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Abstract 
An algebra A has g-determined congruences if there is a binary alge­

braic function (i.e. a polynomial) q such that for each 0 E Con A we have 
(a,b) E 0 iff (g(a,b),g(a,a)) G 0. We characterize g-determined algebras 
and their varieties. 

K e y w o r d s : Polynomially determined congruences, algebra without 
constants. 

1991 Mathematics Subject Classification: 08A30 

Let A = (.4, F) be an algebra of type r . 
For two n-ary terms p(xi,... , # n ) , q(x±,...,xn) of type r we say that 

A satisfies the identity p ( # i , . . . ,xn) = g(-Ci,... , # n ) if for any choice of el­
ements a i , . . . , a n G A the element p ( a i , . . . , a n ) coincides with the element 
g(a i , . . . , a n ) . 

Following [4] we say that an algebra A has an equationally defined constant if 
there exists an n-ary term t(x\,..., xn) such that t(x\,...,xn) — t ( j/ i , . . . , yn) 
is satisfied in A. Hence, if n = 0 then this equationally defined constant is 
evidently a miliary operation of type r . However, for n > 0 it says that the 
value of £ ( a i , . . . , a n ) does not depend on the choice of elements a i , . . . , a n G A, 
i.e. it is a constant. 

J. Slominski [4] introduced the following concept. 
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Definition 1 Let A = (A, F) be an algebra of type r and p(x\, x2) be a binary 
term of type r . We say that the congruence 9 € Con A is p-determined if there 
exists an element e G A such that 

(a, 6) € 9 if and only if (p(a, b),p(e, e)) G #. 

We say that an algebra A has p-determined congruences if every 9 6 Con .4 
is p-determined. A class C of algebras of the same type r has p-determined 
congruences if each A G C has this property. 

For such algebras, we can state the following: 

Proposit ion 1 ("see [4] or [5]) Let A = (A, F) be an algebra of type r and 
p(%i,%2) be a binary term of type r. For 9 G Con A, the following are equiva­
lent: 

(i) 9 is p-determined; 

(ii) (a, b) G 9 if and only if {p(a, b),p(c,c)) G 9 for each c G A; 

(Hi) there exists a congruence class N of 9 such that (a, b) G 9 if and only if 
p(a,b) G N. 

R e m a r k 1 ( i) . By (ii) of Proposition 1, one can see that the definition of 
p-determined congruence (or algebra or class of algebras) does not depend on 
the choosen element e G A. 

(ii). Every p-determined congruence 9 G Con A is in fact determined by the 
unique congruence class N; call this class p—normal. 

Let us note that [5] contains a characterization of p-normal classes of A and 
an assertion showing that if A has p-determined congruences then p(a, a) = 
p(b,b) for any a, b of A, i.e. A has an equationally defined constant p(a,a). If 
e.g. A is a group, one can take p(x,y) = x • y~l and, evidently, a class N of 
9 G Con A is p-normal if and only if N is a normal subgroup of A; moreover, 
p(a,a) = e, the identity element of A. 

G. Matthiessen [3] gave a Mal'cev characterization of varieties with p-determ­
ined congruences. We give more convenient form of such a condition. 

Theorem 1 Let V be a variety of type r andp(x\,x2) be a binary term of type 
r. V is p-determined if and only if there exist 4'arV terms t\, • . . ,tn of type r 
such that 

p(x,x) = p(y,y) 

x = h(p(x,y),p(x,x),x,y) 

U(p(x,x),p(x,y),x,y) = tijri(p(x,y),p(x,x),x,y) for i = 1 , . . . , n - 1 

y = tn(p(x,x),p(x,y),x,y). 

are identities in V. 
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Proof Let V has /^determined congruences. Let A = Fy(x,y) be the free 
algebra of V with two free generators x,y. By Theorem 12.3 in [5] for any 
a, b e A we have p(a, a) = p(b,b) and (a, b) € 6(p(a,b),p(a,a)). Hence, p(x,x) — 
P(y,y) is the identity in Fv(x,y) and 

(x,y) e 6(p(x,y),p(x,x)). 

Therefore, there exist binary algebraic functions </?i,..., ipn such that 

x = <p1(p(x,y),p(x,x)) 

(fi(p(x,x),p(x,y)) = yi+i(p(x,y),p(x,x)) i = l , . . . , n ~ l 

y = (fn(p(x,x),p(x,y)) 

Since *4 has exactly two generators x, y, there exist 4-ary terms t\,..., tn with 

<Pi(z,v) =U(z,v,x,y) (i = l , . . . , n ) 

whence we obtain the identities of the statement. 

Conversely, suppose A&V, A— (A, F) and a,b € A. Then p(a, a) = p(b, b) 
and, by using of the identities, (a,b) G 6(p(a,b),p(a,a)). By Theorem 12.3. in 
[5], it is equivalent to the fact that A has p-determined congruences. • 

For congruence permutable varieties the foregoing condition can have a very 
readable form. 

T h e o r e m 2 Let V be a variety of type r and p be a binary term of type r . The 
following are equivalent: 

(i) V is congruence-permutable and has p-determined congruences 

(ii) there exists a 3—ary term t of type r such that 

p(x,x) = p(y,y) 

x = t(p(x,y),x,y) 

y = t(p(x,x),x,y). 

are identities in V. 

Proof By Theorem 1, (ii) clearly implies that V has p-determined congruences. 
Moreover, we can put m(x,y,z) — t(p(x,y),x,z). Then 

m(x,x,y) = t(p(x,x),x,y) = y, 

m(x,y,y) = t(p(x, y), x, y) = x, 

i.e. m is a Mal'cev term and, therefore, V is congruence-permutable. 
Conversely, suppose V is congruence permutable and has p—determined con­

gruences. By using of Theorem 12.3 in [5], we conclude p(x,x) = p(y,y) and 
(%,y) € 6(p(x,y),p(x,x)) analogously as in the proof of Theorem 1 for A = 
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Fy(x,y). Since V is congruence-permutable, every reflexive compatible relation 
on A G V is a congruence on A, see e.g. [6], Hence (x,y) G R(p(x,y),p(x,x)) 
where R(a, b) denotes the least reflexive and compatible relation on A containing 
the pair (a,b) G A2. Hence, there exists a unary algebraic function /i with 

x = \i(p(x, y)) and y = [x(p(x, x)). 

Since A has exactly two generators x,y, there exists a 3-ary term t with \i(z) = 
t(z,x,y) whence (nj is evident. • 

E x a m p l e 1 Let V be a variety of groups. We can take t(z,x,y) = z • y and 
p(x, y) = x • y"1. Then p(x, x) = e = pQ/, u) and 

t(p(x,y),x,y) =x-y~l -y = x 

t(p(x,x),x,y) =x-x~l -y = y. 

Unfortunately, the foregoing theory is sound only in the case if A (and hence 
V) has an equationally defined constant. Hence, it is not applicable in the case of 
quasigroups although they obey similar properties as loops for which the theory-
works. The aim of the remaining part is to generalize the foregoing concepts for 
algebras without constants. 

Let A = (A, F) be an algebra of type r and let p(x\,..., xn, x n + i , . . . , xn+m) 
be an (n -F m)-ary term of type r (n,ra nonnegative integers). Let Oi, . . . , o m 

be elements of A. As it was mentioned in the proofs of foregoing theorems, an 
n-ary function 

q(xi,..., xn) = p(xi,..., xn, a i , . . . , am) 

is called an algebraic function over A. 

Definition 2 Let A = (A, F) be an algebra and q be a binary algebraic function 
over A. A congruence 9 £ Con A is called q-determined if there exists an element 
d G A such that 

(a, b) G 9 if and only if (q(a, b), q(d, d)) G 9. (*) 

An algebra A has q-determined congruences if each 9 G Con „4 is g-determined. 

T h e o r e m 3 Let A = (A, F ) be an algebra, q be a binary algebraic function 
over A and 9 G Con A. The following conditions are equvivalent: 

(i) 9 is q-determined; 

(ii) (a, b) G 9 if and only if (q(a, b),q(c,c)) G 9 for each c G A; 

(Hi) there exists a class N of the congruence 9 such that (a, b) G 9 if and only 
ifq(a,b)eN. 
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Proof (i)=>(ii): Suppose c G A. Then (c,c) G 0 and, by (i), (g(c,c),g(d,d)) G 
9. However, (a, 6) E 0 if and only if (g(a, 6), g(d, d)) G 0, thus using symetry and 
transitivity of 0, we conclude (g(a,6),g(c,c)) G 0. 

(ii)=>(iii): Suppose IV is a class of 0 with g(d,d) G N. By fn), g(c,c) € IV 
for each c € A, i.e. (a, 6) G 0 if and only if g(a, 6) G IV. 

(iii)^(i): Evidently, any element of A plays the role of d from (*). • 

Lemma 1 Let q be a binary algebraic function over an algebra A. Denote by 
u>A the least congruence on A. If UJA is q-determined then g(a,a) = g(6,6) for 
every a, 6 of A. 

P r o o f For any a e Awe have (a, a) G UJA- Since UJA is g-determined, it implies 
(g(a,a),g(d,d)) G UJA, i.e. g(a,a) = g(d,d) (for some d G A). The assertion is 
evident. • 

Definition 3 Let 0 G Con A is g-determined (for some binary algebraic func­
tion q over A). The class IV of 0 satisfying 

(a ,6)G0iffg(a ,6)G IV 

(by fmj of Theorem 3) will be called q-normal 

Theorem 4 A subset N of an algebra A = (A, F) is a q-normal class of some 
congruence of A if and only if N satisfies the following conditions: 

(i) for each a £ A, q(a, a) G IV; 

(ii) if g(a, 6) G IV then g(6, a) G N; 

(Hi) i /g(a, 6) G IV and g(6,c) G IV tften g(a,c) G IV; 

(iv) if f G F is n-ary and g(ai, 6̂ ) G IV /or i = 1 , . . . , n tten 
g ( / ( a i , . . . , a n ) , / ( 6 i , . . . , 6n)) G IV; 

(fy) /Or eacA a, 6 G JV ako g(a, 6) G JV; 

fmj if a e A and b G IV tfien g(a, g(6,6)) G IV implies a G IV. 

Proof It is an easy exercise to check that any g-normal class satisfies the 
conditions (i)-(vi). 

Conversely, let N C A satisfies (i)-(vi). Introduce a binary relation 0 on A 
as follows : 

(a, 6) G 0 if and only if g(a, 6) G IV. (**) 

By (i), (ii) and (Hi), 0 is an equvivalence on A. Applying (iv) we check the 
substitution property, i.e. 0 G Con A. Suppose x,y G IV. By (v), q(x,y) G IV 
and,by (**), (x,y) G 0. Hence, IV is contained in some congruence class of 0. 
Now suppose a G A and 6 G IV. Let (a, 6) G 0. Since (6,6) G 0, also g(6,6) G JV. 
However, N is contained in some class of 0, thus 6 G IV and g(6,6) G IV give 
(6,g(6,6)) G 0. Applying transitivity we conclude (a,g(6,6)) G 0. By (M) , it 
gives also a £ N. Thus the congruence class of 0 containing a is included in IV, 
i.e. IV is a congruence class of 0. By (Hi) of Theorem 3, 0 is g-determined. D 
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Corollary 1 Let A be an algebra with q-determined congruences. The set 
J\fq(A) of all normal congruence classes forms a complete lattice with respect 
to set inclusion. The greatest element of J\fq(A) is the whole set A, the least 
element is the singleton {q(a,a)} for some a G A. 

Proof By (i)-(vi) of Theorem 4 it is evident that Afq(A) is closed under set 
intersection. Clearly A G Mq(A), i.e. J\fq(A) is a complete lattice. Since also 
LOA G Con A, Lemma 1 completes the proof. • 

Denote by Con^ A the set of all g-determined congruences on an algebra A. 
Evidently, Con g A is an algebraic lattice and, moreover, Cong A = JVq(A). 

Theorem 5 Let q be a binary algebraic function over an algebra A. A has 
q-determined congruences if and only if for each a,b G A of A it holds: 

(i) q(a,a) =g(6,6) ; 

(ii) (a,b) £9(q(a,b),q(a,a)). 

Proof Let .4 has g-determined congruences. By Lemma 1 we obtain (i). By 
Definition 2 and Theorem 3, (q(a,b),q(a,a)) G 9 implies (a,6) G 9. Taking 
9 = 9(q(a,b),q(a,a)) we obtain (ii). 

Conversely, suppose (i) and (ii). Let 9 G Con A. If (a, b) e 9 then clearly 
also (g(a, 6),g(a,a)) € 9. If (g(a,b),g(a,a)) G 9 then, by (ii), also (a, b) G 
9, i.e. (a,b) G 9 iff (q(a,b),q(a,a)) G 9. Applying (i) we conclude that 9 is 
g-determined. O 

Example 2 By Example 1, every group G has p-determined congruences for 
p(x,y) = x • y " 1 and the p-normal class of 9 G ConG is the normal subgroup 
N = {x G G; (x, e) G 9}. However, every class of 9 is a g-normal class of 9. Let 
us pick up a G K for any congruence class K of 9 and put q(x, y) = x • y~x • a. 
Then 9 is also g-determined and (v,w) 6 9 iff q(v,w) G K. 

Every convex sublattice of a Boolean algebra B containing a given element 
c is a g-normal class for q(x,y) = x 0 y 0 c where x © | / = (x1 Ay) V (x Ay'), the 
symmetrical difference. 

Let TZ = (R,t,u,0,1) be a bi-ternary ring (see [2]), 9 G Con K. Every class 
of 9 is g-normal. To show this, let [a)e be any class of 9 and put q(x,y) = 
t(l,a,u(l,x,y)). If (rr,i/) G 0 then (u(l,x,y),0) = (u(l,.x,2/),u(l,x,a;)) G 9 
which implies (£(l ,a,u(l ,x,2/)) ,a) = (t(l,a,u(l,x,y)),t(l,a,0)) G 0. Con­
versely, if (t(l,a,u(l,x,y)),a) G 0 then 

(u(l,x,y),0) = (w( l , a , t ( l , a ,u ( l , x ,y ) ) ) ,w( l , a , a ) ) G 0 

which gives (y,x) = ( t ( l ,x ,w(l ,ar ,y)) , t ( l ,x ,0)) G 0. 

Remark 2 Evidently, every algebra with p-determined congruences has also 
g-determined congruences since every term is an algebraic function. We are 
going to show that algebras with g-determined congruences from a larger class. 
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Definition 4 For an algebra A, denote by AF(A) the set of all algebraic func­
tions over A . Let A ^ 0 be a set and Ai = (A,Fi) , A2 = ( A F 2 ) be two 
algebras. We say that A2 is a function reduct of A\ if F2 C AF(Ai) . 

Hence, A2 is a function reduct of A\ if for each n-ary / E F2 there exists an 
n-ary algebraic function g over Ai such that 

/ ( a i , . . . , a n ) = g(ai,.. .,an) 

for any a i , . . . , an € A. 

L e m m a 2 Let A2 6e a function reduct of A\. 

(i) if0€ Con A\ then 9 £ Con A 2 ; 

fwj i/ A2 has p-determined congruences (for some binary termp) then A\ has 
q-determined congruences (for some binary algebraic function over A\). 

Proo f The proof follows directly by Definition 4 an by Proposition 1 (Hi) and 
Theorem 3 (Hi). • 

Remark 3 The converse of (%) of Lemma 2 does not hold in general, see the 
following: 

E x a m p l e 3 Let A = {a, 6, c, d} and consider the quasiqroup Q\ = (A;» , / , \ ) , 
where the table for • is 

a è c d 
o a ò c d 

ь c d b a 
C 6 a d c 
d d c a ò 

Let Q2 = (-4; 0, / / , \ \ ) be a quasigroup with operations introduced as follows: 

x o y = (x/6) • (a\j/) 

x/jy = (x/(a\y)) -b 
X\\V = o,-((x/b)\y). 

Then Q2 is a function reduct of Qi . However the equivalence 0 with the partition 
{{a, b}, {c, d}} is a congruence on Q2 but not on Q\. 

De f in i t ions (see [1]) Let Q\ = ( A i ; - , / , \ ) , Q2 = ( A 2 ; o , / / , \ \ ) be quasi-
groups. By an isotopy between Q\ and Q2 we mean the triple (a,/3,7) of 
bijections of A\ onto A2 satisfying 

a(a) o /3(b) — j(a • b) for each a, b G Ai. 

By a /oap L we mean a quasigroup with an identity element, i.e. with an 
element e satisfying x - e = e • re = x for each x € L. 
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The following statements are well-known, see e.g. [1] for the proofs. 

Lemma 3 Every quasigroup Q = (A; •, / , \ ) is isotopic to a loop 

L = (A;o,//,\\,e) 

where (R^1 ,L~l,icU) is this isotopy (Rb(x) — x-b, La(x) = a-x). In this case 
we have e = a • b and 

xoy = (x/b) • (a\y) 

x/jy = (x/(a\y)) • b 
x\\y = a-((«/6)\y)-

T h e o r e m 6 Every quasigroup has q-determined congruences (for some binary 
algebraic function q). 

P r o o f Let Q = (A; •, / , \ ) be a quasigroup. By Lemma 3, Q is isotopic with a 
loop L — (A; o, / / , \ \ ) and, by Lemmas 2 and 3, every congruence on Q is also a 
congruence on L. By Lemma 2 (ii), Q has g-determined congruences provided 
L has p-determined congruences for some binary term p of type {o, / / , \ \ , e} . 
However, it is well-known (see [1]) that for 6 e ConL, 

(x, y) e 6 if and only if x//y e N 

where N is the class of 9 containing e. By (Hi) of Proposition 1, L has 
p-determined congruences for p(x,y) = x/jy finishing the proof. • 

Corollary 2 Let Q = (A; -, / , \ ) be a quasigroup and a, 6 G A T/ien 

faj Q ^ a 5 q-determined congruences for q(x,y) = (x/(a\y)) • 6; 

fbj /Or eac/i # G ConQ, tfte c/a55 of 9 containing the element a-b is q-normal 

References 
[1] Bruck, R. EL: A Survey of Binary Systems. Springer-Verlag, Berlin, 1971. 

[2] Chajda, I., Halas, R.: Ideals of bi-ternary rings. Discussione Math., Algebra and Stoch. 
Meth. 15 (1995), 11-21. 

[3] Matthiessen, G.: Ideals, normal sets and congruences. Colloq. Math. J. Bolyai, 17 t h 

Contribution to Universal Algebra, Szeged (Hungary) 1975, 295-310. 

[4] Slominski, J.: On the determining of the form of congruences in abstract algebras with 
equationally defined constant elements. Fundamenta Math. 48 (I960), 325-341 

[5] Schmidt, E. T.: Kongruenzrelationen algebraischer Strukturen. Mathem. Forschungs-
berichte, Deutscher Verlag der Wissenschaften, Berlin, 1969 

[6] Werner, H.: A MaVcev conditions for admissible relations. Algebra Univ. 3 (1973), 263. 


		webmaster@dml.cz
	2012-05-03T22:42:21+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




