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Abstract 
It is shown that from the fact that the unique solution of homogeneous 

problem is the trivial one it follows the existence of solution of nonhomo-
geneous problem in the Colombeau algebra. 
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1 Introduction 

We consider the following problem 

(1-0); , : : ;' .*'/(!)'+p(t)x'(t) + q(t)x(t) = r(i) , 

(LI) Li(x) = di, di e l , 1 = 1-2-

where p, q and r are elements of the Colombeau algebra <?(M); c?i, of2 are known 
elements of the Colombeau algebra K of generalized real numbers and Li are 
operations on G(R) (see [2]), the multiplication, the derivative, the sum and 
the equality is meant in the Colombeau algebra sense. We prove theorems on 
existence and uniqueness of solutions of the problem (LQ)-(Ll) . 
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2 Notation 

Let V(M) be the set all C°° functions K —> ffi with compact support. For 
q = 1,2, . . . we denote by Aq the set all functions <j> G V(M) such that relations 

oo oo 

(2.1) / <j>{t)dt = 1, f tk<j>(t)dt = 0, 1 < k< q 

~-0O — OO 

hold. 
Next, £\R] is the set of all functions R : A\ x M -> K such that #(<£, r) G C°° 

for every fixed </> E A\. 

If R £ £[M], then DkR(<j>,t) for any fixed <̂  denotes a differential operator 

in t (i.e. DkR(<j>,t) = j^(R(<j>,t)) for k > 1 and D0R(<j>,t) = R(<j>,t)). 
For given 0 G V(M) and s > 0, we define (f>£) by 

(2.2) фe(t) -MЭ-
An element I? of £[JR] is moderate if: for every compact set K of M and every 
differential operator Dk there is N G N such that the following condition holds: 
for every <j> G AN there are c > 0, e0 > 0 such that 

(2.3) sup I .D/. i?^ , / ) ! <ce~N if 0 < £ < e0. 
t£K 

We denote by £M pR] the set of all moderate elements of< 
By V we denote the set of all the increasing functions a from N into M+ such 

that a(q) tends to oo if g —> oo. 
We define an ideal AfpR] in ^ [ M ] as follows; R G JV"[M] if for every compact 

set K of 3R and every differential operator Dk there are N G N and a G T such 
that the following condition holds: for every q > N and <f> € y4̂  there are c > 0 
and 5o > 0 such that 

(2.4) sup IDfciJ^,*)! < c e a ^ - J V if 0 < e < e0. 
teK 

The algebra G(M) (the Colombeau algebra) is defined as quotient algebra of 
£MM with respect to J\f[R] (see [2]). 

If Hi, R2 G £ M M are representatives of elements G\, G2 G 6(R) respectively, 
then Gi • G2 is defined as the class R1R2. This class does not depend on choice 
of JRI and R2-

We denote by £0 the set of all the functions from A\ into M. Next, we denote 
by £M the set of all the so-called moderate elements of £0 defined by 

(2.5) £M = {R G £0: there is N G N such that for every <j> G AN there are 
c > 0, rjo > 0 such that |H(<££)| < c e " ^ if 0 < e < T]0}. 

Further, we define an ideal T of £M by 
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(2.6) T = {Re £0: there are N G N and a G T such that for every q >N 
and <f> € Aq there are c > 0, 770 > 0 such that \R(<f>e)\ < £aM N i f 

0 < e < n0}. 
We define an algebra IR by setting 

I = ^ £ (see [2]). 

It is known that IR is not field. 
If R G ^ M M is a representative of G G (?(M), then for a fixed t the map 

Y : <j) -» R((j), t) G M is defined on Ai and Y G £M- The class of Y in IR depends 
only on G and tf. This class is denoted by G(t) and is called the value of the 
generalized function G at the point t (see [2]). 

We say that G G <?(IR) is a constant generalized function on IR if it admits a 
representative R((j), t) which is independent on t. With any Z G IR we associate a 
constant generalized function which admits R(<f>>t) = Z(<j>) as its representative, 
provided we denote by Z a representative of Z (see [2]). 

We denote by Rp^^t), RXo(<j>), Rx(to)(<{>), Rx<(to)(<j)), Rx>(<f>) representatives 
of elements P, #o,x(^0), #'(*o) and #'. 

We say that a generalized function p G £(IR) is cj-periodic (u > 0) if it 
admits w-periodic representative Rp^^i). 

Throughout the paper K denotes a compact set in IR and [a, b] is the compact 
interval (i.e. —00 < a < t < b < 00). 

We say that x G £(IR) is a solution of the equation (1.0) if there is n G Af\M\ 

D2Rx(<t>,t) + RP((t>,t)DlRx(<t>,t) + Rq(4>,t)Rx(<l>,t) = Iir(<M) + */(<M) 

for all 0 G *4i and r G IR, where It^ denotes an arbitrary representative of x. 

3 The main results 

First we shall introduce a hypothesis H. 
Hypothesis H. 

(3.0) P , * , r € 0 ( R ) , 

(3.1) the elements p and q admit representatives Rp(<f),t) and Rq(<t>,t) with 
the following properties: for every compact subset A' of IR there is N 
such that for every <j> G AN there are constants c > 0 and 770 > 0 such 
that 

t t 

sup I / \Rp(4>ei8)\ds\ < e, sup I / \Rq(<j>£,s)\ds\<c if 0 < £ < ? 7 o , 
teK J t£K J 
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(3.2) the element p E fy(IR) admits a representative i?p(^, 2) with the following 
property: for a fixed compact interval [a, b] there is N E N such that for 
every <j> E AN there are constants So > 0 and 7 > 0 such that 

I \Rp((j)£,t)\dt<1 -7 if 0 < £ < e 0 , 
J 6 — a 

(3.3) the elements p,q E !?(K) admit representatives Rp((j>,t) and Rq(<f>,t) 
with the following property: for a fixed compact interval [a, 6] there is 
N E N such that for every <j> E AN there are constants £0 > 0 and 7 > 0 
such that 

6 6 

{\Rp{(t>e,t)\dt+ { \Rq(<j>e,t)\dt< —•-!—--7 if 0 < £ < e 0 , 

(3.4) a) the element p E £7(M) admits u;-periodic representation Rp{<f>,t) with 
the following property, there is jN E N such that for every <j> E -4AT 
there are constants £0 > 0 and 70 < 0 such that 

-RP(^e, *) < 70 for 0 < e < £0 and t E B, 

(3.4) b) the element p E £(M) admits u;-periodic representative Rp(<l>,t) with 
the following property: there is N E N such that for every <f> E AN 
there are constants £0, 7o > 0 such that 

\RP(<t>e,t)\ > 70 for 0 < £ < £0 and t E K, 

(3.4) c) the element p E £(M) admits w-periodic representative RP(<t>,t) with 
the following property; there is N E N such that for every <f> E AN 
there are constants e0} 7o > 0 such that 

u> 

f\Rp(<t>eit)\dt< — ~7o if 0 < e < £ 0 , 
J ^ 
0 

;•• • b 

(3.5) PeLLW and f \p(t)\dt < -—-, 
a 

b 

(3.6) P ,g6 iL(») and ^ |p(*)| + |g(t)|dt < ^ 4 + 4 ' 
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(3.7) p G L}0C(M) and p is o;-periodic function such that 

[p(t)dt>Qi u f\p(t)\dt< 16, POO 7*0, 

0 0 

(3.8) Li (i = 1,2) are operations such that 

a) L«(y) € I for y G 0(R) and L{(y) G M for y G C°°(M), 

b) Li(Aiyi+A2y2) = AiL l(yi)+A2L i(y2) ) where yi,y2 G £(M) and Ai, A2 6 l , 

c) if Hy(<M) G ? M [ 1 ] , then hi(4) G ^ , where ft<(^) = Li(Ry(<f>r)) (for 
^ e - 4 i ) , 

d) Li[Ry(<t>,t)] = [Li tHy^, •)], where y = [fly(<M)] G £(M). 

Now we shall give theorems on the existence of the solution of the problem 
(1.0)—(1.1). Apart from the problem (1.0)—(1.1) we shall examine the homoge­
neous problem 

(3.9) x"(t)+p(t)x'(t) + q(t)x(t) = Q 

(3.10) Li(*) = 0, L2(x) = 0. 

T h e o r e m 3.1 We assume the conditions (3.0)-(3.1) and (3.8). Moreover, we 
assume thai the zero is the unique solution of the problem (3.Q)-(3.10) in Q\M). 
Then the problem (l.O)-(l.l) has exactly one solution in Q{&). 

R e m a r k 3.1 If p, q and r have properties (3.0)-(3.1), then the problem 

(3.11) x"(t) + p(t)xf(t) + q(t)x(t) = r(t) 

(3.12) *(*o) = r i , x ' (M = r2, t 0 G K , r 1 ? r 2 G l 

has exactly one solution x G £(M) (see [11]). Besides, every solution x of the 
equation (3.11) has a representation 

(3.13) x = ci<£> + c2-0 + Q, 

where <p and "0 are solutions of the problems 

m , x fv"(*) + p(*V(*) + ?(*M*) = o 
1 ; W(0) = i, ^(0) = 0, 

m t n (fW+PW(*) + ?(<)#)-o 
1 ' ] I V>(0) = 0, V'(0) = 1, 
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Q is a particular solution of the equation (3.11) and C\ and c2 are generalized 
constant functions on M. The solution x is the class of solutions of the problems: 

(3.16) x" + Rp((j>e)t)x
f + Rq(<l>e)t)x = Rr(<l>£)t) 

(3.17) X(t0) = RrM*)* *'(*<>) = -«raWe), <£ € -4i (see [11]). 

R e m a r k 3.2 Let J denotes the generalized function (delta Dirac's generalized 
function) which admits as the representative the functions Rs(<f>jt) = <j>(—t)) 

where <j> E A\ Then S has property (3.1). It is not difficult to show that the 
problem 

(x"(t) = 26'(t)6(t)x'(t) 
( 3 1 8 ) U(-1) = 0, *'(-!) = 1 

has not any solution in (7(]R) (see [11]). 

R e m a r k 3.3 If p G Lj0C(R), then we put 

oo 

(3.19) iJp(<M)= I p(t + eu)<j)(u)du=(p*<j))(t), 
— 00 

where </> G -4i. Hence 

(3.20) (p* £) '->*> in BLW (see[l]) 

and Rp((f),t) has property (3A). 

R e m a r k 3.4 By C(M) we denote the space of all real continuous functions 
defined on M. It is known that C(K) is a subspace of <7(IR). On the other hand 
every element t/ G (7(ffi) has exactly one representation of the form y = yi + t/2, 
where Hi G C(ffi), 2/2 € M, C(M) O M = {0} and M is the complementary 
subspace of the subspace C(E) to the space (?(M). We define L(y) = t/i(0), 
where y = y\ + y2, yi G C(M), 2/2 E M and 2/1 (0) denotes the classical value of 
the function y\ at the point 0. The operation L has property (3.8) a)-c). Let 
y(t) = \t\. Then 

0 0 

L(Ry(<t>, •)) = Ry(4>, °) = / l«l^(«)«.« £ T 
— OO 

(see [2]) and 

L[/Jy(0,t)] = j/1(O) = O. 

Thus 

i[iJy(0,O]^[L(iJy(0,.)]. 
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Remark 3.5 Let x G Q(R) and let Lx(x) = x(a)} L2(x) = x'(a)} L3(x) = 
x(b) - x(a)} L4(x) = x'(b) - x'(a)} where a, 6 E M. Then Lj (j = 1,2,3,4) have 
properties (3.8) a)-d). 

Proof of Theorem 3.1 First we shall prove three lemmas. To this purpose 
we consider the following systems of equations 

(3.21) 

and 

(3.22) 

where 

(3.23) 

í c i a n 

l cxa2X 

f c i a n 

l cxa21 

+ c2aX2 = 6i 

+ c2a22 = 62 

+ c2a12 = 0 

+ c2a22 = 0, 

aц~Li(ip)} a12~Li(ф)} a21=L2(<p)} 

a 2 2 = L2(ф)} 6X = dг - Lг(Q), Ъ2~d2~ L2(Q) 

and <p} J/J are solutions of the problems (3.14)-(3.15). If x is a solution of the 
problem (1.0)—(1.1), then (by (3.13)) ci and c2 satisfy the system of the equa­
tions (3.21). We put 

(3.24) det A = alxa22 — a 2 i a i 2 . 

In the Lemmas 3.1-3.4 we suppose that all the assumptions of Theorem 3.1 are 
satisfied. 

L e m m a 3.1 If det A ^ 0 and if det A is the invertible element O/M, then the 
system of equations (3.21) has exactly one solution in M. 

Proof of Lemma 3 A is obvious. 

L e m m a 3.2 If det A = 0 in M. then the problem (3.9)-(3.10) has nontrivial 
solution in Q(M). 

Proof Let det A = 0. Then , 

(3.25) ci = - a i 2 and c 2 = an 

are solution of the equation (3.22). 
If ai2 ^ 0 or a n ^ 0, then (by (3.13)) the problem (3.9)-(3.10) has nontrivial 

solution in Q(M). In the case an = a i 2 = 0, we deduce that 

(3.26) c2 = —a22 and c 2 = a21 

satisfy the system of equations (4.2). 
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If a22 ^ 0 or a2i ^ 0, then the problem (3.9)-(3.1Q) has nontrivial solutions. 
From the equalities 

(3.27) a n = a12 = a2l = a22 = 0 

we infer that the problem (3.9)-(3.10) has also nontrivial solutions £7(M). This 
proves the Lemma 4.2. 

Lemma 3.3 If det A / 0 and if det A is noninvertible element o/M, then the 
problem (3.9)-(3.10) has nontrivial solutions in ^(M). 

Proof Since det A ^ 0 and det A is noninvertible on M, there exists a constant 
c such that 

(3.28) cdet A = 0, c ^ 0, c 6 M (see [13]). 

Let 

(3.29) ci = - c a i 2 ) c2 = can . 

Then c\ and c2 are solutions of the system (3.22). If ci ^ 0 or c2 -̂  0, then the 
problem (3.21)-(3.22) has nontrivial solutions. In the case 

(3.30) ca\\ = cai2 = 0 

we observe that 

(3.31) ci = — ca22, c2 = ca2i . 

are solution of the system of equations (3.22). 
If 

(3.32) ca22 £ 0 or ca21 ± 0, 

then the problem (3.9)-(3A0) has also nontrivial solutions. In the case 

(3.33) ca\\ — ca\2 = ca2i = ca22 = 0 

the problem (3.9)-(3.10) has also nontrivial solutions in (7(M). This proves the 
Lemma 3.3. 

Proof of Theorem 3.1 The uniqueness of solution of the problem (1.0)—(1.1) 
follows from assumptions of Theorem 3.L By Lemmas 3.1-3.3 we obtain the 
existence of a solution of the problem (1.0)—(1.1). 

T h e o r e m 3.2 We assume that 

(3.34) all the assumptions of Theorem 3.1 are satisfied, x(<f>£}t) is a solution of 
the problem 
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(3.35) { £ x"(t) + Rp(<t>£,t)x'(t) + Rq((f*£,t)x(t) = Rr(</)£,t) 
(x((f>£,')) = Rdi(<f>£), (j>eAN\ i = l , 2 

(Tor sufficiently large N and for small e > Oj. 
Then 

(3.36) x(<t>,t) € ^ M M and x = [»(&<)] 

zB a solution of the problem (l.O)-(l.l). 

P r o o f First we examine the problems 

, , ,-x / ^ "W + Rp(</>s,t)<p'(t) + Rg(4>e,t)<p{t) = 0 

( ' J 7 j U ( 0 ) = 1, ^'(0) = 0, 

and 

/<.-«. ( r(t)+RP(<J>e,t)rl>'(i) + R<I(<t>*,t)m=0 
VM> U(0) = 0, ^(0) = 1. 
Let Rip((j)£,t) and R^(<f)£,t) be solutions of the problems (3.37)-(3.38). Then 
every solution x((j)£,t) of the equation (3.35) has the representation 

(3.39) x ( ^ , * ) = Ci (^e) i^(*e ,0 + C 2 ( ^ ) i ^ ( ^ , * ) + Q(^e ,0 J 

where 

t 

(3.40) Q(<f>e,t) = ~RA<f>e,t) J Rr(<f>eis)(W(<f>£,t))'
lRxi;(<l>e,s)ds 

0 

+ RtJ,(<f>£,t) f Rr(<i>ert)(W((f>s,s)ylRip(^e,8)ds 

0 

and 

(3.41) KV(^,r) = Rv(<f>£lt)Ri,<(<f)£,t) - R^(<f)£,t)R^((f>£,t) 

= exp J - / Rp((f>£,s)ds J . 

Now, we consider the equation (3.35) with the following conditions 

(3.42) -w(*(<rV, •)) = RdM*)i i = 1.2-

By (3.35), (3.39) and (3.42) we obtain the systems of equations 

ci((/>e)aiu + c2(<f)£)ai2£ = bl£ 

1 C i (^ e )a2 i e + C2(фє)a22є = &2<г 



112 Jan LIGgZA 

/ 3 44x f c i (^ e ) an e + c2((^e)a12£ = 0 

I ci(^ e)a 2 i e -V c2((j>E)a22e = 0, 

where 

ane = L1(Rtp((/)£r))y ai2e = Li(R^(</>S} •)). 

(3.45) a2 i = L2(Rip((f>ei'))) a22£ = L2(R^(<f>e)-)), 

bu = flrfl(^c)-il(Q(^,-)), &2e = ^ ( ^ ) - I 2 ( W e r ) ) . 

Taking into account Lemmas 3.1-3.3, assumptions of Theorem 3.2 and rela­
tions (3.39)-(3.45) we conclude that there is N £ N such that: for every <j> E -4jv 
there are c, 6o > 0 such that 

(3.46) | d e t ^ | = \all£a22e - a 2 i e a i 2 £ | > ceN (for 0 < e < £o)-

Using (3.39)-(3.46) we deduce that the equation (3.35) with conditions (3.42) 
has exactly one solution x(<f>£,t) (for <f> E Aq, q > N and 0 < e < SQ). By 
(3.43)-(3.46) we get 

(3.47) ct((j>e) = (detA,)'1 (bua22£ - 62eai2e) 

and 

(3.48) c2((j>£) = (detA£y
l(b2Ealle - 6i ea2 l £) 

(for <j)£ E Aq and 0 < e < e0). 
m e last equaimes ana (o\o) yieia 

(3.49) a{4), c2(4>)e£M. 

Since 

(3.50) IM<M), IM<?M) e £M\JBL] 

therefore 

(3.51) x ( ^ ) G ^ [ l ] 

which completes the proof of Theorem 3.2. 

Now, we shall give conditions under which solution of the problem (3.9)-
(3TO) is trivial one. To this purpose we shall consider the following operations 
L{: 

(3.52) L1(x)=x(a)1 L2(x)^x'(a), 

(3.53) L\(x) = x(a), L2(x) = x(b), 

(3.54) Lx(x) = x(b) - x(a), L2(x) = V ( 6 ) - x'(a). 



On Some Boundary Value Problems . . . 113 

Corollary 3.1 We assume conditions (3.0)-(3.1) and (3.52). Then x = 0 is 
the unique solution of the problem (3.9)-(3.10) (see [11])-

Corollary 3.2 If conditions (3.0)-(3.1) and (3.2) are satisfied. Then the prob­
lem 

(3.55) x"{t) + p(t)x(t) = 0, x(a) = x(b) = 0 

has only the zero solution in 6f(IR) (see [13]). 

Corollary 3.3 If conditions (3.0)-(3.1), (3.3) and (3.53) are satisfied. Then 
the problem (3.9)~(3.10) has only the trivial solution in (7(1R) (see [13]). 

Corollary 3.4 If conditions (3.0)-(3.1) and (3.4) a) are satisfied. Then the 
problem 

(3.56) x"{t)+p{t)x{t) = 0, x(0) = x{v)f x'(Q) = x'(u) 

has exactly one solution in (7(1R) (see [1%]). Moreover, the equation (3.56) has 
only the trivial UJ-periodic solution in (?(M) (see [14]). 

Corollary 3.5 If conditions (3.0)-(3.1) and (3.4) b)-(3.4) c) are satisfied. 
Then the problem (3.56) has only the trivial solution in G(M). Moreover, the 
equation (3.56) has only the trivial UJ -periodic solution in G(M) (see [14])-

4 Final Remarks 
R e m a r k 4.1 It is known that every distribution is moderate (see [2]). On the 
other hand L. Schwartz proves in [19] that there does not exist an algebra A 
such that the algebra C(R) of continuous functions on K is subalgebra of A, 
the function 1 is the unit element in A, elements of A are "C°°" with respect 
to a derivation which coincides with usual one in C1(M) and such that the 
usual formula for the derivation of a product holds (see [19]). As consequence 
multiplication in <7(M) does not coincide with usual multiplication of continuous 
functions. If necassary we denote the product in fif(M) bv 0 . 

E x a m p l e 4.1 Let g\(t) nad g2(t) be continuous functions defined by 

(4.D *(,)-{•• *; 

(«) „(.)-{ J; !j; 
Then their classical product in (7(E) is 0. Their product in (7(R) is the class of 

CO oo 

(4.3) R(<f>^)= / gi{t + u)<f>(u)du - / g2(t + u)<f>(u)du, 

- ť < 0 
•<>o 

' ť < 0 

" ť > 0 
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where <j> £ A\. By [2] we have 

(4.4) R(<f>,t) £ M\J$L]. 

Let 
t 

(4.5) G2(t)= I92(s)ds. 
o 

Then x = G2 is a classical solution (in the Caratheodory sense) of the equation 

(4.6) x"(t)=gx(t)x'(t)+g'2(t). 

On the other hand x = G2 is not a solution of the equation 

(4-7) x"(t)=gi(t)Qx'(t) + g'2(t). 

R e m a r k 4.2 If p, q,x G C 0 0 ^ ) and if I?p(0, t) = p, Rp(<t>, t) = g and jR*^, i) = 
x, then the classical products px' and qx and the products pQ) xf and g 0 # in 
Q(M) give rise to the same element of Q(M) (see [2]). 

Hence we get 

Theorem 4.1 We assume that 

(4.8) ^ ^ r e r f l ) , G?ljCl2GM, 

(4.9) £/ie zero function is the unique solution of the equation (3.9)~(3A0) in 
the classical sense, 

(4.10) x\ is the solution of the problemn (l.O)-(l.l) in the classical sense, 

(4.11) x2 G Q(M) is the solution of the problem, 

f x"(t) +p(t)G xf(t) + q(t) 0 x(t) = r(x) 

1 Li(x2) = cff, i = 1,2, 

(4.12) the operations Li (i = 1,2) have property (3.8): 

Then x\ and x2 <7it>e rise £o £fte same element ofQ(M). 

P r o o f Let x2 = [I?:r2(<^)] be solution of the problem (4.11) and let x\ be 
solution of the problem (1.0)—(1.1). Then 

f *'/(*) + p(t)x[ (t) + q(t)xx(t) = r(t) 
[^UV \Li(x1)=du i=l32 

and 

UU\ / I?4'(^'<)+ P^MWot) + q(t)RX2(<f>e>t) =r(t)+r)(<f,€,t) 
( ' \Li(RX2(<f>er)=di + ili(^)1 1 = 1,2; 
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where rj^.t) £ -VpR] and 771, rj2 £ T (0 < £ < e0. <£ E -4/v and N is sufficiently 
large). 

Hence 

1 " ' \Li{Rt(if>tr)) = -ru(4>e), » = 1,2, 

(<j>c,t) = T1(cf>E,t) 

where 

(4.16) fl.W.,t) = x i ( t ) - f l a , a ( ^ > f ) . 

On the other hand Rx^s^t) has the representation (3.39), where .R^^e,*), 
R${4>e,t) are solutions of the problems (3.37)-(3.38), 

t 

(4.17) Q(J>e,t) = -Rv(<l>e,t) Jr](<t>e,s),R^(<l>c,8)(W(<t>,,s))-1ds 

0 

+ JR0(^,t)y''/(^,s)flv(^,s)(W(^,s))-1clseN[^] 

and 

VУ tø,, ť) = exp í / - Я p (ф, , 8)ds ] 

The relations (3.8), (3.45)-(3.48) and (4.17) yield 

(4.18) ci(^), c2(<6)€T 

and consequently 

(4.19) * i ( * ) ~ I W < M ) e W ] . ,'.',,' 

This proves of Theorem 4.L 

To repair to consistency problem for multiplication we give the definition 
introduced by J. F. Colombeau in [2]. 

An elements of Q(M) is said to admit a member w £ X '̂(M)vas the associated 
distribution, if it has a representative Ru(4>,t) with the following property: for 
every t/j £ V(M) there is N £ N such that for every <f> £ AM we have 

00 

(4.20) lim / Ru(фe,ť)ф(t)dt = w(ф). 
e-+0 J 
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T h e o r e m 4.2 We assume that 

(4.21) p,q,reL}0C(m), 

the zero function is the unique solution of the problem 

(4.22) 
f x"(t) Ą 

1 x(a) = 
+ p(t)x'(t)Ъ+q(t)x(t) = 0 

x(b) = 0 

in the Caratheodory sense, 
x is the solution of the problem 

f x"(t) + p(t)xf(t) + q(t)x(t) = r(t) 

\x(a)=du x(b) = d2) d i , d 2 G M , 

(in the Caratheodory sense), 

x G Q(JS) is the solution of the problem 

f *"(<) + p(t) 0 x'(t) + q(t) 0 *(<) = r(t) 

\ x(a) = dX ) x(6) = d2, 

Tften x admits an associated distribution which equals x. 

T h e o r e m 4.3 We assume that 

(4.25) p,q,reLle(R), 

the zero function is the unique solution of the problem 

f x"(t)+p(t)x'(t) + q(t)x(t)=0 
K ' \x(a) = x(b), x'(a) = x'(b) 

in the Caratheodory sense, 
x is the solution of the problem 

(4.27) I x W (*) +P(*) X # (*) + «(*)*(*) = r (*) 
\ x(a) — x(b) = di, x'(a) - x'(b) = d2) d i , d 2 G 

(m the Caratheodory sense), 
x G !?(M) 25 £/ie solution of the problem l: 

(4 0R\ I X '2 ' ( t ) + P ( t ) ® X ' ( t ) + 9 ( t ) ° X ( t ) = r ( < ) 

1 ' j \ x(a) - x(b) = du x'(a) - x'(b) = d2. 

Then x admits an associated distribution which equals x. 
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T h e o r e m 4.4 We assume that 

(4.29) p,q,r 6 LJ0C(R) 

x is the solution of the problem 

(x"(t)+p(t)x'(t)b + q(t)x(t) = 

\x(a) = di, x'(a) = d2; dXi 

in the Caratheodory sense, 
x G <5(M) is the solution of the problem 

Г(t) 

d2čì 

(4.31) ( X"{t) + P{t) 0 X'{t) + q{t) ° X{t) = r{t) 

\ x(a) = o7!, x'(a) = d2. 

Then x admits an associated distribution which equals x. 

Remark 4.3 If p, f/ G L}0C(M) and if p and q have property (3.6), then the 
problem (4.22) has only the trivial solution in the Caratheodory sense (see [4]). 

Remark 4.4 If p G Lj0C(M) and if p has property (3.5), then the problem (3.55) 
has only the zero solution in the Caratheodory sense (see [3]). 

Remark 4.5 If p is o;-periodic function such that: p G L/"oc(M) and p has 
property (3.7), then the problem (3.56) has only the trivial cj-periodic solution 
in the Caratheodory sense (see [10]). 

Proofs of Theorems 4.2-4.4 follow from the facts that p*<j)e —> p, q*<t>€ —> q, r* 
<j>e —V r in Lj0C(W) (see [1]) and the continuous dependence of x on coefficients 
p, q and r. Indeed, let •Rtp(<f>e,t)i R^^e.t) be the solution of the problems: 
(3.37) and (3.38) respectively. Then we infer that 

(4.32) l i m i ^ O ^ , * ) = ip(i), lim JVWc,*) = ¥>'(*)> 

(4.33) l i m . R ^ e , * ) = VW« - i m . R ^ ( ^ , i ) = 1/(t), 
e-+0 £—>0 

(almost uniformly for every fixed <j) G ^Jv). 
This yields 

(4.34) l i m | d e t ^ | = <7 7-u. g EM 

for every <j) £ AN (detA£ is defined by (3.46)). Let Rx(<t>£it) be solution of the 
equation (3.35) satisfying one of three conditions (for small e > 0, </> G AN and 
sufficiently large N): 

(4.35) Rx(<t>e, a) = rfi, iM<rV, 6) = <fe; 
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(4.36) Rx{<f>£,a) - Rx{<f>£)b) = du Rx>{<f>£}a) - Rx<{<j>£)b) = d2 , 

(4.37) Rx{(j)£)a) = rfi, Rx'{(f>£}a) = d2. 

In view of the relations (3.39)-(3.41), (3.47) and (4.32)-(4.34) we have 

(4.38) limine,*) = a?(t), "lim^/^,-) = x'(t) 
£r->0 e ->0 

(almost uniformly for every fixed (j) G *4AT) and # is a solution of the problems 
(4.23) or (4.25) or (4.30) respectively in the Caratheodory sense. On the other 
hand [Rx{(j>£)t)] = x is the solution of the problems: (4.24) or (4.28) or (4.31). 
This proves of Theorems 4.2-4.4. 

R e m a r k 4.6 Generalized solutions of ordinary differential equations can be 
considered on the other way (for example: [5]-[9], [12], [15]—[18] and [20]). 
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