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Abstract 
We study the steady motion of second-grade fluid in exterior domains 

with a small but non-zero velocity prescribed at infinity. We split the 
problem into the Oseen problem and transport equation and look for a 
fixed point in Sobolev spaces. We proof the existence of strong solutions. 

Key words: Second-grade fluid, steady flow, exterior domain, trans­
port equation, Oseen problem. 
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1 Introduction 
Let us study the plane flow of second-grade fluid past an obstacle. The second-
grade fluid is characterized by the constitutive law (see e.g. [TrNo]) 

r = 2/iD + 2ai A x + 4 a 2 D 2 , (1.1) 

where JJL is viscosity, a\ and a 2 are normal stress moduli, D is the symmetric 
part of the gradient of velocity and 

Ax = j B + (Vv) T D + D V v . (1.2) 

The work was written during the stay of the author at the University of Toulon and was 
supported by the scholarship of the French governement. 
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168 Milan POKORNÝ 

Here ^ denotes the material time derivative and v the velocity field. 
Steady motion of the incompressible second-grade fluid is governed by the 

balance of momentum 

QV • Vv + Vp = V • r + £f (1.3) 

and the balance of mass 

V - v = 0 , (1.4) 

where Q denotes the (constant) density, p the pressure and f the external forces. 
This model of non-Newtonian fluid was studied for different types of domains 
by several authors, see e.g. [DuFo], [DuRa], [GaSe], [NoSeVi], [PiSeVi]. 

We put the origine of the coordinate system into the obstacle i.e. into the 
compact body O with smooth boundary. Inserting (1.1) and (1.2) into (1.3) 
and using the condition of thermodynamical stability a\ + 6*2 = 0 (see [DuFo]) 
we obtain following system of equations which describes the steady motion of 
second-grade fluid in the exterior domain ft = R2 \ O 

—/iAv — a i v • VAv + Vp = — QV • Vv + gf+ 

+ a 1 V - [ ( V v ) r ( V v + (Vv)T)] 

V - v = 0 (1.5) 

v = 0 at <9ft = dO 

v —r VQO as |x| —r 00 . 

We shall assume throughout the paper that the prescribed constant velocity 
at infinity VQO ^ 0. We can rotate the coordinate system in such a way that 
Voo = /3(1,0). We shall search the solution v in the form v = u + VQO, we have 
for u: 

- M A u - am • V A u - a i / ? A | £ + Q0fe 4- V p = 

= - £ u • Vu + Q{ + a i V • [ (Vu) T (Vu + (Vu)T)] 

V - u = 0 (1.6) 

u = - V o o = -( /?,0) at dft 
u -» 0 as |x| ~» 00. 

Using the decomposition procedure proposed by Mogilevskij and Solonnikov 
(see [MoSo]) we consider formally the mapping 

M : g H> (u, s) K> z , 

where 

V — ° (1.7) 
u = -(/?, 0) at an 

u —> 0 as |xj -> 00, 
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it means that the pair (u, s) satifies the Oseen problem with the right hand side 
g, and 

pi + a i (u + Voo) • Vz = -QU • Vu F Df-F 

+ a1V-[(Vuf(Vu + (Vur) + f^®u-S(Vur]+a1f gjf, (L8) 

it means that z satisfies transport equation with the right hand side depending 
on (u, s). (In fact, each component of z satisfies scalar transport equation.) 
Clearly, if we find a fixed point of the mapping M. in an appropriate space then 
the corresponding pair (u,p) with p = ps -F ot\ (u 4- v^) • Vs solves the original 
problem (1.6). 

2 Notation, Basic Theorems 
We denote by Lq(Sl) the usual Lebesgue space equipped by the norm 

Nl,= (jf M"*-)' • 

The Sobolev space Wk'q(Q) contains all measurable functions such that the 
norm 

N I M = ( E \\Da<) 
\\a\<k J 

is finite. If k = 0 then W0>q(Sl) = Z^(ft). Here a = (ai, 02) is a multiindex and 
Daw = dJ*\fo«*• By Dfcw we understand the vector which consists of all deriva­
tives of ib-th order of w. If fc = 1 we shall write only Du. We do not distinguish 
between Wk'q(Sl) and (Wk>q(ti))n but in order to avoid misunderstanding, all 
the vector- and tensor-valued functions are printed boldfaced. 

We shall mention some well-known theory ms which will be often used in the 
next section: 

Theorem 2.1 Let ft C Rn. Let u e Lp (SI) f) Lq (SI), 1 < p < q < 00. Then 
ue Lr(Sl) Vr £ (p,g) and 

NI- < NEIMU-* 

Proof It is an easy consequence of the Holder inequality. • 
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Theorem 2.2 
1. Let ( l e i 2 be exterior domain with lipschitzian boundary. Let for some 

p £ [1,2) Du G Lp(fl). Then there exists a unique constant Uo such that 

2p 
\\u-Uo\\a < C\\Du\\p7 S - 2 - p ' 

where the constant C does not depend on u. 

2. Let u € WllP(Q), p > 2. Then u € C(Q.) and there exists C > 0, indepen­
dent ofu, such that 

\\u\\oo<C\\u\\hp. 

Proof see [Gal]. • 

Remark 2.3 Let all the assumptions of the first part of Theorem 2.2 be satis­
fied. If moreover u € Lq(Q) for some q £ [1, oo) then evidently UQ = 0. 

The decomposition (1.7)—(1.8) allows us to study separately the Oseen prob­
lem (1.7) and the transport equation (1.8). Let us recall some known facts about 
these two equations. 

Theorem 2.4 Let I < q < § and (3 € (0,/?0). Let g <E Wk'q(fl), k = 0,1, • • • 
and l l c l 2 be exterior domain. Then there exists unique solution to the Oseen 
problem (1.7). Moreover denoting by u this solution, we have: 

(u)fi,q = / ? ( | M U +| |I>u2y+/3»| |u| | a, +0*P>u| | . a _< 
2 — q S — 2q 3— q 

<C'(n,«2,A)(||g||g + /32(1-i)|ln /5|-1||v00||2_i ig>en) (2.1) 

[u]* = 0?<--i)(||/.>-u|U^ + |)2>»|U )̂ < 

<C(n,q,p0) [||g||- + ^ (1-« )(l |g|U,- + ||Voo|la+*-J,9,8o)] (2-2) 

Proof The existence and uniqueness of the solution is shown in [Gal], The 
inequality (2.1) can be found in [Ga2], the inequality (2.2) in [Po]. • 

Theorem 2.5 Let u + Voo = 0 on dfl. Let ft be exterior domain with smooth 
boundary. Let u + Voo € Ck(Q), F e Wk>q(Q), k = 0, 1, • • •, 1 < q < oo. Let 
$k = ||u 4- Voollrjfa be small enough (if k = 0, we must consider ||u + Voo\\c1)-
Then there exists exactly one solution z E WkiQ(fl) to the transpori equation 
(1.8). Moreover 

The constant a depends only on k, q. 

Proof see [No]. • 
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3 Main Theorems 

We proceed as follows. We first show that the mapping M maps for /3 small 
enough the balls (small enough) in TV1,Qf(0) into themselves. Then we show that 
the mapping is a contraction in Lq(ft). The following classical theorem gives us 
the existence of a fixed point in TV l ig(0). 

Theorem 3.1 Let X be reflexive Banach space, Y Banach space, X <-* Y. 
Let H be a closed unempty ball in the norm topology of X. Let T : H i-> H be 
contraction in Y. Then there exists a unique fixed point ofT in H. 

Remark 3.2 Analogously to what follows we may show that the mapping M 
maps small balls into themselves in W* ,g(fi), k > 2, and is a contraction in 
Wk~~liq(Q). Therefore there exists a fixed point in Wk,q(Q) (see Theorem 3.9). 

Throughout this section we shall assume that q € (1, §). We shall show that 
if ||f ||i>g is sufficiently small then 

1. 36(/3) > 0 such that | | g | | M < S =-> \\Mg\\hq < 6 

2. M is a contraction in Lq(Q,) i.e. \\Mgi -Mg2\\q < "y(S)\\gi -g2 | |g , where 
0 < 7 < l a n d | | g < | | i f g < * , t = l f 2 . 

We start to study the problem (1.7) i.e. the Oseen problem. Prom (2.1)-(2.2) 
we have 

(u)0,q<C(\\g\\q + ^+^-^\lnl3\-^ 
[u]i<o(||g||g + ^ ( 1-^i |g | | i , , + ^ 1 + 2 ( 1 - ^ ) . 

We need an estimate of z = Mg in W1,q(Q) by means of the expressions on 
the left hand side of (3.1). Let us begin with two lemmas dealing with some 
auxilliary estimates. 

Lemma 3.3 Let u has finite norms (• )j3fQ and [ • ]*. k > 0. Let u = — (/?, 0) on 
dn. Then 

nft 1\ 3 -2q 2 3 ( g - l ) 3 ( q - l ) 

H i * < cauio/r^- i^-^K^Afr*) * + P<] (3 2) 

||2>*ii||oo < c / j -^ - i^u ] * , * > i . 
Proof We start with the first inequality. We denote by w the function which 
is equal to u inside of fi and —(/?, 0) outside of ft. The function w belongs to 
W1,q(R2) and the interpolation inequality from [Ma] gives us 

Hioo^ci iJ^ i i^^ i iwi i^ ) , 

where 0 = a(£ - | ) + (1 - a)\. We put r = 3 ^ and s = ~ ^ ; so a = ^j1. As 
w = u on fi and Vw = 0 outside of fi, we have 

^ g - 1 ) 3 ( q - l ) *=*1 
IHIoc < C(||u|| L +/3-Vi)||JDu|| \ . 

L*=?*(Q) L*=*(0) 
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The inequality (3.2i) follows by means of Theorem 2.2 and definitions of the 
norms. 

The other inequality is even easier. Theorem 2.2 gives us 

||D*u||oo < C-||D*u||lfT£. < CHD^u lb , , < C r ' ^ - ^ M * 

which finishes the proof of the lemma. • 
We next estimate the quadratic terms on the right hand side of (1.8). 

Lemma 3.4 Letu be sufficiently smooth. Then we have the following estimates 
with C independent of u and (3 

Hu-Vull, < (n)2^-1^1-^ , 

||uD*u||, < C[u](J^a[u]fc_2r2(1-')^-

•[(uCV2{1-^ )+/33(1-« )],ifc>2, 

IIDulU, < C(n)Z~%)^r6(1--X^ , (3.3) 
||DuD*u|], < ofujxMfc^r^1"^ , * > 2 , 

l|D2u||I? < C[n]2P~^-V , 

||D*SDu||„ < r JMjMnf 4 * 1 - ^ fc>l, 

||DSD*u||, < C[u]1[u]»_1/T4t1-i), k > 2. 

Proof The first inequality is classical and can be found e.g. in [Ga2]. We next 
have 

||uD*u||ff < ll^ul^llulloo 

and the second inequality follows from Lemma 3.3. The third inequality is a 
consequence of the interpolation and imbedding inequalities 

l|Du||2, < | |Du | | 6 i ^" ) | |Du | |S £ < CIIDulfi^llD^II^ 
3-9 2-q 3-9 

which hold for q e [1,|]. The fourth and sixth inequalities can be shown 
similarly as the second one. From the imbedding theorem we have 

||D2u||2, < C||D2u||2,a 

and we get the fifth inequality. Finally 

||D*D*u||, < ||D8||^_||D*u||2 < ol|D2s||g||D*u||1>9. 

The lemma is proved. D 
So we are in position to show that the operator M maps sufficiently small 

balls in Wliq(Q,) into themselves. 
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Lemma 3.5 Let ||f \\i,q and f3 he sufficiently small Then there exists 6(0) > 0 
such that the operator M maps B$ — {g G W1%q(Q)] | |g||i,g < 5} into itself. 

Proof Let us take g G VV1'*7^), 1 < q < f, ||g||i,g < S small enough (will be 
precised later). For the couple (u, s) the estimates (3.1) are available. Now, let 
us assume (will be demonstrated below) that ||u-j- Voo||c'i is small enough. Let 
z be solution of (1.8) with the right hand side depending on (u, s). Then 

l|z||li9<q|F(u,s)||1)g. 
We need therefore to assure the smallness of ||u-h VooUt?- and to estimate F(u , s) 
by means of the norms on the left hand side of (3.1). In what follows we assume 
that 8 = £/3a, where a > 0 and £ is a positive small number. First we need 

IH|i,oo<C/x. (3.4) 

From Lemma 3.3 and estimate (3.2) we have 

Nil,*, = Nloo + HoulU < C{epa-2{1-^ +er - 2 ( 1 - 1 ) 2 ^ + 
H - e ^ ^ ^ + ^ - i ) ^ + / j i--d-i)-f* + /3 1 + 2 ( 1 - i ) 2 ^ +13} 

Evidently, as 1 > 2(1 - I) 5-̂ -4 for g 6 (1, | ) , it is enough to assume /3 small 
and 

a>2( l - I ) i^ . 
q q 

So we get (3.4) satisfied. Let us note that it is enough to take a > | . As will 
be seen later we shall need much sharper condition on a. 

Now from (1.8) we see that 
| |F(u, s)\\liq < C(\\u • Viillx,, + | |2?uD2u||i,g + /3| |u£>2u| |M+ 

+ \\DsDu\\hq + \\f\\Uq+/3^D2u\\i,q). 

Lemma 3.4 reads 

IIFIII,, < c^j-1-*1-* + (u)S-' )[u]0^ ir6(1-^ )^+ 

+ (n)l{1-"\[n]^ + [u]fM/5 -^-\)l(l+ /3)+ 

+ ([up* + [u]^)r2(1-^)£s^u+^)+ 
+ ([U]f + [u]![u]0(i+p))rA{1-*] + iifik, + Hi/32-2(1-")} • 

Employing Theorems 2.4 and 2.5 we get finally (we assume | ln/3| > 1) 

iMk, < oiiFiii,, < c{iigii?,jr1-2(1-1)+r6(1-")2^+ 
+ /r2(1_1%+0)+f3- i (1-<\i + m+ 

+iigiiiTV3*1-*^1+p)+iigiii,^«+ 
+ p1+2^-^\\a/5\-2 + j8

2--(--i)-T1
 + 

+ /3 2 - 2 ( 1 - i )^ (1 + ff) + p\l + /3) + ||f||i,g} . 
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So we easily see that the smallest exponent in the terms without ||g||i,g is 
exactly 1 + 2(1 - - ) . We have therefore 

a < 1 + 2 ( 1 - - ) . 
q' 

On the other side, taking the terms with ||g||i,9 into accout we easily see that 
necesserily 2a - 1 - 2(1 — ~) > a i.e. 

a > 1 + 2 ( 1 - - ) 

and the only possibility is to choose a = 1 + 2(1 - M. Evidently, if e and /3 are 
small enough, then we get 

N | l l , < ^ 1 + 2 ( 1 - i ) = <J. 
Let us emphasize that 

l|g||?.g/r
1-a(1-*) <Ce2/31+2(1-^ < ^ 1 + 2 ( 1 - ^ 

for e small enough and 

^ l + 2 ( l - i ) | l n / 3 r 2 < ^ £ / 3 l + 2 ( l - i ) 

for /3 small enough. Lemma 3.5 is proved. D 
Now it remains to show that the operator M is a contraction in the space 

Lq(tt). It means we are about to show that there exists 5 small enough such 
that for all g i , g2 G B$ there exists 7 E (0,1) such that 

||~Mgl ~ Mg2\\q < 7||gi - g2\\q . 

Let us first reformulate the problems (1.7) and (1.8). We have easily 

- A ( u i - u2) + Of ^ ^ + V ( 5 l - s2) = gi - g2 

V • (ui - u2) = 0 

ui - u 2 = 0 at dft 

ui - u2 -+ 0 as |x| -» 00 

/i(zi - z2) + a i (ui + v ^ ) • V(zi - z2) = 

= F (u i , 5 i ) - F ( u 2 , s 2 ) - o . i ( u i - u 2 ) • Vz2 E E G , 

where 

F ( u i , 5 i ) - F ( u 2 , s 2 ) = - ^ ( u i - u 2 ) • Vui - gu2 • V(ui - u2) + 

+ a i V • {(V(ui - u 2 ) ) T [Vui + (Vu i ) T ]+ 

+ (Vu 2 ) T [V(ui - u2) + (V(ui - u 2 ) ) T ]+ 

+ ^l^^(-i~u2) + , f ^ ^ ^ u 2 - ^ 
~ (51 - * 2 ) ( V u i ) T " 52(V(ui - u 2 ) ) T } + 

+-1f2%^. 

(3.5) 

(3.6) 
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Our aim is to show that ||zi - z2||ig < 7J|gi — g2||g with 7 < 1. For (3.5) we 
have 

(ui - u2)ß>q < C\\вx - gcatiff 

[ui - u 2 ] 0 < CЦgi - gз| |, ( 8 ) 

while for (3.6) 

l l- i-«-l l«<^rr^rl l G l l«- ( 3 " 9 ) 

Similarly as in Lemrna 3.5 we can show that $1 is small if 8 is small enough. 
We start to estimate G in Lq(Q) by means of (u_ - u2)/?)f? and [ui — u 2 ] 0 . 

The constants in the estimates will depend on ( u * ) ^ and [ui]i and will be small 
for S small. We shall give the estimates of the terms on the right hand side of 
(3.6). 

||(ui - U2) • Vz2 | |, < ||Ui - Ua||oo||Vza||, < 

._,2-_r__ .,-=?-.„ ._ .3(1-*) 
',? <. Г

2 (-ł)V [ u i _ U a ] ^ { u i _ U a ) j ;-^< 
<e^-2(i-i)^iigl_g2n? 

Let us note that for 0 € (1, §) the exponent by /3 is strictly positive. 

||(u_ - ua) • VmH, < /8-1-2(1-i )(u1 - u2)0tq(u1}0tq < 

< c ( | l n / 9 | - 1 + e ) | | g i - g 2 | | g 

The same result holds also for the term u2 • V(ui — u2). 

/3||u2_»2(ui - u a ) | | , < /3||£>2(Ul - u2)||,||u_||oo < 

< C ^ 2 - 2 ( 1 - i ) ^ ( l + e)||gi - g a | | , + /?2(1 + e ^ ) | | g l - ga | |, 

Completely analogously we can estimate 

/?||(u_ - u2)I?2ui||, < ^ 2 - 2 ( 1 - i ) a7 a ( l + _)||gi - g_||, . 

Moreover 
/5 2 | |£ ' 2 (Ui-U2) | | ,<o /?f | |g l -g2 | | , . 

All the other terms can be estimated by the same term. 

H-OCm - u2)Z?2u.||, < ||£>(ui - u2)\\^_\\D2Ui\\2 < C/3*?(l + e)||g_ - g2 | |, 

||£>2(u1-ua)£>u.||, < \\D2(u1-u2)UDui\\00<Cp2TL(l + e)\\g1-g2\\q 

\\D(Sl - _a)_>ui||, < \\D(Sl - sa)||,||£>u1||00 < C^(l + _)||g_ - g a | | , 

||£>s2o(ui - u2) | | , < ||Ut.||a||_J(u1 - u2)||_2__ < CP*?(1 + e)||g_ - ga||, 
2 —<_ 

From the calculations above we conclude 
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Lemma 3.6 Let (5, e be small enough, S = ep1^2^1"^. Then there exists 
7 G (0,1) such that 

\\Mgx-Mg2\U <7llgi-fc| | f l 

for allgx, g2€Bs. 

Combining Lemmas 3.5 and 3.6 with Theorem 3.1 we get finally 

Theorem 3.7 Let q G (1, f ) . Let | |f| |i.g be sufficiently small. Then there exists 
(3* such that for all ft G (0,/3*) there exists at least one strong solution to (1.5). 
Moreover we have D2v G Wl>9(Q), Dv G L ^ ( f i ) , u = v - Voo G L*=^(Q) 
and Dp eW1*9(SI). 

Proof Prom Lemmas 3.5 and 3.6 we get existence of the fixed point w G 
W1,q(£l). Prom (1.7) we can calculate the corresponding pair (u ,s ) . Now, 
v = u + Voo solves the problem (1.5) while p = ps + a x ( u + VQO) • Vs is the 
corresponding pressure. We easily have 

\\Dp\\l%q < ii\\Ds\\i%q + ||u + voo| |oo| |^ | | i ,g + | |Du | | oo | | ^ | | g < C 

and Theorem 3.7 is demonstrated. • 

Remark 3.8 A similar procedure (in some sense even easier) gives us 

T h e o r e m 3.9 Let k > 1. Let q G (1, f) and let \\f\\ktq be sufficiently small. 

Then there exists 0* such that for all (3 G (0,/?*) there exists at least one strong 

solution to (1.5). Moreover we have that D2v G Wk'q(Cl), Dv G L 3-*(f i ) . 

u - v - Voo G L*&i(n) and Dp G W*'*(0). 

The details of the proof can be found in [Po]. 
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