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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM 

1994 Mathemat ica XXXШ Vol. 114 

POLYNOMIAL M A P P I N G S O F POLYNOMIAL 
S T R U C T U R E S W I T H S I M P L E R O O T S 

J I R I V A N Z U R A , A L E N A V A N Z U R O V A 

(Received J a n u a r y 17, 1994) 

A b s t r a c t 

Any polynomial structure with simple roots of the characteristic poly­

nomial induces a decomposition of the tangent bundle, an almost product 

structure on its complexification, and consequently, the decomposition of 

the bundle of complex differential p-forms. We will characterize integrable 

polynomial structures, and will show that polynomial mappings preserve 

the above decompositions-

K e y w o r d s : Manifold, polynomia l s t ructure, differential form. 

M S C l a s s i f i c a t i o n : 53C05 

Let ( M , f ) , ( M , / ) be smooth manifolds with polynomial s t ructures /, and 

/ respectively such t h a t b o t h / and / have the same characterist ic polynomial , 

p(£), wi th only simple roots , [8], [10]. 

D e f i n i t i o n 1 A differentiable mapp ing <p : M —> M will be called polynomial 

if its tangent mapp ing (differential) T(p commutes with polynomial s t ruc tures 

on manifolds, 

Tip o fx = f^x) o T<p. 

Denote by T£(M) the complexification of the tangent bundle TM, by f£ the 

complexification of the (1 , l ) - tensor field / . The tangent mapp ing T(p = <p* can 

be extended into a complex linear mapp ing of complex tangent bundles which 

will be denoted by the same symbol , 

Tip:T£M -*T£(M). 

T h e cotangent mapp ing T*<p = <p*, 

(<p*)(Z1 ,...,Zp) = w(<p*Zu..., <p*Zp) UJ G A?(M) 

can be extended into a mapp ing of complex differential forms in a similar way. 
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(2) 

1 The bundle of complex differentiable p-forms 
on a manifold with a polynomial s tructure 

Let (M, / ) be a smooth manifold endowed with a polynomial structure / having 
only simple roots of the characteristic polynomial I>(£). Over JR, the decompo­
sition of p is 

r s 

p(o = n ^ - b i ) n ^ 2 + 2 c ^ + d j ) > bi>ci>dJ e » , 6,- #&* for i#*, 
i = l ;'=1 

(c,- - c,)2 + (d, - d,)2 -£ 0 for j ± I, Cj2-dj<0, (1) 

and the decomposition of quadratic factors over C is 

e+2cj^ + dj = ^-ej)^-ej) 
with ej = — Cj + i\/dj — c2, e, = — Cj — i\/dj — c2. 

The kernels 

ker(/ - bi I) = D'it ker(/2 + 2cjf + d? I) = D? 

are distributions on M of constant dimensions, [8]. At any point x G M, the 
subspaces are invariant under / : 

/.(£>{). C (£><)*> fx(D'/)xc(D'/)x. 

Our distributions form an almost product structure on M associated with / , 

(o; ,...,£>;, oi',...,on-

The bundle T M is a Whitney sum of the above r + s (real) distributions: 

r 5 

TM = 0 I 9 ; - 0 0 D ; / . 
i=i j=i 

The corresponding projectors P/, P-' can be written in the form 

P! = q'i(f), If = <."(/), i=l,---,r, j = i,...,s 

where q'{, q'- are uniquely determined polynomials of degrees less then degp, [8], 
and satisfy 

imP/ = D{, imPj' = D'J 

£ P / + £ / f = /, P!2 = P!, pf = P'j, 
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while the composition of any other couple of them is equal to zero. Let us 
consider complexifications D[ and 

Df/C = Ej®Ej where Ej = ker(fc - ej I), E] = ker(fc - e;- I). 

Then the decomposition of the complex tangent bundle is 

T€(M) = DfC 0 . . . 0 D,C 0 Ex 0 . . . 0 Es 0 FT 0 . . . 9 El. 

For simplicity, if 1 < i < r, 1 < j < s let us denote 

D; = D i , -Oj+r — ^j> Dj+r + s — -5"j-

Then 
(E>iC , . . . , D ; C , £ X , . . . , Es,El, ...,TS) = {DU..., Dr+2s) (3) 

is a complex almost-pro duct structure associated with / , [10]. 
Let us consider a complexification T*€(M) of the cotangent bundle (with 

the fibre (F*)c M = (T c)* M over a; G M), and denote by AP(M) the bundle 
of complex differentiable p-forms on M, with the fibre Ax M = (C£ M ) c where 
C£ M = T*M ® . . . eg) F*M (k-times) is the space of p-forms on T^M. For any 
x G M, let us introduce vector spaces of complex 1-forms on TXM by 

(CO, = {LU G F*C(M) K K ) = 0 for all X G (£>;)*, 1 < j < r + 2s, j / i}. 

For different indexis, i -^ j , the above vector subspaces have only zero vector in 
common. We will show that their direct sum is the space of all complex 1-forms 
at x G M, A1 = C\x 0 . . . 0 C^r+s)X) and therefore the bundle of 1-forms on M 
can be written as a Whitney sum 

A1 (M) = Ci(M) 0 . . . 0 Cr+2s(M). 

In fact, let us choose any frame adapted to the almost-product structure (3), 

(7W 7(1) 7(r+2s) 7(r+2s), 
v ^ l ' • ' • ) ^ * i > ' • * » Z 1 ' * * • ' Z f c r + 2 s 1' 

where z ^ j ) , . . . , zT .̂} form a basis of Djxj kj = dimDj. Let ( w ^ , . . • ̂ ^ l ? ) 

( j ) m . ,,ü')i to denote the dual adapted co-frame. Then (u)\J \ Djx,. . • , CJ-J,; | Djx) is dual 

the basis ( Z ^ , . . . , ^ ) , and w ^ G C , , . . . , wjp G Q for j = 1 , . . . , r + 2s. 
Now any 1-form u) can be expressed with respect to our adapted co-frame (in a 
unique way) in the form 

u> = LJ1 + . . . + ur+2s with <J = j S y w ^ . (4) 
i=i 

We obtain A1 = 0 Cjx which enables us to define projectors 

VJ'K^Cjx by VJU=J. 
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Proposition 1 Any projector Vj is of the form VJLO(X) = u)(PjX) for any 
complex vector field X on M where Pj is the projector onto Dj. 

Proo f For any X G T^(M), X = PXX + . . . + Pr+25K. Now . 

u)(X) = u(PxX) + . . . + cj(P r + 2 sK) for u) E Al(M), 

that is, any 1-form can be uniquely written as CJ = c j o P 1 + . . . + cjo Pr+2(S. But 
u) o Pj G Cj since u) o Pj = 0 on Dkx for k ^ j . Now u) o Pj = UJ follows by 
uniqueness of the decomposition (4). 

The bundle Ap(M) can be decomposed in a similar way: 

A"M = 0 C a , a=(au...,ar+2s) (5) 
a 

where any multiindex a is of the weight p, \a\ = ]T\. ay = p, and 

c(fll,...lflP+a.) = Ci A . . . A Ci A . . . A Cr+25 A . . . A Cr+2s . (6) 
N V ' S v • 

ai-times a r + 2 s-t imes 

Complex vectors belonging to the distributions Dj, j = 1 , . . . , r + 2s will be 
called homogeneous vectors. Under an ordered p-tuple of homogeneous vectors 
of the type /3 = (&i,.. . ,k r + 2 5 ) will be understand a p-tuple Y\y... ,Yp of vectors 
such that ]T\. kj = p, and 

Yi,... ,Ykl E D\x, ... , Ykl+...+kr+2s_1 + i, . . . ,Ykl+...+kr+2s E D(r+2s)x- (7) 

The p-forms belonging to Ca can be characterized as follows: 
u) G Ca if and only if CJ(YI, .. ., Yp) = 0 for all p-tuples of homogeneous 

vectors of the type /3 for all /? -̂  a. 
Now let us construct projectors 

Va :AP -+Ca, 

where a is a multiindex of the weight p as in (5). Denote by P(i), • • ., P(p) an 
ordered p-tuple of projectors 

PI, . . . , Pi, . . . , Pr + 2s , • • • j Pr+2s • 
v ^ ' v v / 

ai-times a r + 2 s-times 

For any u) G Ap(M), we define 

v°u(x1,...,xpy=—r-±-—f £-KW*-).---.-P»(I>)(*P)) 
« l ! * • -ar+2s' *—£ 

where Ep denotes the symmetric permutation group. The verification is not 
difficult. 
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2 Characterization of integrable polynomial 

structures with simple roots 

An almost contact structure $ associated with / is a (1, l)-tensor field defined 

by 

Ф-.W f+CjI )p" 
з 

It satisfies the equation $ + $ = 0 on M, and defines an almost-complex 
5 S 

structure on 0 D'j since the restriction J = $ | 0 D " satisfies J2 = —I. 
; = l j=i 

Obviously, / = £ , . ^ PI + E i y/d~^*P!', [8]. 

Definition 2 We say that a polynomial structure / (with simple roots only) is 
torsion-free if the following Nijenhuis brackets vanish for 1 < i, *fe < r, 1 < */, 
h < s: 

[p/, Pi] = [Pi p;f] = [p;f pfl = o, [*,«] = [p/',«] = o. 

By [8], / is torsion-free if nad only if there exists a torsion-free ^ symme t ­
ric) linear connection V such that / is covariantly constant with respect to it, 
V / = 0 . 

If there are local coordinates in the neighborhood of any point x in which 
the coordinate expression of the endomorphism fx : TXM —> TXM is 

/ hin. 0 \ 
1 0 C ' 

V o briK} 

C=\ , with K^ -2hL ^ - c 3 ^ 

where Ih denotes the unit (h, b)-matrix and 

K, o \ , 

i ^ ~ V ^ C32In'! ~c3Inl! 

then the structure / is torsion-free, and vice versa. 

Theorem 1 For any polynomial structure (M, / ) the following conditions are 
equivalent: 

(a) The associated complex almost-product structure (3) is integrable. 

(b) Ifuj £ Ct then duj e r 0 5 Ct A C\. 
7=1 r + 2 s 

(c) If to £ C a , cv = (a i , . . ., a r +25) ^Aen Jcj E ]̂ ) C^ where the multiindex 

(3 = (ai +*l,.".. ,«r+2» +^r + 25)-
 i = 1 

(d) The structure f is torsion-free. 
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Proof The equivalence of (a) and (d) was proved in [10]. Let us prove (a) <£> (b). 

If we consider the basis Z\3 ,. . . , Zk
) of Dj and LO\, ... ,iol

k. of d that are dual 

to each other, Lol
u(ZyJ)) = Sj • 6U) we can choose a basis of A2 = 0 C,- A Cj 

i,j=l,i<j 
of the form 

{wj. Awj |1 < i < j < r + 25,1 < u< * t - , l < v < % , u < v for » = j } . (8) 

In this basis, du) has a unique expression 

du = V a ^ u ^ u / ' ) 
(*,ijW,v) 

where the summation runs over all quadruples listed in (8). Now let LO £ C% for 
some index t. Let p,q £ { 1 , . . . , r •+• 2s}, p / r, g / r, and choose any couple of 
homogeneous vectors zT̂  £ Dp, Z^ £ D9 . Then 

dc..(zCp),z(«)) = a ^ ) . 

If we apply the formula 

2du(X,Y) = Xu(Y) -YLO(X) - LO([X,Y]) (9) 

to vectors X = zT̂  > V = Zv and use the integrability of Dp 0 D? we obtain 

duj(Z(
u

p\z{
v
q)) = 0. It follows 

i^t, j ^t ==> a ^ = 0 for all iz, v 

which proves the above implication. On the other hand let X, Y £ A 0 -£/ • 
We will show that [K, Y] £ A' 0 Dj. Let 2 be any index different from both 
i and j . For any 1-form LO £ Ct) LO(X) = CJ(Y) = 0. By the assumption (b), 
Ja;(K, Y) = 0. By (9) we obtain UJ([X, Y]) = 0. This implies [K, Y] £ A 0 £>j; 
it suffices to use the fact that 

Di = {Z eT£(M)\\it (tj-W)V u€Cu w(Z) = 0}. 

The implication (c) = > (b) is trivial. To prove (b) = > (c) it suffices to use 
the properties of the differential operator and the facts that the space Ca has 
a basis of the form 

[W (1) A ••• A W ( 1 ) A ' " A « ( r + a i ) . A " - A w ( r + 3 i ) j 
•>1 Jal Jl Jar + 2s 

with 1 < i i < • * • < ja\ < ki} 1 < i < r-\-2s} and LO £ C a has a decomposition 

E L ( i ) A A (r+2s) 

6 i{X ) , . . , i ( l t2 S ) C J (1> A - " A U ; -(r+2.)-
J l ' '->r + 2s J x •!r-f2s 
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3 Polynomial mappings 

Let ( M , / ) , ( M , / ) be polynomial structures with the same characteristic poly­
nomial p with simple roots, and with decompositions over complex numbers 

m 

KO = n^- a * 7 )» rn = r + 2s. 
t = l 

The induced decomposition of the complex tangent and cotangent bundles is 

m m 

TC(M) = 0 A , A = ker(/ - a,-/), T*C(M) = 0 C i , 
i = l j = l 

m m 

TC(M) = 0 A , A = ker(/ - aj), T*C(M) = 0 (5 , - . 
i-l i=l 

Recall that C% is constituted by all 1-forms that vanish on the distributions A 
for all t / i] similarly for C%. 

We will show that a polynomial mapping preserves the structures of mani­
folds endowed with polynomial structures in the following sense. 

T h e o r e m 2 Le^ <p : (M, / ) —-> ( M , / ) 6e a differentiable mapping. The follow­
ing conditions are equivalent: 

(a) If Z is a vector belonging to DiX} x G M then its image <p*Z E A ^ ) -

(b) I/cj £ Ciip(x) then <p*u) G CW-

(c) If to G t > ^ e n <p*uj £ Ca. 

(d) The mapping <p is polynomial. 

Proo f We will show (a) => (c), (a) <$=> (d). The implication (c) = > (b) is 
trivial, and (b) ==> (a) follows directly. 

Let (a) be satisfied, and w G C a , |a | = p. Let Z i , . . . , Zp be a p-tuple of ho­
mogeneous vectors on M of the type (ki, . . . , km). The p-tuple <p^Z\)... }<p*Zp 

on M is of the same type by (a). Now c<j(y?*zTi, . . . , <p*Zp) = 0 if and only if 
P = ( k i , . . . , k m ) / ( a i , . . . , a m ) = a. Equivalently, <p*u>(Zi,..., Zp) = 0 iff 
j3 7- a, that is, <p*u) £ Ca which proves (c). Therefore <p*Z G A -

Let (a) be satisfied and Z € A - Then ( / — a;I)z? = 0, that is / Z = o^Z. 
By linearity of the tangent map, 

<p*(fZ) = ai<p*Z. (10) 

By our assumption, <p*Z G Av(rc) Consequently, ( / — aJ)(<p*Z) = 0, that is 

f(<p*Z) = ai<p+Z. (11) 
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Comparing (10) and (11) we obtain the desired assertion (d). 
Let (d) be satisfied. The equality f<p* = <p*f is satisfied even for complex 

vectors. If Z E A then (/ — diI)Z — 0, and by linearity 

0 = <p*(fZ - ciiZ) = f<p*Z- di<p*Z = (f -aJ)<p*Z. 
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