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Abstract 

In this paper an incidence structure on the projective space is defined. 
The closure spaces induced by that structure are investigated, especially 
the problems of existence and cardinality of bases in them. 
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Definition 1 Let P be a set and V be a family of its subsets. Then the pair 
(P, V) is called a closure space if V is closed under intersection and P EV. The 
elements of V are said to be closed sets. 

If X C P , then the intersection (X) of all closed sets containing X is called 
the closure of X. 

A closed set A is said to be generated by a subset X C P if A — (X). 

If (P, V) is a closure space and X, Y C P , then it is obvious that X C (X), 
XCY^(X)C(Y),((X)) = (X). 

Definition 2 Let (P,P) be a closure space. A set X C P is said to be inde­
pendent if x £ (X — {x}) for all x E X. 

Remark 1 All subsets of any independent set are independent. In what follows, 
we put Xa := X — {a} for a £ X. 
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Definition 3 A set B C P is called a basis of the closure space (P, V) if B is 
independent and B generates P , i.e. (B) = P . 

Definition 4 If a basis of cardinality K exists in (P, P) and no other basis has 
greater cardinality, then we say that (P, P) has dimension K — 1. 

We will write dim(P,P) = K - 1. 

Let G and M be sets and I C G x M. Then the triple (G, M, I) is called an 
incidence structure. If A C G, B C M are non-empty sets, then we denote 

Alt = r m € M | £ j m y# G A}, 5+ = {g £ G | glm Vm g P } . 

For the empty set we put 0t := M, 0^ := G. And moreover, we denote A^ := 
( i4t)l j Hit : = (^4)t j tft : = {^}tj m 4 : = {m}i for A C G5 P C M and o G G, 
m E M . 

Let .J7" = (G, M, I) be an incidence structure. Then it is easy to show (see 
[1]) that 

A C C =» Ct c At for A, G C G, 

5 C D = > D k ^ for S , D C M, 

A C - 4 n , P C flW for A C G, P C M, 
A t4 t = At, J j m = 54 for A C G, P C M, 

( U ^ ) t = n V foiAiCG, 

(U ft)1 = D ^ for Pi C M. 

Theorem 1 Let J = (G, M, I) be an incidence structure. If we put 

Gj = {ACG\A = An}, Mj = {BCM\B = B^}, 

then the pairs (G,Gj), (M,Mj) are closure spaces, (See [2].) 

Remark 2 If A C G, P C M, then (A) = 4 ^ and (P) = P+t in (G, Qj) and 
(M, JVij-), respectively. 

Defini t ion 5 Let K b e a vector space over a field K, d imK = n + 1, n > 2. 
The system consisting of all subspaces of V is called a projective space and will 
be denoted by Vn. 

Projective dimension of the subspaces of Vn is defined with a help of dimen­
sion of the subspaces in V by the formula 

dimp U = dimy U — 1 

for any subspace U in V. 
Then the projective space Vn has projective dimension n. The subspaces 

of Vn with projective dimension 0 ( l ,2 ,n— 1) are called points (lines, planes, 
hyperplanes). 
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The empty set is a subspace of Vn and dim-p 0 = — 1. 
Let us denote J2ieL ^ t n e intersection of all subspaces of Vn containing the 

set {Ui \ i E L} of subspaces. Obviously, J2ieL ^* i s a * s o a subspace. 
In what follows we will consider the notion of dimension of a subspace in 

the projective sense. However, we put dim?? U := dimU, i.e. the index V will 
be omitted. 

Remark 3 If U and V are subspaces from Vn, then 

dim U + dim V = dim(U + V) + dim(U n V). 

(See [3].) 

Remark 4 Let B be a set of all points of the projective space Vn. Then 
(B,Vn) is a closure space. The closed set generated by A C B is a subspace in 
Vn, denoted by [A]. 

Let us consider independent sets and bases in (B, Vn) according to Definition 
3 and 4. Every basis has cardinality n + 1 and the closure space has dimension n. 

In what follows we will not exactly distinguish between the projective space 
Vn and the closure space (B,Vn). So, we can speak about independent sets in 
Vn, bases in Vn e t c 

Remark 5 Let P be a subspace and U be a hyperplane of the projective space 
Vn such that P <J~U. Then there exists a point of P which is not contained in 
U, so dim(U + P ) = n. We obtain n — 1 + d i m P = n + d im(UnF ) 3 from which 
dim(U n P) = dim P - 1 follows. 

Theorem 2 Let U\,..., Uk) 1 < k < n+1, be hyperplanes in the projective 
space Vn. Then 

dim ( П UІ ) > n к. 

Proof If k = 1, then dimUi = n - 1 = n - k. Let k = 2. For U\ = U2 we get 
dim'J/i n U2 = n - 1 > n - 2. IfUi£U2, then dimUi n U 2 = n - 2 = n - k b y 
Remark 5. 

Let us assume that the presented inequality is valid for a certain k such that 
1 < k < n + 1. Let Ui,..., Uk,Uk+1 be hyperplanes. We put PV = H K J X * ^ ' 
and V = rii<j<*+i ^ j * so V = W n E/ib+i. ff W C % + i , then V = TV"and 
dimV = dimPV > n - k > n - (k + 1). For W <j£ Uk+1 we get dimV = 
dim(W n J7fc+1) = dimPV - 1 > n - (k + 1) by Remark 5. • 

Theorem 3 Let U\,.. .,Uk, 1 < k < n+ 1, be hyperplanes in Vn and nk = 
{ 1 , . . . , k}. Then the following conditions are equivalent: 

ViGn f e : p | UjgUi (1) 

dim p ) Uj~n-k (2) 
j€n f e 
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Proof We denote A = {Ux,..., Uk) and VA = f l ^ , £>i • 
(1) ==> (2) Obviously, for k = 1 we get dimUi = n - 1 = n — k. If k = 2, 

then Ui / U2 and dim VA = n - 2 = n - k. 
Let us assume that the condition (1) implies (2) for a certain k, 1 < k < n + 1 . 
Let the set B = {U i , . . . , Uk, £4+i} has the property (1) and consider Ui E B. 

Then for W = fljen* i - m ^ i w e °ktain dim W = n — k by the assumption. 
From W 2 #i we get dimVB = dimPVDf// = d i m V V - l = n — (k + 1) according 
to Remark 5. 

(2) = > (1) Let us take Ui G A and denote JV = f]jenk~U} Uj-
We will assume that W C U\. Hence, because of VA = Ui 0 W, we have 

VA = W and d imW = n — k. However, according to Theorem 2, dim W > 
n — (k — l) = n — k + 1. That is a contradiction. • 

Remark 6 Let U be a subspace of dimension ki in the projective space Vn and 
k2 be a natural number such that k\ + k2 < n. Then there exists a subspace V 
of dimension k2 such that U D V = 0. 

Now we define an incidence structure J" = (Gk,Mr,I) on the projective 
space Vn of dimension n > 3 in the following way: 
Gk contains all points of a subspace of dimension k in Vn, 0 < k < n, 
Mr contains all subspaces of dimension r mVn, 0 <r < n — 1 and 
I is the incidence relation from Vn restricted to the set Gk x Mr. 

Remark 7 Consider a subset ACGk- Then A^ is a set of subspaces from Mr, 
which contain A. 

If m G M r , then m^ is a set of points of the subspace m contained in Gk • 
We will denote subspaces m G Mr by usual symbols U, V etc. It means we 

put m := {/, where m^ = UnG/,. So, for B C Mr we get 5+ = (Dt7Gj3 ^ ) n ^ . 

First we will consider a closure space {Gk,Gj), where Gj = {A C Gk \ A = 
A1^}. For a subset A C Gk we obtain [A] C Gk and dirn[A| < k. 

(a) Assume that dim[-A] < r. Then A ^ is the intersection of all subspaces 
containing A from Mr. Thus A^ = [A] and it follows (A) = [A] for the closure 

<A)f rom(G*,£ j ) . 
(b) If dim[A] > r, then A^ = 0. This implies A™ = G* and G* = (A) ?- [A] 

( f o r A c G * ) . 

T h e o r e m 4 A set A C Gk is independent in (Gk,Gj) if and only if A is 
independent in Vn and dim[A] < r + 1. 

Proof Let A be independent in (Gk,Gj)> Then a £ A\^ for an arbitrary 
a £ A. Thus A\^ ^ Gk and dim[Aa] < r according to (b). From (a) we 
obtain [Aa] = A^ and a £ [Aa]. Hence A is independent in Vn and we get 
dim[Aa] + 1 = dim[A] < r + 1. 

Conversely, let A be independent in Vn and dim[^4] < r + 1 . Then dim[^4a] < 
r for a G A and [Aa] = A^J- according to (a). Therefore, a $. [Aa] implies a £ A^J-
and A is independent in (Gk>Gj)- D 
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T h e o r e m 5 In the closure space {Gk,Gj) there always exist bases and all of 
them have the same cardinality. 

If r <k, then cardinality of bases is r-j-2. Ifk< r, then cardinality of bases 
is k + 1 

P r o o f 1. Let r < k. First we will prove the existence of a basis in {Gk,Gj)-
Because of r 4* 1 < k < n, there exists a set A C Gk, \A\ = r -f 2, which 

is independent in P n . Then dim[A| = r + 1 and A is independent in {Gk,Gj) 
by Theorem 4. We obtain A^ — G& according to (b) and so A is a basis in 
{Gk,Gj)-

Now we show that every basis consists of r -f 2 elements. Let A be a basis 
in {Gk,Gj)- Then A is independent in {Gk,Gj)- Thus AL is independent in Vn 

by Theorem 4 and dim]/!] < r -f 1. 
Consider dim[A] < r. Then [A] = A^ according to (a) and since A is the 

basis in {Gk,Gj) we obtain A^ = [A] = Gk. Hence dim[A] = k and k < r, a 
contradiction. 

So dim[A] = r -VI and \A\ = r + 2. 

2. Let k < r. If A. is a basis of the subspace G& in P " , then A is independent 
in Vn and [A] = G/*, \A\ = Ar-h 1. A is independent in {Gk,Gj) (Theorem 4) and 
[A] = A ^ according to (a). From this Ar^ = G/c and A is a basis of {Gk,Gj)-

Every basis in {Gk,Gj) has cardinality k -f-1: Let A be a basis in {Gk,Gj)-
Then A C Gfc, A is independent in {Gk,Gj) and A is also independent in Vn 

by Theorem 4. We know that dim[A] < k. Assume that dim[X] < k. Then 
dim[Ai] < r and A^ = [A] according to (a). Hence A ^ ^ Gk, which implies 
that A is not a basis in {Gk,Gj), a contradiction. 

So dim[A] = k and |A| = k + 1. • 

Now we will deal with the closure space {Mr,Mj). 
Fox BCMr we denote VB = f)UeB U and WB = f]U€B

unG^ = VB f)Gk. 
Then £+ = IVE? and B^ = {U eMr\WBC U}. 

If B - {U i , . . . , U/} C M r , then we put 

Wh= f] UjHGk 

for i Em = { 1 , . . . , / } . 

We get JSf = {U E M r | Wl
B C U} for £,- = B - {[/,-}. 

T h e o r e m 6 27ae se£ H = {U i , . . . , Ui} C M r is independent in {Mr,Mj) if 
and only if Wl

B ^ WB for all i E ni. 

P r o o f If JB is independent, then Ui $ Bf^ for all i Em. Assume that Wl
B = WB 

for certain i. Since tVe C Ui, we obtain VVjj C Ui and Uj € Bf^, a contradiction. 
Conversely, let Wl

B ^ WB for all £ E m • We will assume that Ui E Bf^ for 
certain i. Then 1/Vjj C Ui. Since W£ C Uj D G& for all j E m, j ^ h w e g e t 

W£ C Up n G/c for all p Em and vVJ C IVB. Hence W% = JVB, which is a 
contradiction. So U{ $ -St- and 1? is independent in (M r , A l ^ ) . D 
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R e m a r k 8 An incidence structure J\ = ( G , M r , J ) , where G is a set of all 
points of the projective space Vn, is a special case of the structure J = 
(Gk)MrJ). Then k = n . 

If we put VQ = Ojem-U} Uj for & ~ { -̂> • • •»^'}» t n e n w e &et a criterion 
of independence as the special case of Theorem 6: 

The set B is independent in (Mr,Mj) if and only if Vg ^ Vg for all i £ n*. 
From this Theorem 7 follows immediately. 

Theorem 7 If a set B is independent in (Mr,Mj), then it is independent in 
(Mr,MSl). 

Theorem 8 The maximal basis in (Mr,Mj), i.e. the basis of maximal cardi­
nality, has r + 2 elements for r < k and k + 1 elements for k < r. 

Proo f 1. Let r < k. First we will construct a basis of cardinality r + 2: There 
exists a subspace R in Gk, dimR = r + 1. Hyperplanes in 1? are subspaces 
of dimension r and so they belong to Mr. By Theorem 3, there exists a set 
B = {U i , . . . , Ur+2} of hyperplanes in R such that VB = f]i£n 2U% = 0 and 
Vl

B = n j 6 n r + 2 -{ i} ty r̂  0 for all • E n r + 2 = { 1 , . . . , r + 2}. 

Since Ui C Gk for all i £ n r + 2 , we obtain Vg = WB and V^ = Wl
B for all 

i £ n r + 2 . Hence B is independent in (Mr,Mj) by Theorem 6. Because of 
flit - pyt = 0t = A f ) j5 i s a b a s i s i n ( M r ) Mj). 

Now we show that every basis in (Mr,Mj) has at most r + 2 elements: 
Consider UUU2 e Mr, Ux ^ U2. If we put W2 = UiHU2, then dimJV2 < r. Let 
us take U3 £ M r such that {Ui,U2,U3} is an independent set in (Mr,Mjx). 
Thus VV3 = Ui O U2 n U3 = W2 n Us and VV2 / VV3. This implies dimVV3 < 
dim W2 and so dim VV3 < r — 1. 

If we continue in the same way, then dim Wi = r — (i — 2). {U i , . . . , Uj} is a 
basis in (M r , Mjx) if dimlVj = —1. Thus i < r + 3. So, a basis in ( M ^ M ^ ) 
has maximal cardinality r + 2. 

Let B = {U i , . . . , Ur+3} be a basis in ( M r , M j ) . Then B is independent in 
(MriMj) and it is independent also in (Mr,Mjx) by Theorem 7. However, 
that is a contradiction because a basis is the maximal independent set. 

2. Let k < r. First we will construct a basis of cardinality k + 1. Because 
of r < n — 1 there exists a subspace i? containing Gk in P n , dim J? = r + 1. 
Hyperplanes in .ft belong to M r . Each subspace in R is an intersection of 
hyperplanes in R. We can take hyperplanes U\,...,Um in R such that they 
satisfy conditions from Theorem 3 and Gk = O^n™ ^j where r + 1 — m = k. 
There exist (by Theorem 3 again) hyperplanes Um+i,.,., Um+k+i such that for 
C = {U i , . . . , Um+k+\} we obtain Vc = 0 and V£ ^ 0 for all i E n m + f e + i . Let us 
put B = {Um + 1 , . . . , U m + / e + i } . Then WB - V B O G * = f)jenrn+k+x Us = Vc = 0 
and VV̂  = V£ H Gk = Vj # 0 for all i £ nm+k+\- It means (by Theorem 6) 
that B is a basis of cardinality k + 1 in (Mr,Mj). 

Finally we show that every basis in (Mr,Mj) has at most k + 1 elements: 
Consider U\ E Mr. Then obviously dimUi O Gk < k. If dimUi n Gk = fc, 
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then Gk C Ut. For B = {Ui} we get Bx = B - {Ui} = 0, Bf = 0+ = Gk 

and B ^ = {17 S M r | G* C U}. Thus (73 G J3fr and B is not independent in 
(Mr,Mj). 

Let us assume that dimUi n Gk < k, U2 G M r and the set {t7i,U2} is 
independent in (M r ,yM^). If we put IV2 = (GknUi)nU2, then W2^Gkn Ui 
and dimPV2 < k — 1. We can continue in the same way. In the end we will 
obtain dim JV* < k - (i - 1) which for dim Wi = - 1 implies i < fe + 2. • 

T h e o r e m 9 Tbe minimal basis in the closure space (Mr,Mj) has cardinality 
d — [-£--] -f 1 where [j~] denotes the integer part of the number —^. 

Proo f We will construct the minimal basis. 
1. Let r + k < n. Then (by Remark 6) there exists a subspace U\ G Mr such 

that Ui n Gk = 0. B = {Ui} is a basis in (Mr,Mj) and d = 1. 
2. Let r + k>n. Then r + k = dim(Ui + Gk) + dim(Ui n Gk) > n for any 

Ui G M r . Hence each subspace from M r has a nonempty intersection with Gk. 
Consider Ui such that dimUi n G& is minimal. Thus dim(Ui + Gk) = n and 
dim(Ui n G*) = r + k - n. We put Wx = Ui n G*. 

3. Let r + (r + Ar ~ n) < n. Then there exists a subspace U2 G M r such 
that U2 n PVi = 0 by Remark 6 again. We put B = {UXi U2}. Since WB = 
tfi n U2 n Gfc = Wi n U2 = 0, w& = U2 n G* ?* 0 and KVJ = f/i n G* ^ 0, B is 
a basis in (Mr,Mj) according to Theorem 6. In this case d = 2. 

4. Let 2 r + k - n > n. Then 2r-n+k = dim(U2 + JVi)+dim(U2nJVi) > n for 
any subspace U2 £ Mr. Consider U2 G M r such that dimension of W2~U2nW\ 
is minimal. Thus d\m(U2 + W\) = n and dim VV2 = 2 r - 2 n + & > 0. This implies 
that every subspace from M r has a nonempty intersection with W\. 

5. Let 3r — 2n + k < n. Then there exists a subspace U3 G M r such that 
U3 n W2 = 0. We put B = {J7i, U2, U3}- Hence W* = (Ux nU2n U3) nGk^ 
W2nU3 = 0. It is easy to see that dim JVi < dim(U2nGk) and r73n(c72nG/<) ^ 0. 
Thus W^ 0, Wl = U3 n Wi ^ 0 and VVJ = f/o n JVi ?- 0. B is independent 
in (Mr,Mj) by Theorem 6 and because of WB = 0 it is a basis in (Mr,Mj) 
of cardinality d = 3. 

6. Let 3r — 2n + k > n. Consider U3 G M r such that dimension of tV3 = 
U3 n W2 is minimal. 

If we continue in the same way, then we get the following inequalities for 
cardinality d of the minimal basis: 

dr-(d-l)n + k<n and (d - l ) r - (d - 2)n + k 

It follows that 

We obtained 

k k 
d > ancl d < 1 + n — r n — r 

d=\ + 1 . D 
\n-r\ 
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E x a m p l e 1 Let us consider the incidence structure J = (Gk, Mr, I) and let us 
find the maximal and the minimal basis in the closure space (M r , Mj). 

(a) Let n = 3 , r = k = l. Then Gk is a line and subspaces from Mr are also 
lines. The minimal basis consists of one line U\ which is disjoint with Gk. 

Cardinality of the maximal basis is k + 1 = 2. This basis consists of two 
lines U\, U2 which intersect in one point and each of them intersect Gk • 

(b) Let n = 4, k = 3 , r = 2. Then the minimal basis has 2 elements and the 
maximal basis has 4 elements. Let us take a plane U\ such that W\ ~U\C\Gk 
is a line. Then take a plane U^ disjoint with W\. Obviously {Ui, U^\ is a basis 
in (Mr,Mj). 

The maximal basis consists of 4 planes, all of them are contained in Gk. 
They all have the empty intersection but an intersection of every 3 of them is 
not empty. 

It is easy to see that there exists also a basis of cardinality 3. 

Theorem 10 All bases in the closure space (Mr,Mj) have the same cardinal­
ity (i.e. the maximal basis is equal to the minimal one) if and only if some of 
these conditions is satisfied: 

(1) r~n~l 
(2) k~0 
(3) k~n, r = 0 

Proof We denote D(d) cardinality of the maximal (minimal) basis. First we 
will show that the conditions are sufficient: 

(1) Let r = n - 1. Then d ~ k + 1. For k < n - 1 we get D = k + 1 = d. If 
k ~ n, then D~r + 2~n + l~k+l~d. 

(2) From k = 0 follows d = 1 = D immediately. 

(3) Let k = n and r = 0. Then d = 2 and D ~ r + 2 = 2. 

Conversely, let us assume that d~ D. 
(a) Consider k < r. Then from the equality 

follows 

" k 

n — r 

' k ' 

n — r _ 

+ 1 = * + 1 

= k< 

This yields k = 0 o r n — r < 1, thus r > n — 1. Because of r < n — 1, we get 
r = n — 1. 

(b) Let k > r. We distinguish two cases: 
1. If k = n, then the equality d~ D means 

r + 2 
n — r 

+ 1. 

From this 

r + 1 < 
n — r 

which is equivalent to nr + n — r2 — r < n. 
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This yields r(n — 1 — r) < 0. Since r < n — 1, only two possibilities remain: 
r = 0 or r = n — 1. 

2. For k < n we obtain 

r + 1 = 

This is equivalent to 
k n 

r + 1 < < 
~ n — r n — r 

and from this 

nr -f- n — r2 — r < n if and only if r(n — 1 — r) < 0 

which is not possible for any r because 0 < r < n — 1. • 

R e m a r k 9 If some of the three conditions from Theorem 10 is satisfied, then 
all bases in the closure spaces (Gk,Gj) and (Mr, Mj) induced by the incidence 
structure J = (Gk, Mr, I) have the same cardinality. 
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