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Abstract

Approximative solutions of inconsistent linear matrix equations can
be obtained by the Chipman inverse. This inverse of a given matrix must
fulfil some necessary and sufficient conditions. The aim of the paper is to
give a direct proof that a special class of matrices fulfils these conditions.

Key words: Inconsistent linear matrix equation, least squares mini-
mum norm g-inverse of a matrix.
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Introduction

In the theory of the linear estimation several types of generalized inverse
(g-inverse) of matrices have been used. The Chipman g-inverse is an impor-
tant representant of them. It can be generalized and then not only one however
a whole class of such matrices exists. This class is characterized by necessary
and sufficient conditions. The aim of the paper is to prove that a special class
of matrices fulfils these conditions.

*Supported by internal grant No. 311 03 001 of the Palacky University, Olomouc and by
grant No. 201/96/0436 of the Grant Agency of the Czech Republic
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1 Definition and auxiliary statements

Let A be an m X n matrix, M an m x m positively definite (p.d.) matrix and
N an n x n p.d. matrix.

Definition 1.1 The matrix AL’  is the Chipman g-inverse of 4, if
AAL,NA =A & AL.NAAXJ,N = A?\./!,N
MAAY y = (MAAY N) & NAj yA=(NAj A
(" denotes a transposition).

Lemma 1.2 Let A be any m x n matriz and M and N be fized. Then there
exists just one matric Ay .

Proof Cf. [1] and Note 6 in [2], p. 52. m]

Let R™ denote the m-dimensional real linear space,
lAz — yllm = /(A2 — y)’M(Az —y) and ||z||y = Vz'Nz.

Lemma 1.3 Properties of any matriz A7, MmN are characterized by the following

viye Ry iz e B (14ALwy - vl < 1Az~ yllr) &
& (148 nvlly < llslly < 14z~ ylle = |A4G o —yle) . (D
Proof Cf. [2], pp. 53-54. o

Remark 1.4 The matrix A}, y is called M-least squares N-minimum norm
g-inverse of the matrix A (m more detail cf. [2]).

2 A generalization
Let M and N need not be p.d., i.e. they can be positively semidefinite only.
Lemma 2.1 Necessary and sufficient conditions for A MmN to satisfy (1) is

MAAY yNA=MA & MAAY N = (MAAY N) &
& NAy yA=(NAYNA) & NAj NAAY v = NAY & (2)
Proof Cf. [2], pp. 53. |
Let the class of all matrices AL‘ N satisfying (2) be denoted as AL, N
Lemma 2.2 The class of matrices
=(N+AMA“AMAMAN + AMA)"AM|"A'M (3)

. . . +
is included into Ay .
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Proof It is given in [2], pp. 53-54 and it is based on a minimization of the
function ®(z) = z’' Nz under the condition A’'M Az = A'My. a

The problem is to prove directly the validity of (2) for (3).
Let M(A) L M(B) mean A'B = 0.

Lemma 2.3 Let E be an idempotent matriz, i.e. E> = E. Then M(E) L
M(I-E) = E=E.

Proof M(E) LM(I-E)& E'(I-E)=0& E =FE'E,ie E and thus E
is symmetric. O

Lemma 2.4 Let A and B be m x n and n x r, respectively, matrices with the
property M(A") = M(B). Then B(AB)™ A is idempotent and symmetric.

Proof M(A') = M(B) = M(A4") = M(AB) and M(B') = M(B'B) =
M(B'A"). Tt implies B(AB)~AB(AB)~A = B(AB)~ A, thus B(AB)~A is
idempotent. The expression B(AB)™ A is invariant with respect to a choice of
the g-inverse (AB)~, i.e. B(AB)~ A = B[(B'A’)~]' A. Obviously
M[B(AB)™ A] = M(B) = M(A") = M[A'(B'A")"B'] L Ker(4).

Since B(AB)™ A is idempotent and Ker(4) = M[I — B(AB)™ 4], the matrix
B(AB)~ A is symmetric with respect to Lemma 2.3. ]

Theorem 2.5 Any matriz G from (3) satisfies (2).

Proof (i) Since M is p.s.d. there exists a matrix J of the full rank in columns
such that M = JJ'. Thus

MAGA = JJ'A(N + AMA)~A'M[A'JJ' AN + A'MA)~A'M]~A'MA.

Let U = J'A(N + AMA)A'M,V = A'J. Obviously M(U) = M(V'). Thus
MAGA = JU(VU)"VJ'A and U(VU)~V is the Euclidean projection matrix
on M(J'A), with respect to Lemma 2.4. Thus JUVU) " VJ'A=JJ'A= MA.

(i) MAG = MA(N + A'MA)~ A'M[A'MA(N + A'M A)~ A'M)~A'M and

GAMAG = MA{[A'MA(N + AAMA)"A'M|"} MA(N + A'MA)~
xA'MAN + AMA)"A'M[AAMA(N + AMA)"A'M|"A'M
=MA{[A’MAN + AAMA)" AM|"YMAN + A'MA)"A'M =G'A'M.

Thus G'A'M = G'A’M AG (symmetric) = M AG.

(iii) Since (IV + A'M A)* is symmetric (this matrix can be used instead of
(N + A'MA)~) and p.s.d. there exists a matrix K of the full rank in columns
such that (N + A'MA)* = KK'. Thus

NGA=NKK'AM[A'MA(N + AAMA)"A'M]"A'MA
= NKK'AM[AMA(N + AMA)y~A'M]"A'MA(N + AMA)*(N + A’ MA).
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Let U =K'A'M and V = A’M AK. The matrix
K'AMAMAKK'AM)"AMAK =U(VU)"V

is a projection matrix in Euclidean norm on M(K'A' M) with respect to Lemma
2.4. Thus

NGA=NGA'MAKK'(N + A'MA)
=NKPxamK'N+NKPgiauK'AAMA
:NKPK/AlMK'N+NKK’AIMA
=NKPxiapyK'N+AMA-AMAKK'A'MA,

what is a symmetric matrix.
(iv)
NGAG=N(N+AMA)“"AMAMAN +AMA)-"AM|"AMA
x (N+AMA)“AM[AMAN + AMA)~AM|"A'M
=N(N+AMA)“AM[AMAN + AAMA)-A'M]"A'M = NG. O
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