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Abstract 
In a linear model with variance components the locally best linear 

unbiased estimator of the mean value parameters depends on the values 
of the variance components. The problem is to find a region around the 
given values of the variance components in which the best linear unbiased 
estimator does not change essentially. 
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1 Introduction 
Let Y be an n-dimensional random vector with the mean value E(Y\f3) =; Xj3 
depending on a k-dimensional vector parameter fi £ Rk (k-dimensional Eu­
clidean space) and with the covariance matrix Var(Y\'d) = YTi=i $iVi depend­
ing on the p-dimensional vector d -= {d\,.,., dp)* 6 2?. C RP. Here X is an n x k 
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known matrix and V\}..., Vp are n x n symmetric known matrices; parameters 
(3 and d are unknown. Instead of the actual value d* of the parameter d its 
approximation do is known only. The set d_ is open in RP. 

The problem is to find a criterion enabling us to recognize, whether an 
uncertainty in the parameter d, given by the value \\d* — i/o||I (the Euclidean 
norm), affects the estimator of /? essentially, or not. 

Some partial solutions of this problem are given in [2], [3], [4]. Some general 
information is given in [1]. 

2 Notations and auxiliary statements 
In the following either the notation 

y~(K/?, £(*?)), or [y,X/?,E(i?)], peRk, detcRF, 

will be used. Sometimes the symbol E(i/) will be used instead of YA=I ^*^» an<^ 
Eo instead of E($o)-

Definition 2,1 In the model 

p 

(Y,K/?, £ W > & G Rk> * = (* ! ' ' ' *' *P) # £#CRp, 

the statistic T*(*?o)Y is the #o-LBLUE (locally best linear unbiased estimator) 
of the vector ft if 

(i) V{(3eRk}E(T*(do)Y\f3) = p, 
(it) M{T:T± T*(t?0), T satisfying (i)} Var(T*(0Q)Y\0o) <L I7ar(Ty|tf0), 

where <£, means the ordering of the positively semidefinite (p.s.d.) matrices, 
i.e., A>L B <=> A - B is p.s.d. 

If the rank of the matrix X is r(X) = k < n and the matrix E(t?o) is regular, 
then the model (Y,X0,Y?i=i ^M), P € Rk, d e±C R?, is regular at #0 . 

L e m m a 2.2 TAe do-LBLUE of (5 in the regular model from Definition 2.1 and 
its covariance matrix are 

P(YM = C-l(d0)X'V-l(d0)Y = T*(d0)Y, 

Vartf(Y, *0)|*o) = C ^ o ) . (2.1) 

where C(t?0) = K'E-^o)*. 

Proof Cf. [6], p. 188. • 

Lemma 2.3 Fetf in 2he model from Lemma 2.2 fl* ^ t?o «ft^ E(tf*) fee a/so 
regular. Then 

Var[T*($o)Y\r] = T*(#0)E(#*)[T*(ti0)]' >L 

>L Var[p(Y,d*)\d*] = [ K ' E " 1 ^ * ) ^ - 1 = C " 1 ^ * ) (2.2) 
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Proof For any mxn matrix A and n x k matrix A' with r(K) = k the relation 

AA! >L AK(K'K)-lK'A' 

is valid (the generalized Schwarz inequality). As £($*) is p.d., there exists a 
regular matrix J such that E(tT) = JJ'. Now let A = T*(d0)J and K = J~XX. 
Thus 

K(K'K)-lK' = J-1K[K'(J,)-1J-1K]-1K,(<//)"1 

= J-1K[K,E-1(^)^]"1^,(«/,)~1 

and the proof can be easily finished. • 

Remark 2.4 In the framework of the linear estimation the inequality (2.2) is an 
important reason for applying the ^o-LBLUE of/?, where $o is as near as possible 
to the actual value i9* of the parameter d. Nonrespecting the requirement "$o 
as near as possible to the actual value d* " can result in a disaster in some 
situations; cf. the following example. 

Example 2.5 (cf. [2]) Consider the model 

HJMvlt)). « ,̂ -!<,<!. 
Then the ,0-LBLUE of j3 is 

te, Y*P) = 6 _ 2 V g p [ ( 1 " ^P)Yl + ib~ ^P)Y2] 

and 

Var0(Y1,Y2,p)\p] = ^ l _ 2 ^ \ (2.3) 

If the weighted average (nonrespecting the value p) 

^(y 1 , y 2 ) = (y1 + 5y2)/6 

is considered, then 

VartfiYx^lp] = A ( 3 + Vbp). (2.4) 

Now let us compare the values of the variances (2.3) and (2.4) for different 
values of/?; cf. Fig. 1. 
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Obviously 

Fig. 1 
The dependence of the variances (2.3) and (2.4) 

on the correlation coefficient p 

lim{Var[ii(Y1,Y2)\p]/Var\p(Y1,Y2,p)\p} = oo. 
P-+1 

E x a m p l e 2.6 (continuation) The task is to evaluate the effect of the change of 
the value p onto the value p + Sp, where Sp is a sufficiently small number. 

The estimator f3(Yi,Y2,p + Sp) is approximately equal to /?(Yi,Y2,D) + 
[dp(YuY2,p)/dp]6p. 

The correction term [d/3(Yx, Y2, p)/dp]Sp is a random variable of the form 

[дß(YuY2,p)/дp)8p = -
4^/5 

;(Yi-Y2)6p. 

Obviously: 

and 

(a) 

Thus 

(6 - 2^/5»2 

{ß є R1} E ({[дß(Yг,Y2,p)/дp]6p\p}) = 0 

cov{ß(Yx,Y2,p),[дß(YuY2,p)/дp]6p\p) = 0. 

Var t+fyь = Var{ß\p] + Var 
дß 
дP 

бp\P 

-, K 1 - P2) + _80(Spf 
6 - 2x/5> (6 - 2sДp)3' 
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From this we can determine the ratio of the standard deviations of the correction 
term and the D-LBLUE: 

F(p,6p) = 100% 
Var{[dl3(Y1,Y2,p)/dp)6p\p} 

VarWYuY^pM 

4 x 100% 

-2yДp)y/\-p^ 
6p, 

cf. also Fig. 2 for 6p = 0.1 

(2.5) 

Fig. 2 
The dependence of the ratio of the standard deviations of the correction term 

(for 6p = 0.1) and the D-LBLUE on the correlation coefficient p 

If the value F(p,6p) is not too large, e.g., F(p,6p) < e x 100%, where e is 
a sufficiently small real number, then the uncertainty in D, given by the value 
\6p\, can be tolerated. A criterion for an approximation of variance components 
based on this idea is derived in the following. 

3 Regular linear model with variance compo­
nents 

In this section the regular linear model from Definition 2.1 is considered and 
(3(YJ) is given by (2.1). 

Lemma 3.1 Let L'^ti) = f'T*(d)J E Rk. Then 

where e« 6 Rk, and 

( e .) . = ( i tf * = i> 
1 ljJ \ 0 otherwise, 
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Further 

(i) V{/i € RkMi = 1, . . . , *}V{j = 1,...,P}E {[dfaY, « ? ) / ^ ; p } = 0 

and 

(ii) V{i = 1,..., fc}V{j = 1,... ,p} cm {0(Y, r?), flft(Y, tyM,]]*} = 0. 

Proof The first part of the statement is based on the relationships 

dx-^yddj = - E - 1 ^ ) ^ ^ - 1 ^ ) 

and 
8C~l(d)/ddj =T*(d)Vj[T*(ti)]' 

(they are a consequence of the obvious relationship (d/dt)[A(t)A~ x(t)] = 
(dA(t)/dt)A-1 + AdA~l(t)/dt = 0). The statement (i) is now obvious and 
(ii) is implied by the relationship 

cov\J3(Y,d),Y -Xp(Y,d)\d) = 0. D 

Corollary 3.2 Let f € Rk. Then 

df'0(Y,4)/W~(O,Wf(0)), (3.1) 

where 

mm \ 
Wj(ů) = 

' Ľf(ů)Vp ) 
[Mx^)MxY(V^Lf(xÍ),..., VpLf(ů)), (3.2) 

Mx — I -X(X,X)~1Xf and [Mx^(^)Mx]+ is the Moore-Penrose generalized 
inverse of the matrix Mx^(^)Mx (in detail cf [5]). 

Proof The validity of the relationship E Udf'j3(Y,d)ldd)\d\ = 0 is a direct 
consequence of Lemma 3.L (i). As far as the matrix Wj(d) is concerned, the 
relationships 

Var[Y-X0(Y,d)\d] = E(tf) - X[X'jr\ti)X)-lX'> 
E-1(^)Var[Y--X/J(y,i?)|^S-1(^) = [M xE(t/)Mx]+. 

r)~(n,K) =$> Trf~(Tfi,TKTf) 

must be taken into account with respect to the expressions 

df'0(Y,d)/ddi = -Lf(hVi£-1(0W-X0(Y,d)i, i = l,...,p. D 

Lemma 3.3 The correction term [df'0(Y, i?)/t9i?'].5t? is equal to zero ifdd = kd, 
k > 0. 
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Proof The statement is a consequence of the relationships 

[MxX(0)Mx]
+(ViLf(d),..., VpLs(d))d = [MxX(#)Mx]+X(#)Lf(d) = 

= {I - E - ^ ^ X t X ' E - ^ ^ X j - ^ ' j E - ^ ^ X f X ' E - ^ ^ X ] - 1 / = 0. D 

Lemma 3.4 Let M(A) denote the column space of the matrix A. Let ?; ~ 
0.,E). Then 

(i) P{»7-/ .€ .M(S)} = 1. 

(ii) If M is any subspace with the property P{rj — \x G JV} = 1, then JV1(E) C 
Jv. 

Proof (i) As E is p.s.d., there exists a matrix J with full rank in columns 
such that E = JJ'. Let K be a matrix such that K"'J = I and £ = K'(r) - p). 
Then E(rj - p - J£) = 0 and Var(rj - p - J£) = 0, which is equivalent to 
P{rj — p = J£} = 1. Now it is sufficient to realize that /W(E) = M(J). 

(ii) Let JVf(E) = JV 0 M , where JVX 1JV and M # {0}. Let P € M,P # 0. 
Then P{n - p 1 JVi} = 1 => P{p'(l - p) = 0} = I. However Var[p'(7? -
p)] = p'Ep > 0, since p e -M(E). Thus P{p'(r) - p) # 0} > 0 and this is in 
contradiction with P{rj — p e JV} = 1. Now it is clear how to finish the proof. 

D 

Corollary 3.5 With respect to Lemma 3.3 

p{[dfP(Y,d)/dd) _L d\d} = 1 

and with respect to Lemma 3.4 (%) 

p{[dfp(Y,d)/dd) e M {Var{[df'P(Y^/dd]\d}}} = 1. 

Thus with respect to Lemma 3.4 (ii) 

dd' 
M (Var [[df'p(Y, t?)/W]|t?}) C M (I - ^ 

(It is to be remarked that I — ddf/d'd is the Euclidean projection matrix in Rp 

on the Euclidean orthogonal complement of the subspace generated by the vector 

*-) 

Let (cf. (3.2)) 

Wf(-d) = Y,X^fi 
• =1 

be the spectral decomposition of the matrix Wf(d) and let Ax > A2 > . . . > 
Ar > 0, where r is the rank of the covariance matrix Wf ($) and f-fj = 6i,j 
(Kronecker delta). Obviously f\ _L d. 
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Theorem 3.6 Let ef > 0 be a given real number and let 

cf,crit. = tj s/f'C-i(d)f/\x- (3.3) 

Then 

I M K ^ . j H t ^ f f l o , . ,3.4) 
" " J' V Var[f'(3(Y,d)\d] } ' 

Proof The random variable [df J3(Y, •d)/d'd']6'd attains its greatest variance in 
the direction given by the vector f\. Thus (cf. Corollary 3.2) 

Var{[df'p(Y,d)/dd]cfx\ti} = c2Xx 

= e)Var[f'0(Y,-d)\d] 

= e)f'C-l(d)f 

if and only if c = Cf)Crit.-
Now let the inequality on the r.h.s of (3.4) be satisfied; i.e., 6d = c#, 0 < c < 

cf crit j g'g = 1. From the properties of the spectral decomposition of the matrix 
Ws(d) obviously cVW)(tf)* < 4 c w t . / i W ) / i - 4 « * *i = e)f'C~\d)f. 

D 

R e m a r k 3.7 The criterion given by (3.3) and (3.4) is not only. Another ap­
proach is mentioned in [3]. Nevertheless (3.3) and (3.4) seem to be very simple 
and suitable for applications. 

The statistical behaviour of the correction vector [d/3(Y, d)/ddf]8d is charac­
terized by the following corollary. 

Corollary 3.8 

(•) V{/5 G Rk}E{[dp{Y, ti)/dtf]6d\P} = 0, 

(it) Var{[df3(Y,d)/d&]6d\d} = -

(iiï) V{fЄRk,gЄRk}cov 
df'${Y,ů) W ( Y ^ ) i 

= .tJ(f>)Vť[iVxE(^AřxJ* *5M*fc M = L- • • ,P-
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Theorem 3.9 Let 

*/(*) = 
N 

f'Var 
дЩ&Ш\k* 

Then (j)(.) is a constant function. 

f/f'Var0(Y,H)\M}f, fc€(0,oo). 

Proof It is sufficient to take into account the following relationships £(k?/) = 
JbE(tf), [ M X E ( W ) M X ] + = fc"1[MxE(i?)Mx]+, Var(L'Y|fci/) = JbVar(L'Yl0) 
and Corollary 3.8 (ii). D 

4 Repl icated model 

If the observation vector Y from the model given in Definition 2.1 is r-times 
replicated, we get a model described in the following definition. 

Definition 4.1 The model 

p 

[Y,(i®K)/?,I0^i7,-K-], PeRk, $elcRp, (4.1) 
2 = 1 

where 1 = ( 1 , . . . , 1)' £ Rr, I is the r x r identity matrix, Y = ( Y / , . . . , Yr')' 
and Y i , . . . ,Y r are identically and independently distributed, is called r-times 
replicated model with variance components. 

Lemma 4.2 In the model from Definition l^.l the d-LBLUE of (3 and Us co-
variance matrix are 

r 

(i) p(Y,tf) = T*($)Y, where Y = (l/r)J2Yi 
1=1 

and 

(ii) Var0(Y, #)\4\ = ( l / r )C~ 1 (^ ) . 

Proof is straightforward and therefore is omitted. 

Lemma 4.3 In the model from Definition 4-1 

дf'ß(Y,V)/дů~(OíjWf(ů)) (4.2) 

where Wf(d) is given by (3.2). 

Proof is obvious. 
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Corollary 4.4 If Cf cru is given by (3.3), then in the model from Definition 
4.1 the implication 

\m\i < C/,CH, -> y — V a r [ ^ t e t f ) W — <£/ 

holds /rue; here £/ is Me same as in Theorem 3.6. 

Remark 4.5 The value CfyCra. from Theorem 3.6 is the same as for the model 
from Definition 4.1. Nevertheless in many cases some upper bound for the 
quantity 

Var[f0(Z,#)\0) + Var{dfP(YJ)/d^]S^} 

is required. 

Since the value of this quantity is r-times smaller after r replications in 
comparison with the analogous value for r = 1, the value | |M||/ can be greater 
for r > 1 than ||£t?||j for r = 1. In another words Sf can be greater and 
consequently also Cf)Crit. can be greater. In practice this fact has to be kept in 
mind. 

5 Multivariate model 

In the following the notation vec(A) means the vector that arises by arranging 
columns of the matrix A one below the other. 

Definition 5.1 The multivariate growth curve model with variance compo­
nents is 

p 

(YtXBZ^diViQW), vec(B)£Rkr
y d = (du . . . ,i?p)' G ± C JF, 

1 = 1 

where Y_ is n x s random matrix with the mean value E(Y_\B) = XBZ and 
the covariance matrix Var[vec(Y_)\'d] = J2i=i ^ * ^ ® W- X is a given n x k 
matrix, B is a k x r matrix of unknown parameters, Z is a given r x s matrix, 
the s x s matrices Vi,..., Vp are known and also n x n matrix W, which is 
p.d. is given. The model is regular, if r(Xn)k) = k < n, r(ZV}S) = r < s and 
H g l => E(tf) = Ef=i ^ is P.d. 

Remark 5.2 If Z = I, then the model from Definition 5.1 is called the multi­
variate model; in practice usually W = I. 

Lemma 5.3 In the model from Definition S.J 

(i) the d-LBLUEofB is 

B(Y,0) = (X,W-lX)-1X,W-1YTl-
1(d)Z,[Z^l(d)Z'Y\ 
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(ii) the covariance matrix of vec[B(Y_,d)] is 

Var{vec[B(Y_,d)]\d} = [ZY.-l{d)Z']-1 ® (X'W^X)-1. 

Proof If the relationship 

vec(Am>nXn,pBp>r) = (B' ® A)vec(X) 

is taken into account, then 

vec(Y) ~ [(Z' ® X)vec(B), E(tf) ® W]. 

With respect to the last relationship and Lemma 2.2, the statements (i) and (ii) 
are obvious. Q 

Lemma 5.4 Let Y_ be the random matrix from Definition 5.1. Let A, B, C, D 
be matrices of the types m x n, s x m, t x n, s x t, respectively. Then 

cov[Tr(AY_B),Tr(CYD)\d] = Tr[AWC' D'T^B]. 

Proof Obviously 

Tr(AYB) = [vec(A')]'(B'®I)vec(Y), 

Tr(CYD) = [vec(C)]'(D'®I)vec(Y_) 

and 

cov[Tr(AYB),Tr(CYD)\tf] = [vec(A')]'(B' ® J)[£(tf) <g> W](D ® I)vec(C) 

= [vec(A')]'{[B'Z(d)D] ® W}vec(C) 

= [vec(A')]vec[WC'D'T(d)B] 

= Tr[AWC'D"£,(d)B]. D 

Lemma 5.5 Lei P be anrxk matrix. Then, in the model from Definition 5.1, 

(i) dTr[PB(Y, d)]/ddi = -Tr{P(X'W-1X)-1X'W-1Y[Mz'B(^)Mz']+Vi 

x Y.-1(d)z'[zi:-1(d)z']-1}, i=i,... ,P, 

(ii) E{dTr[PB(Y_, i?)]/3^|/?} = 0, i = 1,... ,p, 

(Hi) {Var{dTr[PB(Y_,d)]/dd\d}}.. = {WP(^}itj 

= cov{dTr[PB(Y, tf )]/dtf., dTr[PB(Y, d)]/ddj |t?} 

= Tr{ViY,-1(d)Z'[ZY.-1(ti)Z,]-1P(X'W-1X)-1P'[Z?.-1(d)Z']-1 

x ZX-^dWMz.ZWMz']*}, i,j = l,...,p, 

(iv) Var{Tr[PB(Y,0)]\0} = Tr{P(X'W-1X)-1P'[ZY.-1(d)Z']-1}. 
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Proof Taking into account Lemma 5.4, the multivariate model written in the 
form 

p 

[vec(Y)t (Z' <g) X)vec(B)t ] T tf.-Vi ® VV], 

the relationships 

dE-l(#)/d#i = - E " 1 ^ ) ^ - " " 1 ^ ) , 

atzE-^tfjz'j/s^ = [zTE-1(^)^/]"1^s-1(^)v;•E-1(^)^[^E-1(^)z,]-1 

and the rules 

uec(AHC) = ( C ® i4)vcc(i4) 

(^ec^OyC-B ® C)^ec(J9) = Tr(ACDB')t 

we can use the procedure given in Section 3. Then, with respect to the given 
rules, the results can be written in the form given in (i), (ii), (iii) and (iv). D 

Theorem 5.6 Let 

b 

Var{8Tr[PB(Yt tf)]/M|0} = J " hfifi (5.1) 
8 = 1 

be the spectral decomposition of the covariance matrix and Ai > A2 > . . . > 
A& > 0. Let ep > 0 be a given number. 

If 
\Tr{P(X'W-lX)-lP'[ZTl-

lZ']-1} 
cp,crit. = Sp\ T ; , 

then for any 6d such that \\6d\\i < cpyCrit.t 

Var ({dTr[PB(Yt #)] /00 '}M|#) 

\ | ~ Var{Tr[FH(y,^)]|^} €P' 

Proof It is a direct consequence of Theorem 3.6, the statements (iii) and (iv) 
from Lemma 5.5 and Lemma 3.3 valid also for the model from Definition 5.1 in 
the form 

{dTr[PB(Yt d)]/d<d'}kd = 0, k > 0. • 

Remark 5.7 The expressions used in Theorem 5.6, e.g., 

Var ({dTr[PB(Yt tf)l/*9^}M|tf) 

(cf. Lemma 5.5 (iii)) seem to be tremendeous. However it is necessary to re­
mind that all of them must be calculated in order to obtain the estimator and 
its covariance matrix from Lemma 5.3. (i) and (ii); thus no new calculation, 
exept the spectral decomposition (5.1) (usually a matrix with a small size), is 
necessary. 
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Remark 5.8 In many cases Z = I and W = I. Under these conditions 
H(Y) = (X'X)~1XfY_ (cf. Lemma 5.3. (i)) and thus no a priori information 
on $ is necessary (the model is non-sensitive) for calculating it. This estimator 
is uniformly (with respect to $) best. However the covariance matrix of B(Y_) 
is 

Var{vec[B(T)]\d} = £(tf) ® (X'X)~l 

and now we have to know the actual value $* of $, or, at least, to know some 
estimator $(Y_) of d. Some investigation of this problem is given in [7]. 

6 Model with constraints 

Definition 6.1 Let in the regular model from Definition 2A 

(3eV = {u:u£R\ b + Bu = 0}, 

instead of /? G Rk. Here 6 G M(B) C Rq, r(Bqjk) = q < k. Such a model is a 
regular model with constraints. 

Lemma 6.2 The d-LBLUE of j3 in the model from Definition 6.1 is 

kY,4) = P$£{B)fi(Y,4) - C~l(d)B'[BC-l(d)B']-lb, 

where 

PCK%) = I - C-\d)B'[BC-\ti)B']-lB 

is a projection matrix on Ker(B) = {u : Bu = 0} in the k-dimensional lin­

ear space with the inner product < u, v >c($)= u'C^v, u,v G Rk, C(d) = 

X'Y>-l(d)X and J3(Y,d) = C-l(d)XtT,~l(d)Y is the d-LBLUE of (3 nonre-

specting the constraints b -f B/3 = 0. The covariance matrix of the estimator 

HYJ)is 

Var0(Y,t?)|i?] = C" V ) - C-1(d)B'[BC-l(d)B']-lBC-1(d). 

Proof Cf. [6], p. 189. • 

Lemma 6 .3 In the model from Definition 6.1 

(i) dfr(Y,*)ld*i = -P%%)C-\*)X,'Z-1{*)V&-\*W-xh<y,*)l 

(H) E[dkY,ti)/ddi\j3] = 0, i=l,...,p, 

(Hi) {var{[df'kYJ)/dd]\d}} = {Ws(d)}id 

= /'P^lsf-H^X'^-Hm {[MxE(t))Mx]
+ + T,-x(-d)XC-x('d)B' 

x [BC-\#)BTlBC-lif>X"Er\<d)} VjZ-l(d)XC-l(0) {P%S%))'/-

ІJ = l ,...,p, 
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(iv) cw[dfJ3(Y,d)/dti,J3(Y,d)\ti] = 0. 

Proof It can be obtained in the way given in the proof of Lemma 3.1. 

Corollary 6.4 If Sf > 0 is a given number and 

v cf,crit. = ef\l;f'Var,\p(Y,-d)\d\f/\u 

where \\ is the maximum eigenvalue of the matrix Wf(d) from Lemma 6.3 (Hi), 
then for any 8d such that ||<T$||j < Cf>crit, 

V ^ { [ < 9 / ^ ( ^ < ef. 

7 Universal mixed linear model 
Definition 7.1 The model 

p 

(Y,.K/?,£t?t-K), fi£R\ tielcRP, 
f = l 

is a universal mixed linear model if at least one of the conditions 

r(Xn)k) = k<n, V{tfe*/jE(tf) is p.d. 

is not satisfied; however here Vi is p.s.d. and d{ > 0, i = I , . . . ,p. 

Remark 7.2 In the universal model from Definition 7.1 a linear function / ' /J, 
/? G Rk, is unbiasedly estimable iff / £ M(X'). Thus the class of all unbiasedly 
estimable functions can be characterized by the vector K/5, (3 G Rk. 

In the following (^Omfsoiol denotes the minimum E($)-seminorm general­
ized inverse of the matrix X' with the properties 

V{j/ G M(X')Mxy : X'xy = y}X'(X')m[smy = y 

and 
y'W)m[sm]'^)(X')m[smy < x'yZ(d)xy 

(cf. [5]). 

Lemma 7.3 The d—LBLUE of X/3 in the model from Definition 7.1 is 

X0(YJ) = X[(X')m[sm}'Y 

and its covariance matrix is 

Var \x0(Y,d)\d] = X[(X')m[sm}'Em(X')m[smX'. 

Proof Cf. [5]. D 
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Lemma 7.4 A necessary and sufficient condition for the equation AXB -= C 
to have a solution is that 

AA-CB~B = C, 

in which case the general solution is 

X = A'CB- +Z- A~AZBB~, 

where Z is an arbitrary matrix. 

P r o o f Cf. [5], Theorem 2.3.2. • 

Lemma 7.5 Let A be any matrix depending on i? E $ . Let 

M (дЩҲ 
V дůi ) 

C M(A'(Ů)) and M f - ^ - ) C M(A(ů)), i = l,...,p. 

(7.1) 
Then 

^ ^ = -A~W^-A~ W + Z~ A-(4)A(4)ZA(d)A-(d), i = l,...,p, 

(7-2) 
where A (d) is an arbitrary but fixed version of the generalized inverse of the 
matrix A($) (i.e., A($)A"($)A($) = A(it))) and Z is any matrix of the same 
size as A"^). 

Proof Obviously A(ti)A-(ti)A(ti) = A(d)) for any version of A~(d). Thus 

±[A(ti)A-(ti)A(#)} = ̂ , s = l f . . . , p . (7.3) 

The l.h.s. of (7.3) can be rewritten as 

~ A ( i ? ) ) A-(4)A(4) + A(t) ( g ^ ~ w ) A(*) + A(*)A-(d)±A(*), 

i= l , . . . , p . 

If M(dA(d)/ddi) C M(A(ti)), then it can be seen easily that 

лw)A~Wҗm = җm-
Analogously 

M ( ШX 
V дůi ) 

cад^fflл^-f. 
If (7.1) is satisfied, (7.3) can be rewritten as 

-w*8W-*gt. «=. , 
With respect to Lemma 7.3 the general solution of the last equation is given by 
(7.2). D 
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Lemma 7.6 In the model from Definition 7.1 

dX0<y,4)/Mi = -X[(XX[Em}'ViS-(ti)[Y-X0(Y,0)}, 

where S(ti) = ?,($) +XX'. 

Proof As the expression X^X'^^^'Y is invariant with respect to the 

choice of the generalized inverse (•^Omrswp w e c h° o s e 

[(xTmm^ = [x's-(d)x]-x's-(d) 

(in more detail cf. [5]). 

As dS(d)/ddi = V and M(Vi) C M[S(ti)], we have 

dS-(ti)/dtii = -S-(ti)ViS-(ti) + ZS- S-(0)S(ti)ZsS(d)S-(0) 

and 
dX'S-(d)X/ddi = -X'S-(d)ViS-(d)X, 

because of X'S-(d)S(d) = X' and S(d)S~(d)X = X. 
Further 

M[dX'S-(d)X/ddi] = M[X'S-($)ViS-(d)X] 

C M[X'S-(tf)S(ti)S-(0)X] = M[X'S-(ti)X] 

and thus 

d{[x's-(i))x}-}/ddi = [x's-^xrx's-^vs-i^x^'s-^x]-

+ Z- [X'S~(d)X]-X'S~ (d)XZX'S~ (d)X[X'S~ (D)X]-. 

It implies 

d{x[x's-(ti)x}-x'}/dtii = 

= X[X'S-(-d)X]-X'S-(d)ViS-(d)X[X'S-('d)X}-X' 

since 

XZX' - X[X'S-(d)X]-X'S-(d)XZX'S-(d)X[X'S-(ti)X}-X' = 0. 

Finally 

dXS~(d)Y/ddi = 
= -X'S-(ti)ViS-(d)Y + X[ZS - S-(d)S(d)ZsS(d)S-(-d)]Y. 

With respect to Lemma 3.4 

P{Y € M[S(1>WJ} = 1 



Criterion for an Approximation 107 

and thus 

XZSY - XS-(tf)S(tf)ZsS(ti)S-($)Y = XZSY - XZSY = 0 

with probability one. 
Now we can write 

9X[(X%[sm]'Y/d^i = dX[X'S-(4)X}-X'S-(*)Y/Mi 

= X[X'S-(0)X\-X'S-(0)ViS-(d)X[X'S-(ti)Xrx,S-(0)Y 

- X[X'S-(0)X\-X'S-(4)ViS-(<l)Y 

= -X[(X')^m]'ViS-(i9)[Y - X~3(Y,d)], D 

Lemma 7.7 Let the model from Definition 1.1 be under consideration and let 
feM(X'). Then 

<«') v{/5 e Rk}E{df[(x%[sm]'Y/dm = 0, 

(«) v{tf G i?}cot,{a/'[(x')-[s(tJ)]]'y/^,x[(A");[E(t?)]]'y|^} = o, 

(Hi) {Ws(d)}ij = {Varidnm^tfY/tomhj 

= n(x')-mmd)]]vi[Mxi:(d)Mx]^vj(x')-mmd)]f. 

Proof The statements (i), (ii) and (iii) are consequences of Lemma 7.6. • 

Theorem 7.8 Let in the model from Definition 7.1 f € M(Xr). Let Wj(d) = 
Ylizzi^fifi be the spectral decomposition ofWj(d) (cf. Lemma 7.7 (iii)) and 
^i > ^2 > • • • > ^b > 0- ^e^ 6j > 0 be a given real number. 

if 

cj.crit. = £ / V
/ / ' K A " ) - [ s ( , ) ] ] ' S ( ^ ) ( X ' ) - [ s ( , ) ] / / A 1 , 

tfAen 

11^11/ < cfiCrit. => 

=> V
/ K a r ( { a / ' [ ( X ' ) - [ s ( , ) ] ] ' y / ^ ' } ^ ) / l / a r { / ' [ ( X ' ) - [ s ( , ) ] ] ' y | ^ } < ef. 

Proof The idea of the proof is the same as that of Theorem 3.6, however it is 
necessary to use the lemmas from this section. • 
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