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Abs trac t 

The note deals with differential equations with Borel measures as coef­
ficients. The problem of existence and uniqueness of solutions is discussed. 
The Ritz-Galerkin method is used for determining approximate solutions. 

K e y w o r d s : Differential equat ion, Borel measure , R i t z -Ga le rk in 
m e t h o d . 
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1. L e t u s c o n s i d e r t h e b o u n d a r y v a l u e p r o b l e m 

k 

J2(-iyaM2i^fi\u = fi2 
1=1 

t iW(o) = uW(6) = 0 f o r i = Q , . . . , J f e - l , k > 1, 

( i ) 

where fi\ and fi2
 a r e r e a - Borel measures , fi\ > 0 and a\ > 0 for % = 1 , . . . , k. 

I t was shown in [1] t h a t for k — 1 Prob lem 1 has exactly one solution, which 

can be app rox ima ted by the Ri t z -Ga le rk in me thod . Here we shall show t h a t 

P rob lem 1 can be solved similarly. 

Every cont inuous function u fulfilling the bounda ry condi t ions and the dif­

ferential equat ion (1) in the d is t r ibut ional sense will be called a solution of 

P rob lem 1. Th i s means t h a t 

k *b pi) pb 

^ ( - l ) : ' a f / u<p(2i)dx+ u<pdfi\(x)= (pdfi2(x) for <p € D(a,b)} (2) 
^-.j Ja Ja Ja 

159 
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where D(a, b) denotes the Schwartz space of test functions. Therefore u^2k~^ £ 
BV(a,b) C L2(a,6). Further it implies that u £ W2k~^2(a,b) (PVn '2(a,6), n = 
1, 2 , . . . is the Sobolev space of functions u £ L2(a,b) such that the distributional 
derivative u^ belongs to L2(a,6); the space VVn,2(a,6) is equipped with the 

norm|H|:=(n=oll"(i)lllO')-
Let us define now the space 

W0'
2(a, b) := {u £ Wn>2(a, 6) : u^(a) = u^(b) = 0 for i = 1 , . . . , n - l } . 

It is easy to show that W/
(
n'2(a,6) is the closure of D(a,b) in JVn '2(a,6) with 

respect to its norm || • ||. 
An easy computation using integration by parts shows that equation (2) can 

be rewritten in the form 

k pb pb pb 

y^]ai / u^<p^dx+ / u<pdjj,i(x) = / <pdjji2(x) for <p £ D(a, 6). (3) 
J'J-.I Ja Ja Ja 

For simplicity of notation we put for u, <p £ W0 ' (a, 6) 

k pi) pb pb 

a(u,<p) := y ^ at- / u ( *V W <^ + / uipd^x), /3(<p) := / <pdfi2(x). 

J--1 Ja Ja Ja 

Thus the original Problem 1 can be written as 

a(u,<p) = /3(<p) f o r ^ E < > 2 ( a , 6 ) . (4) 

It results from the discussion given above that if equation (4) has a unique 
solution u £ W0' (a, 6), then u is the unique solution of Problem 1 and u £ 
W2k~1,2(a,b). Hence we can consider the problem of existence and uniqueness 
of solutions of equation (4). For this purpose we will define the following two 
norms in the space WQ ' (a, 6): 

\\u\\a := Va(u>u) 

iNir^n îu-. 
T h e o r e m 1 The norms || • ||, ||| • ||| and \\ • | |a are equivalent on W0

 ,2(a, b). 

P r o o f One can show that \u^)(x)\ < Vb - a\\u^i+1^\\L2 for x £ (a,b), u £ 

From this we get 

u(i)IU><(*-«)fc-iNII (5) 

W*,2(a,j&), i = 0,... ,,k- 1. From this we get 

аnd 
sup u\x) < (b - a ) | | « ' | | i . < (6 - af^WЫW2. (6) 

sr€(a,6) 
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By (5) we obtain 

IIMII2 < INI2 = £ llu(0Hi- -• E ( * " «)3(*-°lll«llla = ^INII2 CO 
*=0 i=0 

( Ь - a ) 2 * + 2 - l 
where A = rgr^y.rzi • Therefore the norms || • || and || | • | | | are equivalent. 

Moreover, by virtue of inequalities (6) and (7) there is 

аk\\\u\f < 
k ľь 

«n«=Éa*iiu(0ii-»+/ " ^ I Í * ) - . 
<=i Ja 

< (A max ai + {b-a)ik-1^([a,b\)]\h\\ 
\ 2 = 1,...,/c / 

This finishes the proof. D 

In the space WQ' (a, 6) besides the usual inner product 

кvo-èб^^Oj f L 2 

i=0 

one can consider two other products, namely a(u, (p) and [u, <p] := (u^k\(p^)j^2. 
It follows from Theorem 1 that WQ

 , 2 (a, 6) is a Hilbert space with any of these 
products. 

T h e o r e m 2 Problem 1 has exactly one solution in W2k~l'2(a,b). 

Proof From the previous remarks it follows that it is sufficient to show that 
equation (4) has exactly one solution in W0' (a, b). j3 is a continuous linear 
form on W0 ' (a, 6), (IV0 ' (a, 6), a(-, •)) is a Hilbert space, therefore the Riesz 
Representation Theorem of a continuous linear form shows that a solution of 
(4) exists and is unique. D 

2. In this sect ion we shall show how approximate solutions of Problem 
1 can be determined in the space PV0' (a, b) , if a countable complete sys­
tem of linear independent functions {(fn}n

<L1 is given. It will be noted that 
cl(lin{y?n; n = 1,2,...}) = W0

,2(ar6). 'Lin' denotes the lineal hull and 'cl' the 
closure of the set {<£>n; n = 1 ,2 , . . .} . Let us define the quadratic form 

F(u) := l<x(u}u)-/3(u) for u € W0'
2(a,b). 

From the Ritz Theorem ([1], p. 21, see also [2]) one can conclude, that u is a 
solution of Problem 1 if and only if 

F(u)= inf F(<p). (8) 
V , e < ' 2 ( a , 6 ) 
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Assume that En is a subspace of WQ ' (a, 6) spanned by elements (pi,..., <pn. Let 
un := inf^6£;n F((p). It is known that un tends to u with respect to any of the 
norms considered above. Therefore the problem of determining the approximate 
solutions of Problem 1 reduces to the possibility of determining functions un. 
The quadratic form F on the space En reads as 

n k 

F(<p) = G(\1,...>\n) = 
n /.£> 

S ^2^°' (^S)<P<JS))L2 + S XiXí / <Pi<Pjtyl(x) 
i j = l s = l iJ-l ' a 

n „6 

~ X ^ / V3dV2(x)> 
i=l J a 

(9) 

where y? = Ai^i + . . . + An^>n. The expression (9) may be rewritten in matrix 
form 

G(A)=1-AT(J2asT! + A\A-ATP, 

where 

A = 

A = p.. . . v f , r. = [(,<•>„<•>) J ^ , 

/ (pidfi2(x)...'. / (pnd/j,2(x) 
J a J a 

/ (pi<PkdfJ,i(x) 
L J i , fc=l 

It is easy to check that 

G(Л*) = inf G(Л) 
4 ,Л6B" 

when 

]Гa.Г. + Д Л*=0. 
»=i 

(10) 

Equation (10) may be used for determining approximate solutions of Problem 1. 

3. To solve Problem 1 we can apply any complete system of linearly 
independent functions in the space W0 ' 2 (a, 6), but for calculational reasons sys­
tems connected with Haar functions in L2(a}b) are convenient. Let us remind 
that 

f 2* f o r * G [ f ^ , ^ ] 
£„(*) = i 2~* for<e(f^,2^r] 

[ 0 for other i G [0,1], 

where n = 2m + /, / = 1 . . . 2 m , m = 0 , 1 , . . . and & := 1 on [0,1] are called 
Haar functions, they constitute a complete orthonormal system in F2(0,1) ([3], 
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p. 132). A complete orthonormal system in {WQ
% (0,1), [.,.]) was constructed 

in paper [2], which after differentiation gives the Haar functions £n , n = 2 , 3 , . . . 
For various reasons this cannot be repeated for k > 1. Otherwise it another con­
struction is possible in the space WQ ' (0,1). Because of calculational difficulties 
we will discuss this for the case k = 2 only. 

To solve this problem we have to find functions in WQ' (0,1) which are parts 
of second order polynomials and are linearly independent. They determine a 
complete system. After double differentiation they become a linear combination 
of some Haar functions. Let us begin with the following two functions 

УьЏ) := 

з f 
2 

_ 5 
2 

for t Є [0, ì ] 

( ' -*#)( '-*#) fc--є(ł,è] 
for<Є(|,l] 

and y 4 ( < ) ~ - 2 ^ ( 1 - * ) » * € [ 0 , 1 ] . 
One can show that yJJ = —£2 + ^V^^a for a = 3,4. Now, we put for 

n = 2 m + 1 + s} m = 0 , 1 , . . . , s = 1 , . . . 2 m + 1 

Уг^+Ч-í '•= 
0 

_ 1 _ _и\ 
ÎL+З I 

ilft-l-- H-gl 
2 m + 2 J 2 т а + 2 

for*e 

for other t G [0,1] 

(11) 
where a = 3 if s is odd and a = 4 if 5 is even. By [•] the entire part function 
is denoted. For t E [0,1] the following formula holds 

4Ң ÌJ-4 ' 

4l-ţ-J-4 
2m+2 

-2?{-б[2-(í-%ifiy + 2V2Єa 

41 tfcł l 

2m+2 ')]} 2m+2 

= - ^ 2 - + [ 4 i - j + 2 \ / 2 ^ 2 m + i + s . (12) 

Theorem 3 cl(lin{t/^; n = 1, 2, ...}) = L 2(0,1), where $ : = & andyn:=Z2-

Proof We shall show that for every m, m = 0 , 1 , . . . the functions yn,... t/2'm+2 

2 m + 2 

are linearly independent. Let us assume that Yli=i a^l ~ 0 ^OT s o m e ai, z = 
1 . . . 2 m + 2 . By (12) we obtain 

2 m + l 2 m + l 

0= 22 a i y i + _C a2-+1+^//2-+i+5 
i = l 

2 m + l 

5 = 1 

Ш 2* 2 m + l 2 m + l 

— _ L - / _ _ - / a 2 i + ^ ' 2 / / ' 2 i + i ~~ z_v a2m+ l+«Í2«+l--J--J + 2 V 2 2 ^ a 2 m + i + ^ 2 m + i + 5 . 
i= l І = l 5 = 1 5 = 1 

The above expression is a linear combination of the Haar functions and therefore 
we have a 2 m+i + s = 0 for s = l , . . . 2 m + 1 . This implies that 02™+* = 0 for 
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s = 1 , . . . 2 m . Continuing the above consideration we can conclude that on = 0 
for i = l , . . . 2 m + 2 . By induction it can be shown that for m = 0 , 1 , . . . , 
s = 1 , . . . 2 m + 1 we have 

1 m-l / 1 \ ' + 2 / i \ ™ + l 
6m+1+s ~ v 5 y V + 1 + s + £ (jvfj y"^-'+i^+^j+ V2~~J *2-

(13) 
Therefore every Haar function may be represented as a combination of some 
functions y". Let / E L2(0,1). The function / has the Fourier representation 

oo 2 n + 2 2 m + 1 

/ = Y\ Cntn = Ci£i + C26 4- lim Y] Y2 c2-+1+^2-+i-f5- (14) 
-—-' n—>oo --—--f --—* n = l m = 0 s = l 

By (13) we obtain 

/ = c i 6 + lim 
n->oo 

гҢ-2 

52 %,*'„ +Anta 
m = 3 

(15) 

where c m may be determined by formulas (13), (14) and 

гjГП + l 

An := c2 + 53 
,m+l 

/ J C2m + 1 + S , П = 0 , 1 , . - . 
m»o'(-V~) , = i 

This completes the proof of the theorem. 

T h e o r e m 4 cl(lin{yn; n = 3 , 4 . . . » = PV0 '
2(0,1). 

P r o o f In virtue of Theorem 1 the space W 0 ' 2 (0,1) with the norm 
be considered. Assume that a function / G IV2 '2(0,1) is given. Then / " £ 
D2(0,1) and the function / " may be represented by formulas (14)—(16). Clearly 
d = JQ1 f'^idx = 0. We shall show that A := limn_>00 An = 0. It is easy to 
check that ti{fob»+l(s)ds}dt = - ^ for n = 0,1 . . . , / = 1 , . . . 2 n . By (14) 

(16) 

G 

may 

oUo 
integrating two times we get 

0 = / ( / ?'(*)**) * = £ cn / | / Cn(s)ds\ dt 

oo 2 n . o o 2 m + 1 . 
— ^ ^ C2n+l — £i i £ ^ ^ c2m+г-f/ _ л 
_ 2 - o Г Г 2 ^ + 2 _ 4 + 4 L L г 2 1 ^ ~ 4' 

П=0 ï=:l m=0 í = l л 

Now, we can put 

/ : = lim Y,~ľУi 
i = 3 

2,2/ 
/ • e w i ' (Oil). 
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This means that 

/ " = lim 
m—юo 

£ -ľVi 
Î = 3 

= r 
a.e. on [0,1]. Hence f(t) = f(t) for each t G [0,1]. This finishes the proof. • 

Remark 1 Let us mention that using yn, n = 3,4 one can define a complete 
orthonormal system in (PV0

2,2(0,1), [.,.]) by putting 

i&2™+1+2s-l '>= r~y=(2/2"»+-+2«-l + 2/2^+1+2s) 

^ 2 ^ + 1 + 2 5 '• = T {y2m+1+2s-l ~ t/2^+1-4-2.5) 

for s - l , . . . 2 m , m = 0, l , . . . . 

Remark 2 Similarly one can construct a countable complete system of linearly 
independent functions in the space W™' (0,1) consisting of functions which are 
parts of polynomials of order m and in some joint points t\,..., tm are at least 
of class Cm-1. One can start with function 

*(-) = < 

' -Йfr foгťє[0,ťi] 

^ ^ 1 - + r-a;,m+i for t Є (í.Лч-i], i= l , . . . m - 1 (17) 

" - ^ 1 f o r í є ( í т о , l ] 

which can be always determined (homogeneous system of m 2 equations with 
(m — l ) (m -f 1) + 2 = m 2 -f- 1 unknowns). We assume that m = 2 n + I, n = 
0 , 1 , . . . , / = 0,. . . (2 n — 1). Taking iz-, i = 1,.. .m from among points J^FT-
s = 1, . . . ( 2 n + 1 - 1) it can be defined 2 n + 1 - m = 2 n - / linear independent 
functions according to formula (17). Their m-th derivative is a constant in 
the intervals determined by points r2-, i = l , . . . m . Thus, they are a linear 
combination of Haar functions £i, . . .£2n+i (see [3], p. 133). Applying linear 
transformation appearing in formula (11) one can formulate a complete system 
of linear independent functions in W™' (0,1) analogously as for m = 2. 

Example 1 For differential equation 

y^ + 16o\H= 1 

y(0) = y(l) = y'(0) = t / ' ( l ) = 0 , 

where o\ is the Dirac measure concentrated at point t = ~ we obtain the exact 
solution 

f ^ 4 - ^ 3 + ̂ 2 forte[o,i] 
^ ' I J_/4 _ _49_/3 , _97_/2 1_ (7 _ I ^ 3 for / ^ (± 11 

k 24 6 600 l ^ 2400*' 300 \L 21 i U i c ^ V 2 ' 1 - * 

That is y ( | ) = - ^ = 2.5 • 10"4 . Approximate solutions in spaces E2.Ee 
and F14 calculated numerically by the method described in this paper have the 
following values 1.83 • lO"4 , 2.23 • 10~4 and 2.36 • 10~4 at point t = | . 



166 Urszula, SZTABA 

References 
[1] Descloux, J.: Méthode des élémentes fìnis. Rusian edit ion, Mir, Moscow, 1976. 

[2] Kiera t , W., Sz taba , U.: Differentiаl equаtions oj the second order with meаsures аs 
coeffìcients. Ma themat i ca Silesiana (1994) ( to be published) . 

[3] Sikorski, R.: Reаl functions. Polish edition, P W N Warsaw, 1958, volume II . 


		webmaster@dml.cz
	2012-05-03T22:38:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




