, in R such that they
satisfy conditions from Theorem 3 and Gk = ();¢,, U;j where r +1 —m = k.
There exist (by Theorem 3 again) hyperplanes Uny1, ..., Untk+1 such that for
C ={Ui,...,Unsk1} weobtain Vo = @ and V& # @ for all i € nppyxy1. Let us
put B = {Um-H; .. -;Um+k+1}- Then Wg = VNG = njEnm+k+1 Uj =Ve=0
and W§ = VA NGy = Vi # 0 for all i € nmyk41. It means (by Theorem 6)
that B is a basis of cardinality k¥ + 1 in (M, M 7).

Finally we show that every basis in (M;, M) has at most k + 1 elements:
Consider U1 € M,. Then obviously dimUi NGy < k. If dimU; N Gy = k,

€N 42
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then Gy C Uy. For B = {U;} we get B; = B — {U1} = 0, B} = ' = G,
and B%T ={U e M, |Gr CU}. Thus U; € BfT and B is not independent in
(M, Mz).

Let us assume that dimU; N Gy < k, Uy € M, and the set {U;, Uz} is
independent in (M,, Mz). If we put Wy = (G NU1) NUs, then W # G N U,y
and dimWs < k — 1. We can continue in the same way. In the end we will
obtain dimW; < k — (i — 1) which for dim W; = —1 implies i < k + 2. o

Theorem 9 The minimal basis in the closure space (M, Myg) has cardinality
d=[-£-]+1 where [nk—;] denotes the integer part of the number

n—r

n—r’
Proof We will construct the minimal basis.

1. Let r+k < n. Then (by Remark 6) there exists a subspace U; € M, such
that Uy N Gg = 0. B = {U1} is a basis in (M,, M7) and d = 1.

2. Let r+k > n. Then r + k = dim(U; + Gx) + dim(U; N Gk) > n for any
Uy € M,. Hence each subspace from M, has a nonempty intersection with G.
Consider Uy such that dimU; N Gy is minimal. Thus dim(U; + Gk) = n and
dim(U; NGk) =7+ k —n. We put Wy = Uy NGy

3. Let r+ (r+ k — n) < n. Then there exists a subspace U; € M, such
that Us N W1 = @ by Remark 6 again. We put B = {U;,Us}. Since Wp =
UhNUsNGr=WiNU; =0, WLI; =Us NG ¢0and W§=U1ﬁGk ?50, B is
a basis in (M,, M 7) according to Theorem 6. In this case d = 2.

4. Let 2r4+k—n > n. Then 2r—n-+k = dim(Uy+W1)+dim(UsNW1) > n for
any subspace Us € M,.. Consider Us € M, such that dimension of Wy = UsNW;
is minimal. Thus dim(Us+W;) = n and dim W5 = 2r—2n+k > 0. This implies
that every subspace from M, has a nonempty intersection with Wj.

5. Let 37 — 2n + k < n. Then there exists a subspace Us € M, such that
UsNWy = 0. We put B = {U],UZ,U:_;}. Hence Wp = (U1 NU,NU3)NGE =
WanUs = §. It is easy to see that dim W, < dim(UaNGx) and UsN(U2NGk) # 6.
Thus W} # 0, W3 =UsNW; # 0 and W3 = Us "W, # 8. B is independent
in (M,, Mz) by Theorem 6 and because of Wg = 0 it is a basis in (M,, M 7)
of cardinality d = 3.

6. Let 3r — 2n + k > n. Consider Us € M, such that dimension of W3 =
Us N Wo is minimal.

If we continue in the same way, then we get the following inequalities for
cardinality d of the minimal basis:

dr—(d-—1)n+k<n and (d-1)r—(d—2)n+k
It follows that

and d<1+4
n—r n—r

d>

We obtained
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Example 1 Let us consider the incidence structure J = (Gg, M, I) and let us
find the maximal and the minimal basis in the closure space (M,, M 7).

(a) Let n =3, r =k = 1. Then G is a line and subspaces from M, are also
lines. The minimal basis consists of one line U; which is disjoint with Gy.

Cardinality of the maximal basis is ¥ + 1 = 2. This basis consists of two
lines Uy, Us which intersect in one point and each of them intersect Gy.

(b) Let n =4, k = 3, »r = 2. Then the minimal basis has 2 elements and the
maximal basis has 4 elements. Let us take a plane U; such that Wy = U; NGk
is a line. Then take a plane Us disjoint with Wj. Obviously {U;, Uz} is a basis
in (Mr s M ]).

The maximal basis consists of 4 planes, all of them are contained in G.
They all have the empty intersection but an intersection of every 3 of them is
not empty.

It is easy to see that there exists also a basis of cardinality 3.

Theorem 10 All bases in the closure space (M, M 7) have the same cardinal-
ity (i.e. the mazimal basis is equal to the minimal one) if and only if some of
these conditions is satisfied:

(1) r=n-1

(2) k=0

3) k=n,r=0

Proof We denote D(d) cardinality of the maximal (minimal) basis. First we
will show that the conditions are sufficient:

(1) Let r=n—1. Thend=k+1. Fork<n—1lweget D=k+1=d. If
k=n,then D=r+2=n+1=k+1=d.

(2) From k = 0 follows d = 1 = D immediately.

(3) Let k=nand r=0. Thend=2and D=r+2=2.

Conversely, let us assume that d = D.

(a) Consider k < 7. Then from the equality

k
[ ]+1:k+1
n—r

k
[ ]:k< k .
n—r “n-—r

This yields k = 0 or n — r < 1, thus » > n — 1. Because of r < n — 1, we get
r=n-1.

(b) Let k > r. We distinguish two cases:

1. If £ = n, then the equality d = D means

follows

r+2= [l—]ﬂ.
n—-—r

From this

2

r+1g;z——r which is equivalent to nr +n —7r° —r < n.
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This yields 7(n — 1 —r) < 0. Since » < n — 1, only two possibilities remain:

r=0Q0orr=mn-—1.
2. For k < n we obtain
r+l:[ k ]
n—r
n

This is equivalent to

r+1<

<
n—r n-—r

and from this

2

nr+n—r°—r<n ifandonlyif r(n—1-7r)<0

which is not possible for any r because 0 <r <n —1. (]

Remark 9 If some of the three conditions from Theorem 10 is satisfied, then
all bases in the closure spaces (Gx,G7) and (M, M z) induced by the incidence
structure J = (Gg, M, I) have the same cardinality.
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