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Abstract 

It is well-known that every modular complemented lattice is also rel­
atively complemented. We set a weaker condition than modularity which 
yields the same construction of relative complements. 
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If L is a complemented modular lattice and [a, b] is an interval of L (with 
a < b) then for each x € [a, b] the element z = a V (y A b) = (a V y) A b is a 
relative complement of x in [a, b] whenever y is a complement of x in L, see e.g. 
[2] (or [1] for the original source). In what follows we show that the assumption 
of modularity can be omitted if y is substituted by an element of a special sort: 

Theorem 1 Let L be a lattice, let x,a,b £ L with a <b and x G [a, b]. Ify€L 

satisfies 

(a V y) A x = a and x V (y A 6) = b 

then the elements e = (a V y) A b and f = a V (y A b) are relative complements 
of x in [a,b]. Moreover, f < e. 
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Proof We infer directly 

e A x = ((a V y) A 6) A x = (a V y) A (6 A x) = (a V ?/) A x = a 
/ V z = (a V (y A 6)) V a; = (a V x) V (y A 6) = x V (y A 6) = 6. 

Since a < 6, we have a < (a V y) A b. Further, yAb<y<a\/y imply 
y A 6 < (aVy)Afc. Hence 

/ = aV(2/A6)<(aVy)A6 = e . 

Thus / < e and we obtain 

6=((aVy)A6)V6 = eV6>eVx>/Vx = 6 

a = (aV(2/A6))Aa = / A a < / A x < e A x = a . 

Hence e V # = 6 and f Ax — a thus e and / are relative complements of # in 
the interval [a, 6]. D 

Example 1 Consider the lattice L whose diagram is visualized in Fig. 1. Evi­
dently, L is neither modular nor complemented. One can see that the element 
y satisfies the assumption of Theorem 1. It is worth to say that y is not a 
complement of x in L. However, it holds (a V y) A x = a, x V (y A 6) = 6, and 
e = (a V y) A b and / = a V (y A 6) are relative complements of x in [a, 6]. 
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Example 2 Let L be a lattice whose diagram is depicted in Fig. 2. Evidently, 
L is not modular. It is an easy exercise to verify that for every element x 
and for every interval [a, b] there exists an element satisfying the assumption of 
Theorem 1. 

Fig. 2 

Hence, L is complemented and relative complements of each x of every [a, b] 
can be found by the prescribed construction. 

We are going to show that if y is a complement of x in L then an easy 
generalization of modularity yields necessary and sufficient conditions for e and 
/ to be relative complements of x in [a, b] (notation of elements is the same as 
in Theorem 1). 

Definition 1 Let L be a lattice and a,b,c 6 L with a < c. The triplet (a, 6, c) 
is called modular triplet whenever a V (b A c) = (a V 6) A c. 

Of course, if L is modular then every triplet of its elements (a, 6, c) with 
a < c is a modular triplet. 

Theorem 2 Let L be a lattice with the least element 0 and the greatest element 
1. Let x,a,b € L and a <b, x £ [a, 6]. Let y is a complement of x in L. The 
following conditions are equivalent: 

(1) The elements e ~ (a\f y) Ab and f = a V (y Ab) are relative complements 
of x in [a, &]; 

(2) The triplet (a,y,x) and (x,y,b) are modular. 

Proof (1) => (2) If e and / are relative complements of x in the interval [a, b] 
then 

(a V y) A x = (a V y) A (# A b) = ((a V y) A 6) A a; = e A x = a = a V (2/ A x). 

Thus (aVy) Ax — aV (y Ax). Since a < x, the triplet (a, 2/, x) is modular. For 
the element / we prove analogously 

x V (y A b) = (aV x) A (y A b) = x V (a\/ (y A b)) - x V f ~ b = b A (y V x). 

Since x < 6, also (#, y, b) is a modular triplet. 
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(2) => (1) It is an easy computation 

(a\/ y) Ax ~ a\/ (y Ax) ~ a V 0 = a 
x\/(yAh)^(xVy)Ab=lAb = h. 

Thus y satisfies the assumption of Theorem 1 which proves (1). D 

Example 3 Let L be a lattice with the diagram as shown in Fig. 3. Clearly 
y is a complement of x in L. It is an easy exercise to verify that (a,y,x) and 
(x,y,b) are modular triplets. Of course, L is not a modular lattice. Elements 
e = (a V y) A b and / = a V (y A b) are relative complements of x in the interval 
[a, b]. 
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