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Abstract

In this paper necessary and sufficient conditions are given under which
an algebra with one n-ary operation (n > 2) is isotopic to algebra with
unit. The main theorem gives a generalization of well known Albert’s
theorem.
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The concept of homotopy in universal algebra was introduced and studied
by Petrescu in [1]. The aim of this paper is to give necessary and sufficient
conditions under which an algebra with one n-ary operation (n > 2) is isotopic
to algebra with unit.

For an algebra &= (A; F) let us denote the n-ary operation f € F' by the
symbol fgn).

Definition 1 Let &= (A; I') be an algebra with the underlying set A and the
set of fundamental operations F. Let & = (B, F') be an algebra of the same
type and n be the greatest arity of operations of F'. If there exist an (n+1)-tuple
of mappings ¢, ¢1,...,¢, : A — B satisfying the following condition :

Vk<n V) € FVay,ay,.. zr€A:
¢(gif)(r1,--.,xk)) = ggc)(¢l(1'1)>~-~y¢k(xk)):

then the (n+ 1)-tuple (¢, ¢1,...,¢n) is called a homotopy from the algebra &/
to the algebra 9. If, moreover, every of mappings ¢, ¢1,...,¢, is a bijection,
then the (n + 1)-tuple (¢, ¢1,...,én) is called an isotopy from algebra 2 to the
algebra A.

If there exists an isotopy from algebra & to algebra %, then we say that.
algebras & and & are isotopic.
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Definition 2 An algebra & = (A; F) is called an algebra with unit iff there
exists ¢ € A such that the following condition holds:

VneN(n>2), ¥/ eFvreA:

ffl")(r,e,e,.‘.,e): g")(e,;c,e,...,e): L= gn)(e,e,...,e,x):x.

Remark 1 If an algebra &/ is a groupoid, then & is an algebra with a unit
iff &/is a groupoid with neutral element. A unit element of an algebra &/ is
determined uniquely (if it exists).

Theorem Let &/ = (A; f) be an algebra with one n-ary operation f (n > 2).
Then the following conditions are equivalent:

(1) there exists an isotopy from the algebra & to some algebra B with unit

(2) there exist elements x3, x5, ..., 2} of A such that for alli € {1,...,n} the
mappings © — f(z3,...,zj_j,z,z}, ..., x}) are bijective.

Proof (1) = (2) Let (¢,41,...,¢,) be an isotopy from algebra & to algebra
% = (B, f) and e € B be the unit of #. Let us consider the elements z} € A
with z¥ = ¢71(e) for i € {1,2,...,n}. It is easy to verify that the elements z}
are desired elements in the condition (2) of the Theorem.

(2) = (1) Let ¢ : A — A be an arbitrary bijection. Let us define for each
i€ {1,2,...,n} mappings ¢; : A — A as follows:

©) ¢i(z) = (f(z], 25, 2l 1, 8,84, 27)).

We can define an n-ary operation g on A by the rule:

(4) 9(¢1(z1), -+, ¢n(2n)) = $(f(21, ., 2n)).

This operation is well defined since all mappings ¢; are bijections.
It is clear from (3) that for each 7,5 € {1,2,...,n} holds

(5) Bila}) = 65(z5) = e.

Now, let # = (A;g). The condition (4) implies that the (n + 1)-tuple
(@, ¢1,...,¢n) is an isotopy from the algebra & into the algebra #. According
to the conditions (2), (4) and (5) , it is clear that the element e is the unit in
the algebra #. ; _ m]

Remark 2 It is evident, that the surjectivity of mappings in the condition (2)

is a consequence of injectivity whenever the underlying set of the algebra &/is
finite.
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Therefore we obtain :

Corollary 1 A groupoid ¥ is isotopic to a groupord with unit iff there are
a,b € G such that the mappings Lo, Ry are bijections, where

Lq(z) = az, Ro(z) = zb
forallz € G.

It is known that any element in a finite quasigroup is as right as left
cancellable. Moreover, the condition (ii) of (2) holds also in the case of an
infinite quasigroup because a quasigroup is a unique-divisible groupoid. There-
fore it holds:

Corollary 2 For each quasigroup there exist an isotopy into a loop.

Remark 3 Corollary 2 is well known Albert’s theorem for quasigroups and
loops, see [2].

It is clear, that an arbitrary element of the set A can be taken as the unit
of the algebra & since the mapping ¢ can be defined arbitrarily in the proof of
the Theorem.

Example 1 Let 9= (G;0) be a groupoid, where G = {a, b, c} and the opera-
tion o 1s given by the following table:

Let ¢ : G — G be a bijection, ¢(a) = ¢, ¢(b) = a, #(c) = b. The element b or ¢
is left or right—cancellable element. According to the Theorem, the groupoid ¢
is isotopic to a groupoid with unit.

Let’s take 27 = b, a5 = ¢, ¢1(z) = ¢(z o ¢), ¢a(x) = ¢(box). Then
#1(b) = ¢2(c) = ¢(boc) = ¢(a) = ¢, hence c is the unit of #. The operation on
the groupoid 4 = (A; 0) is given by the following table:
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