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Abstract

The characterization for a class of functions of useful parameters which
are estimable under the model with nuisance parameters-and under the
model, where the nuisance parameters are neglected and estimators of
which have the same variance in both mentioned models is given in the
paper.
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1 Introduction

The attention of a group of statisticians begins to be bent on the problem
of nuisance parameters in the linear models of various structures in the resent
decade. Two approaches to the problem of nuisance parameters seem to prevail.

The first one respects the structure of the model and seeks to find classes
of linear functionals of useful (main) parameters such that their estimators al-
low the nuisance parameters to be neglected; the estimators computed under
disregarding nuisance parameters remain to be unbiased. The variance of the es-
timator belonging to the abovementioned class could behave analogously. The
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132 Pavla KUNDEROVA

determination of the class having such attributes is of a great importance in
practice because the number of nuisance parameters in real situations can be
greater than the number of useful parameters.

The second approach solves the problem of nuisance parameters by their
elimination by a transformation of the observation vector provided this trans-
formation is not allowed to cause a loss of an information on the useful param-
eters.

The aim of this paper is to apply the first approach to the structure of one
multivariate model taking [3] for a starting point.

2 Notations and auxiliary statements

Let R™ denote the space of all n-dimensional real vectors, let u, and A,
denote a real column p-dimensional vector and a real m x nm matrix, respec-
tively. The symbols A, A(j),gl?(A), A(A),r(A),Tr(A) will denote transpose,
j-th column, range, null space, rank and trace of the matrix A, respectively.
Further vec(A) will denote the column vector ((ADY', ..., (A™)") created by
the columns of the matrix A. The symbol A ® B will denote the Kronecker
(tensor) product of the matrices A, B, A~ will denote an arbitrary generalized
inverse of A (satisfying AA~ A = A). Moreover P4 and Q4 will stand for the
ortogonal projector onto %Z(A) and #Z*(A) = A(A'), respectively. The symbol
I denotes the identity matrix.
Let

Yn,m = Xn,kBk,rZr,m + Sn,lGl,sTs,m + En,m, (1)

be a multivariate linear model under consideration.

Here Y is an observation matrix, X, Z, S, T are known nonzero matrices,
B, G are matrices of unknown nonrandom parameters and ¢ is a random matrix.

Let us consider the situation, where B is a matrix of useful parameters which
(or their functions) have to be estimated from the observation matrix Y and G
is a matrix of nuisance parameters.

As it was already said the purpose of this paper is to characterize the class
of all linear functions of the useful parameters vec(B) which are unbiasedly
estimable under the model with nuisance parameters and under the model,
where the nuisance parameters are neglected and estimators of which have the
same variance in both models mentioned.

A parametric function p'vec(B) is said to be unbiasedly estimable under the
model (1) if there exists an estimator L'vec(Y), L € R™, such that

E[L'vec(Y)] = p'vec(B), Vvec(B), Yvec(G).
Lemma 1 The model (1) can be equivalently written in the form

vec(Y) =[2'® X,T' ® S| ( Zzgg; ) + vec(e). 2)
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Proof The assertion is a consequence of
vec(ABC) = (C' ® A)vec(B) (3)

valid for all matrices of corresponding types. ]
Suppose that the observation vector vec(Y) has the mean value

o) = 703,70 51 (L8 ).

and that the columns of the observation matrix Y satisfy
cov(YD YOY=0, Vi#j, varYPD =% Vj=1,... m.

where ¥ is obviously at least p.s.d.
Thus

varfvec(Y)] = I m ® Tn p.

We consider the linear model (see [3])

- 1 , vec(B)
M(I®X) = |vec(Y),(Z' @ X, T'® S) (vec(G) ) I ® E} ,
with nuisance parameters and the linear model
HAI Q) = [vec(Y),(Z' ® X)vec(B),I®X],

where nuisance parameters are neglected.
Assume ¥ be such that

HZ'@X,T'®S)CZIQY). 4)
This is equivalent to the following inclusions
Z(X)CRZ) N Z#(S) C Z(Z), (5)

and warrants that
Plvec(Y) e ZI®Y)] =1.

Notation 1 Let, according to [3], £, and & denote the sets of all linear func-
tions of vec(B) which are unbiasedly estimable under the model .#, and .#,
respectively. The index @ will indicate, that the estimator is considered in the
complete model, i.e. in the model with nuisance parameters.

Obviously
&= {p'vec(B) :p € #Z ®X'")}. (6)
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Remark 1 p = (pi,...,p;,)’, where p; are k-dimensional vectors, j = 1, ... ,T.
Let P' = (py,...,pr). Using the fact that

(vec(A"))'vec(B) = Tr(AB),
we can rewrite p'vec(B) in the following form
p'vec(B) = [vec(P')'vec(B) = Tr(PB).

In view of (3)

PERZRX')® IAmn P=(Z0 X vec(A') & 3A,,,, P=ZAX.

Let us consider the class &,.

&, = {p'vec(B) : p € R* 3L € R"™,Yvec(B) € R*",
Vvec(G) € R, E[L'vec(Y)] = p'vec(B)}.

The aim is to express &, explicitly.
The equality

L'Evec(Y) = L'(Z' ® X)vec(B) + L'(T' ® S)vec(G) = p'vec(B),
Vvec(B), Vvec(G),
is fulfilled if and only if
p=(ZX)L AN (T®S')L=0,
which is equivalent to

p = (Z ® Xl)QTr®su, u E Rmn.

Thus
62 = {p'vec(B) : p € H(Z ® X')Qrigs] = A(Z @ X') - (ZP1 ® X' Ps)]}.
(7)
Lemma 2 Let P be the matriz from Remark 1.
PEX(Z®X')-(ZPr ® X'Ps)] &
JA,, , such that P=ZAX - ZPrAPsX = Z[A - PrAPg|X.

Proof
PER(Z®X') - (ZP1 ® X'Ps)] &
Jac R™, p=[(Z2® X') - (ZP1 ® X'Pjs)]a.

Denote a = vec(A'), then vec(P') = [(Z ® X') — (ZP7 ® X'Pg)Jvec(A').
Thus by (3) P' = X'A'Z' ~ X'PsA'Pr.Z'. . -
Comparing (6) and (7) it is obvious that

&, C 6
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Lemma 3 Under the condition §, C &
bn=86 = RZ' X)NAT ®8S) = {0} (8)
Proof Under the condition &, C &
bo=6+= 0=r(ZX")—1[(Z® X" Qrgs]
= dim[Z(Z' ® X) N %" (Qrgs)] = dim[#(Z' ® X) N R(T' ® S)],

since r(A) — r(AB) = dim[#2(A") N Z*(B)], (cf. [3], (2.4)). o
We agsume throughout that

AZ 2X)¢ BT ®8).
If2(Z'®X)C RT ®8), then Z[(Z® X') - (ZPr ® X'Pgs)] = {0}.

Remark 2 Denote 'uec/(I\B)a and 'ue;(\B) an (I ® ¥7)-LS estimator of the pa-
rameter vec(B) computed under the linear model .#,(I ® ) and (I ® X),
(see [1], p. 161). - L

According to the assumption (4), p'vec(B) and p'vec(B), is the BLUE of
the function p'vec(B) € &, and p'vec(B) € &, (see [1], Theorem 5.3.2, p. 162).

Lemma 4
pvec(B) =p' [(Z2')"Z ® (X'S~X)" X'S"| vec(Y), if p'vec(B) € &, (9)
pvec(B), = p' { [(zz' ® X'SX) - (ZPp2Z'® x'z:—Pg“X)] -
. [(z ® X'S") — (ZPr ® X'5~P%” )] } vee(Y), if plvec(B) € &,  (10)
varlp'vec(B)] = p' [(22')~ ® (X'S™X)"]p, if pvec(B) €&  (11)
var [pvec(B)a) = p' [(22' © X'S"X) - (ZPrZ' € X'S"PE X)| »,
(12)

if p'vec(B) € &,.
These expressions are invariant to the choice of g-inverse matrices.

vee(B)a | _
vee(G), B
ZeX'

=[(ZeX,T'®8)I®L) (2 X, T'®S)]” ( T®s ) (IQX) vec(Y)

Proof Under .#, we have

[ZZ'®9X'SX, ZT'® X'S-S|” ( Z® X's-
= [TZ'@S'E“X, TT & 'S8 Tesy- )vee¥) (13
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The estimate obtained by a substitution of this expression into unbiasedly
estimable function is given uniquely.

Using the following Rohde’s formula for generalized inverse of partitioned
p.s.d. matrix (see [2], Lemma 13, p. 68)

(5.2) -
B,c) ~
B ( A"+ A B(C-B'A"B)"B'A”", —A"B(C-B'A™B)~ )
= —(C-B'A"B)"B'A™, (C-B'AB)~
B ( (A-BC B, —-(A-BC B')"BC~ )
~\-CB'(A-BC™B')~, C"+C B'(A-BC™B')"BC™ )’
we get the first row Ai1, Az of the g-inverse matrix in (13):
A =[(Z2Z'0X'S"X)-(ZT' @ X'S"S)(TT'®S'SS) " (TZ'®8'S™X)|~
=(ZZ'® X'S"X) - (ZPrZ' @ X'S"P% X)|".
If we choose £~ p.d., we can use P¥ = S(S'S-S)-S's-.
Ap=-[(ZZ'® X'S"X) - (ZP1Z' ® X'S™P% X)|”
(ZT'® X'S™S)(TT' ® S'S~8)~
=-[(Z2Z' @ X'S"X)- (ZP1Z2' ® X'S"P% X)|~
{ZT'(TT)"} @ {X'S~8(8'S"8)7}].
Thus
vec(B), = [(22' ® X'S"X) - (ZP1 Z' ® X'S~PY X))
(Z®X'E")— (ZP1 ® X'S™ P% )vec(Y).
We have proved (10).

var [plvec(B)a] = p' { [(zz’ ®X'S"X) - (ZPrZ' @ X'S~P% X)] -
: [(z ® X'S")— (ZPp ® X’E-Pg‘)]
(Ie%)[(Z' 82" X) - (Pr2'® (P¥ )= X))
: [(zz’ ® X'S"X) - (ZPpZ' @ X'(PY )’z:*x] B } P

=p { [(zz' ®X'S"X)- (ZPpZ'® X’E—PE"X)] B
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[(22' ® X555 X)
—(ZPrZ' @ X'S"E(P% )™ X) - (ZPrZ' ® X'S”™P§ £ X)
+(ZPrZ'® X'z:—Pg‘z(Pg')'z-X)]
: [(ZZ' ® X'S~X) - (ZPp2Z' ® X'~ P X)] "} p
=p [(zz' ®X'S"X) - (ZPpZ' ® X'S~ PE” X] p.
The assertion (see [2], Lemma 7, p. 65)
#(B) C#(A) <= AA"B=B,
and the assertion (see [2], Lemma 8, p. 65)

AB™C is invariant to the choice of the g-inverse B~
< #(A') c Z(B') and Z(C) C #(B),

were taken into account. 0
Remark 3 (9), (11) are equivalent to

Tr(PB) =Tr [P(X'S~X)"X'S"YZ'(22')7], it Tr(PB)€ &,
var(Tr(PB)| = Tr[P(X'S~X)~P'(2Z')7), if Tr(PB) € &

3 Efficiently estimable functions

Let, according to [3], 6o(I ® X) denote the subset of &, consisting of all those
functions of p'vec(B) for which the BLUE under model .#, (I ® L) posseses the
‘same variance as the BLUE under model (I ® ¥), i.e.

&I Q) = {p'vec(B) € &, : var[p'v;—c\(B)] = var[p’ve/c-(\B)a]}.
Let us find out when the following equality holds

var[p’vgc\(B)] = var[p’v;(\B)a] for p'vec(B) € &,. (14)

By (7) p'vec(B) € &, is equivalent to p = (Z ® X')Qgsuo for some vector
up € R™®. Thus (14) is equivalent to

uhQpips(Z' ® X) { (ZZ' ® X'S~X) - (2P Z' ® X'S™PY X))
- [(22")- ® (X'S"X)"]} (Z ® X')Qpggsto = 0. (15)
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Let W be a matrix in compound brackets in (15), i.e.
W = {[(zz’ ®X'S"X) - (ZPpZ' ® X'S~PY X)|-
-(2Z")" @ (X'="X)7]}
= {[(zz’ ®X'S"X) - (ZT' ® X'S~S)(TT' ® §'s-8)~(TZ' © §'5~X)]”
~12Z' 9 X'5~X]"}.

Using the implication (following from the Rohde’s formula)

( gi g ) psd. = (A-BC™B')" =A™ + A B(C-B'A™B)"B'A™,
to the matrix

ZZ'@ X'y"X, ZT'® X'vs"S

TZ'®8'YS~"X, TT'®8'S"S )’
we obtain
W = (ZZ'®X'E“X)"(ZT’®X'2“S)V“(TZ'®S'E”X)(ZZ’®X'2’X)”,
where

V=[TT ®S'SS)-(TZ' ® S'S™X)(Z2Z' ® X'S~X)~(ZT' ® X'S"S)].

One of the choices of V™ can be p.d. (i.e. regular) matrix. Thus V™ = JJ',
where J is regular. Therefore (15) is valid if and only if :

U Qres(Z' ® X)(Z22' © X'S~X)™ (2T © X'S~8) =0,  (16)

i.e. if and only if
4)Qrgs(PzT' ® P% S) =0. (17

Using the notation u¢ = vec(Up) we can rewrite (17) in the form
TPz([Uy — PrUoPs]P% S =0.
Thus completed the proof of the following theorem:

Theorem 1 If p'vec(B) € &,, i.e. if there exists a matriz Ug such that
P = Z[Uo — PrUoPs]X, then

p'vec(B) € (I QX)) < TPz[Ug - PTIUoPsl.P?(—S =0.
Theorem 2 The class &(I ® X) is given by

&I®Y) = {Tr(PB):P=ZZ'|V - Pz VPxi5-5]X'5™X
for arbitrary matriz V'}.
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Proof The class &(I ® ¥) includes functions p'vec(B) € &, (i.e. functions,
where p has the form p = (Z ® X')Qp.gsu, u € R™), satisfying (14).
By (16), the equality of variances (11), (12) holds if and only if

QrosulZ{(Z' ® X)(Z® X)I®37)(2' ® X)|”
(ZoX"I®X ) T'®S)}

=RZ o X)NZ((IRT7)(Z'® X))+ ZAT'  8)].
The last equality follows py [[3], Lemma 2.1. and (2.15)]. Thus

Qrigsu € BQzgx) + [#(Z' @™ X)NR(Qrgs)]-
It implies that

Qrgst = Qzext+ Qregsb=Qzgxa+(Z' @I X)e.

Since (T ® 8')(Z' ® £~ X)c = 0, we have ¢ € Z(Qz1 g x'5s-5), and so

P=(Z0®X")Qresu=(Z22'® X'S" X)Qzrgxs-sv, v € R™,

éao(I ® E) = {pI’UCC(B) D € %[(ZZ’ ® XIE—X)QZTI®XIE-—S]}.
By the matrix P (cf. Remark 1)

&(I®F) = {Tr(PB): P =ZZ'[V - P;1VPxs-s|X'S" X,
for arbitrary matrix V'}. o
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