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Abstract

Homomorphisms of contexts induce maps on corresponding concept
lattices. We are studying a relationship between these homomorphisms
and maps.
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Definition 1 Let G and M be a nonempty sets and / C G x M. Then the
triple J = (G, M, I) is called a context.

Definition 2 Let A C G, B C M be a nonempty sets. Then we denote:
AT = {m € M; gIm Vg € A}, BY ={g €G; gImVYm € B},
=M P =G

Denotation 1 Let A C G, B C M. We denote A¥ := (A")¥ and B¥ := (B4)1,
respectively. And moreover, for § € G, m € M, we denote g := {g}T and
mb = {m}.

*Supported by grant No. 201/95/1631 of The Grant Agency of Czech Republic.
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122 FrantiSek MACHALA, Marek POMP

Remark 1 Let A,C C G and B,D C M. Then A C C implies CT C
and BC D 1mphes DV C B Moreover AN = At BW — B! And ﬁnally
0 At =( U AT for 4; C G, i € J and, similarly, .QJB,‘ = (,U,B:)* holds for

B C M ieJ. (See [3]).

Lemma 1 Let J = (G, M, I) be a context, and let us consider the set Q defined
by

Q={ACG; A= AW}
Then the (partially) ordered set (Q, C) is a complete lattice. The operations A,
V on this lattice are defined as follows:

=N A; V A = 1AY2
1é\JA 'ﬂ v ied " (iQJA’)

for A; € Q. (See proof in [3]).

Definition 3 The complete lattice (@, A, V) from the previous lemma is called
a concept lattice. We denote it K(J). The maximal element or the minimal
element in K(J) are denoted by 1, or 0 respectively.

Remark 2 If G7 = {g¥; g € G} and M7 = {m}; m € M}, then G7,M s C
Q. In what follows we denote U7 = G7 U {0} and Vy = My U{1}.

Definition 4 A context J = (G, M, I) is called faithful, if
M gt = bt = g =h,

(2) ' mt=nt=m=n

for every g,h € G and every m,n € M, respectively.

Example 1 Let (L, A, V) be a complete lattice and < be the ordering of L
defined by the operations A, V. Then J;, = (L, L, <) is a context. Let U(A)
or L(A) be the upper bound and the lower bound of a set A C L, respectively.
Then AT = U(A) and At = L(A). Hence AN = LU(A) = L(z), where z = VA
for every A C L and, particularly, z% = L(z) = zt for ¢ € L, with regard to
z = Vez. If K(J1) = (Q, C) is a corresponding concept lattice, then A € Q if
and only if A = L(z) for a some element z € L. The elements of lattice K (J.)
are lower bounds of elements of lattice L and G5, = My, = Q. Evidently
™ = y™ = [(z) = L(y) which implies that ¢ = y for z, y € L. And similarly,
zt = yt implies £ = y. Then the context Jy, is faithful.

Definition 5 Let U and V be subsets of a complete lattice L. Then we call
them supremal and infimal dense sets in L if there exists subsets N C U/ and
P CV such that £ = VN and z = AP for every = € L, respectively.

Theorem 1 Let L be a complete lattice and < a corresponding ordering of L.
Let U orV be a supremal and an infimal dense subset of L, respectively. Then
the context J = (U, V, <) is faithful.
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Proof 1. First we proof that ¢ = V(L(z) NY) for arbitrary z € L. Evidently,
VL(z) =z and L(z) NU C L(z). Then V(L(z) NU) < VL(z) = z. There exists
N C U such that z = VN. Since N C L(z), then N C L(z) NU. Subsequently,
z=VN < V(L(z)NU) and z = V(L(z) NU). Similarly z = A(U(z) N V).

2. Let J = (U,V,<) and JL = (L, L, <) be contexts. In order to distinguish
between these two contexts, we will write the arrows at the context Jr on the
right hand side and at J on the left hand side. Now, g = {z € V; g <z} =
U(g)NV and Mg = {z eU; = < yVy € U(g) NV} for every g € U. According
to 1, g = A(U(g) N'V) which implies Mg = L(g) NU = g™ nU.

Similarly ¥m = L(m) NU = m* NU holds for m € V.

3. Let Mg = ®h for g, h € U. Then L(g)NU = L(h)NU and g = h according
to 1. Similarly +m = +n implies m = n holds. m}

Definition 6 Let J = (G, M, I) be a context, and let G; C G, M1 C M be
nonempty subsets and I; C G x M.

1. If I; C I, then the context J1 = (G1, My, I1) is said to be an embedded
context into J .

2. If I = IN(G1 x M), then the context J; = (G1, M1, I1) is said to be a
subcontezt of the context J = (G, M, I).

Remark 3 Let L be a complete lattice. Then the context J = (U, V, <) from
Theorem 1 1s the subcontext of the context Jr.

Definition 7 Let J = (G, M, I), J1 = (G1, M1, I;) be contexts. Then a map
¢: GUM — G U M; satisfying the conditions

(1 9(G) CG1, @(M)C M,
(2) gIm = ¢(g) I p(m)

is said to be a homomorphism of the context J into the context J;.

Definition 8 Let ¢ be a homomorphism of a context J = (G, M, I) into a
context J1 = (G1, My, I1). We define the incidence rela’ion I, C ¢(G) x ¢(M)
on the context p(J) = (¢(G), (M), I,) by

3heG p(g) = p(h),

IneM pm)=p(n), "™

P(9)lpp(m) <

Remark 4 In what follows, we will consider homomorphisms ¢ satisfying one
of the following conditions:

e(g)lip(m) = gIm, (H1)
owlelm) = () N Ee S o, w0

dheG = p(h), |
c@hetm) = J.C o Sy, e
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Remark 5 Evidently, (H1) = (H2) => (H3).

Definition 9 A homomorphism ¢ satisfying (H1) is called an I-homomorphism.
If ¢ is an I-homomorphism, ¢(G) = G, <,0(M ) = M, and ¢ induces a bijective
maps of sets G, Gy and M, My, then ¢ is an isomorphism. If ¢ is an isomor-
phism of the context J onto the context 7y, then 7, J; are called lsomorphxc
contexts and we denote them J ~ J1.

Theorem 2 Let J = (G, M, I), Jl = (G],Ml,ll), ‘.72 = (Gz,Mz,Iz) be
contezts and v : J — J1 and a : J1 — J2 respectively be surjective homomor-
phisms. Then & = ayp is a surjective homomorphism of the context J onto J>
and following conditions are fulfilled.

1. € is an I-homomorphism if and only if @ and ¢ are I-homomorphisms.

2. (a) If a and o satisfy (H3), then £ satisfies (H3).
(b) If ¢ satisfies (H3), then o satisfies (H3). In addition let o be a
bijective map, then ¢ satisfies (H3).

3. Condition 2 is valid for (H2), too.

Proof 1. Immediately, the map £ is a surjective homomorphism. Let o, ¢
be an I-homomorphisms and let us suppose £(g)I2€(m). Then ap(g) I ap(m).
With regard to the fact that o is an I-homomorphism we obtain ¢(g )Ilcp(m)
and moreover, gIm because ¢ is an [-homomorphism, too.

Let ¢ be an I-homomorphism and ¢(g)I1¢(m). Then £(g)I2€(m) and conse-
quentiy gim, hence ¢ is an I-homomorphism. Let be a(g1)laa(my) for g; € G1,
my; € M;. Because ¢ is a map onto Ji, there exist ¢ € G, m € M such that
©(g) = g1, p(m) = m,. Hence £(g)I2£(m) and thus gI/m and p(g)I; p(m) which
imply g;/;m; and a is an I-homomorphism.

2. (a) Let us assume that o, ¢ satisfy (H3). Let £(g)I2£(m).

Then a(p(g))I2a(p(m)) and there are g1 € G1, m1 € My such that a(g;) =
a(p(g)), a(m1) = a(p(m)) and g1 Iym;. Certainly there exist b’ € G, n' € M
such that @(h') = g1, p(n') = my, then p(h')[1p(n'). Because ¢ satisfies (H3),
there are A € G, n € M such that @(h) = (I'), ¢(n) = @(n’) and hln.
Evidently £(h) = a(p(h)) = a(p(h)) = a(g1) = a(e(9)) = €(g). Similarly
§(n) =§&(m).

(b) Let ¢ satisfy (H3). Let us assume a(g1)lza(m;) for g1 € Gi, my € M;.

There are ¢ € G, m € M such that p(g) = g1, ¢(m) = m;. We obtain
&(g)I2€(m). Then h € G, n € M exist such that a(p(h)) = a(p(g)), a(e(n)) =
a(p(m)) and hIn. Subsequently, ¢(h)l1p(n) and a(p(h)) = a(e(g)) = a(g1),
a(p(n)) = a(m1) and o satisfies (H3).
.. Let us assume, that a is a bijective map onto J2. Let ¢(g)l;¢(m). Then
a(p(9))za(p(m)) and £(g)12€(m). Then h € G, m € M exist such that
a(e(g)) = a(e(h)), ale(m)) = a(p(n)) and hin. Therefore w(g) = o(h)
and ¢(m) = ¢(n). Hence ¢ satisfies (H3).

3. Proof is similar to the previous one.
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Theorem 3 Let ¢ : J = (G, M, I) = J1 = (G1, M1, I,) be a homomorphism.
Then the context ¢(J) is embedded into J1 and ¢ is a homomorphism onto
©(J). The context o(J) is a subcontezt of Jyi if and only if ¢ satisfies (H3).

Proof It is evident, that ¢ is a homomorphism of J onto ¢(J). And moreover,
©(g) I, ¢(m) implies that there exist h € G, n € M such that ¢(g) = ¢(h),
o(m) = ¢(n) and hin. This implies that ¢(g)/1¢(m), and hence I, C I. If
¢ satisfies (H3), then the converse implications hold and ¢(J) is a subcontext
of J1. Let ¢(J) be a subcontext of J;. Then ¢(g)I1¢(m) implies (g)1,p(m)
and, according to the definition of the relation I,, ¢ satisfies (H3). ]

Remark 6 The following lemmas are proved in [1] and [2].
Lemma 2 Let J = (G, M, I) be a context. Then the map a defined by

a: g g% VYgegG,
mw— mt YmeM

is an I-homomorphism of the context J into the contert Jk(z), and the sets
Uz and Vg7 are supremal or infimal dense in K(J), respectively.

Remark 7 The map o from Lemma 2 satisfies (H3) and, therefore, the context
a(J)=(Gs,Mg,C)is asubcontext of Jx (7). The context ¢(J) = Uz,V7,C)
is faithful according to Theorem 1.

Lemma 3 Let J = (G, M, I) be a context, L be a complete lattice and ¢
be an I-homomorphism of the context J into Ji such that U = p(G) U {0}
and V = (M) U {1} are dense sets in L. There erists an isomorphism ¢ of
(complete) lattices K(J) and L, which induces bijective maps of sets Gz, p(G)
respectively Mgz, ¢(M) such that

(1) v(g™) =olg) Vg€G,
@) Y(mb) = p(m) Vme M.

Remark 8 Let @, ¢ be maps according to Lemma 2 and Lemma 3. Then the
contexts a(J) = (G7,Mz,<) and ¢(J) = (¢(G), (M), <) are subcontexts
of the contexts Jx(7) and Jr. The isomorphism % : K(J) — L, described
in Lemma 3, induces a map ¢ : a(J) = ¢(J). With regard to «, ¢ are
I-homomorphisms, equivalences a(g) < a(m) iff g* C m iff gIm iff p(g) <
©(m) hold for all ¢ € G, m € M. Then z < y iff ¢(z) < P(y) for 2,y € a(J)
and ¢ is an isomorphism of contexts a(J), ¢(J).

Remark 9 Let L be a complete lattice and Jr, = (L, L, <) the corresponding
context. The identity map ¢ : L — L satisfies the conditions from Lemma 3.
The map ¢ defined by £(L(z)) = z Vz € L, is an isomorphism of the lattices
K(J) and L.
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Remark 10 Let ¢: J — J; be a homomorphism onto the context J;. Then ¢
induce the map € of the concept lattices K (J) = (Q, A, V), K(J1) = (Q1, A, V),
€: K(J) = K(J1) such that £(A) = (p(A))™ for every A € Q. With regard
to A C C implies p(A) C ¢(C) implies (p(A))* C (p(C))™ for A,C € Q, £ is
a homomorphism of the context Jx(7) = (Q,Q, C) into the context Jk(z,) =
(Q1,Q1,C). But & need not to be a map onto K(7;) and € need not to be a
homomorphism of the lattice K(J) into the lattice K (7).

Theorem 4 Let J = (G, M, I) be a context, L be a complete lattice, and ¢ be
an I-homomorphism of the context J into Ji. If there exist an isomorphism 1
of the complete lattices K(J), L and if ¢ induces a bijective map of the sets Gz,
@(G) and Mz, o(M), respectively, such that y(g™) = ¢(g), for every g € G,
Y(mt) = p(m), for everym € M, then the setsU = p(G)U{0}, V = p(M)U{1}
are dense in the lattice L.

Proof Immediately from the assumption of our theorem we have 0 = V0,
l1=Aland 0 €lUd,1€V. Ifz € L, ¢ & {0,1}, then there exists an element
A € K(J), A is not the minimal or maximal element in K(J), such that
¥(A) = z. According to Lemma 1, A C G and A = A¥. Furthermore, A" =

(U dah¥ = (Y, (DD = (0,aDF = (0, a¥)t = (0 (@) = v at.

We obtain z = ¥(A) = é/A a) = E/Agb(an) = gAp( ) = Vip(A). Since
a a a
A C G, then p(A) C ¢(G). The set U is supremal dense in L.
Subsequently AN = (AT)t = B} = (, Y {oht = o bt = WD b*. Then z =

A\ = 7/){R’l‘\ = 1/)( /\ bl\ = /\ 1Y/”)¢) = /\ m”)) = /\m(B\ qlnr‘p R (_ M then

h

T

(
@(B) C ¢(M). The set Vis 1nﬁma1 dense in L.

(]

Remark 11 Let L be a complete lattice 'and G, M be nonempty subsets of
L such that J = (G, M,<) is a subcontext of the context J = (L, L,<).
According to Lemma 3 and Theorem 4 and since the map ¢ : ¢ — g Vg € G,
m — m Ym € M is an I-homomorphism of the context J into the context JL
we obtain that the following conditions are equivalent.

1. The sets ¥ = GU {0}, V = M U {1} are dense in L.

2. There exists an isomorphism ¥ of lattices K (J), L which induces bijective
maps of the sets G7, G ot Mgz, M, reSpectlvely and ¥(g™) =g Vg € G,
Yp(mY)=mVme M.

Denotation 2 1. Let A; = {6;((1_ € A}, A, = {@; a € A} be decompositions
of the set A. If @ C @, for any a € A, then the decomposition A; is so-called
covering of the decomposition Az and we denote it Az < A;.

2. Let J = (G, M, I) be a context and G = {g; g € G}, M = {m; m e M}
be decompositions of the sets G, M. Let us denote the corréesponding de-
composition of the set G x M by R = (G, M). We have the new context
Jr = (G, M, Iz), where Iz iff 3h € §, n € 7 and hIn. We define the map
pr:GUM - GUMby pr(g) =3 Vg €G, pr(m)=m Vme M.
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3. Let ¢: J — J1 be a homomorphism. We denote § = {h € G; p(h) =
v(9)}, Go = {3 geG} = {n€ M; p(n) = p(m)}, M,, = {m; m € M},
and Ry = (Gp, M

4, Let J = (G M, I) be a context. We denote § = {h € G; hT =g}, m
{ne M; nt =m}, and G = {§; g € G}, M = {m; m € M}, Rs = (G, M),
and F(J)=Jr,-

Remark 12 The map pgr, according to 2, is a homomorphism of the context
J onto the context Jr. The context F(J), according to 4, is faithful. If the
context J is faithful, then F(J) =

Theorem 5 Let p: J = (G, M, I) > J1 = (G1, Mi, I1) be a homomorphism
onto Jy and let us consider a map §, of the context J into the lattice K(J1)
such that

1) - g (@)% Vgeg,
(2) m s (p(m))¥ Yme M.
Then the following statements hold.

1. &, is a homomorphism of the context J into the context Jk(g,) and the
sets €,(G) U {0} and &,(M) U {1} are dense in K(J1).

2. The decomposition Re, is covering of the decomposition R, and
Re, =R, if and only if the context Jy is faithful.

3. &, is an I-homomorphism if and only if ¢ s an I-homomorphism.

4. If ¢ satisfies (H3), then &, satisfies (HS). If &, satisfies (H3) and if the
contexrt Jy is faithful, then ¢ satisfies (H3).

5. Condition 4 is valid for (H2), too.

6. If ¢ satisfies (H3), then Jr,, ~ F(J1)- If ¢ is an I-homomorphism, then
Ir., = F(J)-

Proof 1. The map ay: g = g1 Vg € Gy, my — m1 Ymy € M is
an I-homomorphism of the context J; into the context Jk(z,) according to
Lemma 2. Moreover, £,(9) = (¢(9))™ = ai1(p(g)) Vg € G and §,(m) =
(p(m))¥ = ai(p(m)) Vm € M, hence &, = aip. With regard to ¢ is a
map onto the context J; and a; is a map onto the context (Gz,, M7,,<),
$o(G) = G, €p(M) = Mg, and &, is a homomorphism onto the context
€o(T) = (o(G),€5(M), <) according to Theorem 3. According to Lemma 2,
the sets €, (G) U {0}, €, (M) U {0} are dense in K(J1).

2. If p(g) = p(h) implies (p(g))® = (p(h))™ for g,k € G and p(m) = ¢(n)
implies (p(m))* = (p(n))¥ for m, n € M, then R, < R¢,. Furthermore, the
equality R, = R, holds if and only if (<p(g))T‘L = (go(h))Tf, then ¢(g) = ¢(h),
(p(m))* = (p(n))* then p(m) = p(n). With regard to ¢ is a map onto J1, this
equality holds if and only if the context 7; is faithful.
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-3. We have the I-homomorphism a; such that &, = a1¢. Theorem 2 yields,
that £, is an I-homomorphism if and only if ¢ is an I-homomorphism.

4. The map a; is an I-homomorphism, then (H3) is valid for it. It follows,
according to Theorem 2, if ¢ satisfies (H3), then £, satisfies (H3), too. Let Jy
be a faithful context. For g1, g2 € G1, a1(g1) = a1(g2) implies (g1)™ = (g2)*
implies g; = g. Similarly @1(m;) = @;(my) implies (m;)* = (mz)% implies
my = mgy for my, my € M. Hence a; is a bijective map onto the context &,(J).
According to Theorem 2, ¢ satisfies (H3).

5. Proof is similar to the previous one.

6. The map &, is a homomorphism of the context J onto the context
Eo(T) = (G, M7, <). Let p satisfies (H3). Subsequently, according to Con-
dition 4 &, satisfies (H3) too, and £,(J) is a subcontext of Jx(7,). The sets
G7,U{0}, M7, U{1} are dense in K(J1). According to Remark 11, there exists
the isomorphism ¥ of the lattices K(£,(J)), K(J1), which induces bijective
maps of sets G¢,(7), 971, and Mg, (7), Mz,. According to Lemma 2 from (1],
F(€,(J)) ~ F(J1). According to Theorem 1, the context £,(J) is faithful and
according to Remark 12, F(£,(J)) = €,(J). Hence F(J1) ~ £,(J). According
to Theorem 2 from [2], £, induces an isomorphism of the contexts Jr & Eo(T),
and then Jr,, =~ F(J).

Let ¢ is an I-homomorphism. According to Theorem 16 from [2], F(J) ~
F(J) and then Jr,, =~ F(J). Then (p(9))" = (p(h))" iff g" = AT, (p(m))* =

(p(n)) iff mb = nt. Let us denote g, h, ... respectively m, f,... elements
of the decomposition R¢, and g, h,... respectively m, 7, ... elements of the
decomposition R7. For g € G, h € §iff £,(h) = &,(g) iff AT = g7 iff h € g, then
g = §. Similarly m = m for every m € M. o

Theorem 6 Let ¢ be a homomorphism of a context J = (G, M, I) onto Jy =
(G1, My, I). The following conditions are equivalent.

1. ¢ is an I-homomorphism.

2. ¢ satisfies (H3) and there exists an isomorphism ) of lattices K(J),
K(J1) which induces a bijective map of the sets Gz, G g, respectively M 7,
My, such that p(g™) = (p(g))™ Vg € G, $(m*) = (p(m))* Ym € M.

Proof (1) = (2). The homomorphism ¢ satisfies (H1), and this implies that
¢ satisfies (H2). According to Condition 3 from Theorem 5, the map &, is an
I-homomorphism of the context J into the context Jx(z,). With regard to the
sets £,(G) U {0}, £, (M) U{1} are dense in K(J1), then according to Lemma 3,
there is an isomorphism 1 from Condition 2. .

(2) = (1). According to Theorem 1 from [1], F(J) ~ F(Jt). With regard
to ¢ satisfies (H3), we obtain Condition 2 from Theorem 16 from [2]. O

Remark 13 Theorem 17 from [2] introduces a lot of characterization of the
I-homomorphism and Theorem 6 introduces other.
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Theorem 7 Let ¢ be a homomorphism of a context J = (G, M,I) onto a
context Jy = (G1, My, I,). We denote by g,h,... € G,, m,n,... € M, the
elements of the context Jr, = (Gp, My, Ir,). Then following conditions are
equivalent.

1. ¢ satisfies (H3).

2. There is an isomorphism ¥ of lattices K(Jr,), K(J1) which induces a
bijective map of sets G, G, or Mgy, Mg,, respectwely, such that

W) = (p(g))¥ Vg € G, ¥(m) = (p(m)) Ym € M.

Proof (1) = (2). According to Theorem 2 from [2], with regard to ¢ satisfies
(H3), the map @: g — ©(g) Vg € G,, Mm — @(m) Vm € M, is an isomorphism
of contexts Jr,, J1. Let {: g (B(@))™ Vg € G,, m > (p(m))* Vm € M,
be a map of the context Jr, into Jk(z,). With regard to ¢ is an isomorphism
and according to Theorem 5, Condition 3, £z is an I-homomorphism. Because
£5(Gy) = Gy, £5(My) = Mg, , the sets £5(G,) U {0}, £5(M,) U {1} are dense
in K(J1) and we obtain our Condition 2 from Lemma 3.

(2) = (1) According to Lemma 1, the map g — g™ Vg € G,,, m mt Vi €
M, is an I-homomorphism of the context Jr, into the context Jk(7x,)- Then
gIr,m iff g% C m*. Similarly the map ¢(g) — (2(9))¥ Vg € G, p(m)
(¢(m))* Vm € M is an I-homomorphism of J; into Jk (7,) and then ©(g)/1¢(m)
iff ((9))™ C (p(m))*. With regard to ¥ in an isomorphism of K(Jr,) onto
K(J1), we obtain gt C mt iff (¢(g))™ C (¢(m))*. Then p(g)l1¢(m) iff gIr, 7.
From the definition of relation Iz, we obtain ¢(g)I;¢(m) implies Iz, ™ implies
Jh € G, n € M, h = §, i =, hin, which means that ¢(k) = ¢(g), ¢(n) =
¢(m), hIn and ¢ satisfies (H3). 0O
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