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Abstract 

We consider the second order differential equation x" = f(t,x,x') 
with a Caratheodory nonlinearity / and nonlinear boundary conditions 
gi(x(a), x'(a)) = 0, g2(x(b),x'(b)) = 0. Using the topological degree 
method we prove the existence of solutions provided /, g\, g2 satisfy ap­
propriate sign conditions. 
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1 Introduction 
In the paper we study the nonlinear BVP 

x" = f(t,x,x') (1.1) 

9l(x(a), x'(a)) = 0, g2(x(b), x'(b)) = 0, (1.2) 

where J = [a,b] C l , / G Car(J x R2), gug2 £ C(R2). We show sufficient 
conditions for the existence of at least one solution of (1.1), (1.2). By a solution 
we mean a function u £ AC1 (J) (having an absolutely continuous first derivative 
on J) and satisfying conditions (1.2) and equation (1.1) for a.e. t £ J. 

Such questions were studied for example in [1], [2], [3]. But in [2] the appro­
priate linear part of (1.2) was required and in [3] the upper and lower solutions 
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method was used and the monotonicity of gi, g2 was supposed. Our approach is 
close to [1], where problem (1.1), (1.2) is studied for a continuous right hand side 
/ satisfying the Bernstein-Nagumo growth conditions and gi,g2 monotonous in 
the second variable. 

Here, / , gi,g2 satisfy only sign conditions and neither monotonicity of g\,g2, 
nor growth conditions for / are required. 

Our proofs are based on the following theorems: 

Con t inua t ion T h e o r e m [1, p. 40] Let X,Y be Banach spaces, L : domL C 
X —• Y a Fredholm map of index 0 and Q C X an open bounded set. Let 
N : X —* Y be L-compact on Q, Q : Y —* Y a continuous projector with 
KerQ = ImL and J : \mQ —-> Ker L an isomorphism. Suppose 

a) for each X G (0,1) every solution x of Lx — XNx is such that x (£ dQ; 
b) QNx 9- 0 for each x G Ker LC\dQ> and 
c) the Brouwer degree J[No, &> H Ker L, 0] / 0, where 

N0 = JQN : K e r L - » K e r L . 
Then the equation Lx = Nx has at least one solution in domF 0 £1. 

Genera l ized M e a n Value T h e o r e m [5, p. 178] Let D = [ai, 61] x [a2,b2] C l 2 , 
a; < b{ and A{ — {x G D : X{ = a{\, B{ = {x E D : X{ — b{}, i — 1,2, 
x — (x\,x2). Further let f : D —* M2, x —» (f\(x), f2(x)) be continuous with 
fi(x)fi(x') < 0 / o r ari2/ -c € -4j, x' G 15z-, i = 1, 2. Then 

d[ / , intD,0] = sign fx(x) • sign /2(ar) = ± 1 . 

2 The existence results for bounded 
nonlinearity 

First we will prove the existence of solutions to (1 A), (1.2) provided / is bounded 
by a Lebesgue integrable function cp. 

Theorem 2.1 Let r G (0,oo) and <p G L(J) be such that for a.e. t G J and 
each x G [—r, r] 

i7 i ( - r ,0) f f i ( r ,0)<0, (2.1) 

ff2(-r,0)ff2(r,0)<0, . (2.2) 

/ ( < , - r , 0 ) < 0 , / ( . , r , 0 ) > 0 , (2.3) 

\f(t,x,v)\<<p(t) for each y G M. (2.4) 

Then problem (1.1), (1-2) has a solution u with 

- r < u(t) < r for each t € J. (2.5) 
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To prove Theorem 1 we will study a system of auxiliary problems. Choose 
n G N and put 

f n ( t , x , y ) = < 

' /(t,r,0) foг x> r+l/n 
f(t, r, y) + [f(t, r, 0) - f(t, r,y)]n(x - r) ÍOľ r < X < r+ l/n 
f(t,x, y) for - r < x < r 
/(*, -r, y) - [/(/, - r , 0) - /(*, - r , y)]n(* + r) 

for —r — 1/n < x < ~r 
{ f(t,-r,0) for x<~r~ì/n, 

9in(x,y) 

gi(r,0) for x > r + \/n 
9i(r, y) + [9i(r, 0) - gi(r, y)]n(x - r) for r < x < r + \/n 
9i(x) y) for — r < x < r 
9i(~r, y) - [gi(-r, 0) - g{(~r, y)]n(x + r) 

for —r — \/n < x < ~r 
9i(—r,0) for x < — r — 1/n, 

i = 1,2. 
Now, suppose that the conditions of Theorem 2.1 are fulfilled and consider 

the parameter system of equations 

x" = \fn(t,x,xf), AG [0,1] 

with boundary conditions 

gln(x(a), x'(a)) = 0, g2n(^(o), x'(b)) = 0. 

(2.6A) 

(2.7) 

To apply the Continuation Theorem for problem (2.6A), (2.7), let us use the 
notation: 

X = Cl([a, b]), Y = L(a, b) x M2, domL = ACl([a, b]) C K, 

L:domL-+Y, x->(x",0,0), N : K -> F, 

^ -+ (/n(', -*(*)> »'(0)> tflnfcfa)) -P7(a)), ^2n(-C(6), X*(b))) . 

Problem (2.6A), (2.7) can be written in the form 

Lx = ANx. 

Lemma 2.2 F is a Fredholm map of index 0. 

Proof KerL = {x <E K : ^(r) = c ( r - a ) + d, c ,JEM}, ImF = L(a,b) x {(0,0)} 
is closed in Y, dim KerL = dimM2 = codimlmL = 2. D 
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Lemma 2.3 For any open bounded set Q, C X, N is L-compact on Q. 

Proof Consider the continuous projectors 

P : X -> X, x -> x'(a)(t - a) + x(a), Q:Y'->Yt (y, a, (3) -> (0, a, /?). 

Then the generalized inverse (to L) operator Kp : Im L —* Ker P D dom L has 
the form 

A ' p : ( y ,0 ,0 ) -> / / y(s) tfsdr. 
da da 

Thus 
QN : X -> Y, x — (0, a l n(x(a), x'(a)), g2n(x(6), x'(b))), 

KP(I - Q)N : X -> K, x -> / / / n ( s , x(s), x'(s)) JsdT. 
J a J a 

The relative compactness of QN(Q) and KP(I — Q)N(Q) can be shown similarly 
as e.g. in [6]. n 

Lemma 2.4 Let problem (2.6A),(2.7) have a solution u for some A G (0,1]. 
Then 

- r - 1/n < u(t) < r + 1/n, \u'(t)\<p for each t G J, (2.8) 

where 

p = 2(r + 2)/(6 - a) + / ^(i) eft. (2.9) 
Ja 

Proo f Suppose that max{u(t) :t e J} = «(*) > r + l / n - L e t * G (a, b). Then 
we can find S > 0 and t0 >i such that 

u'(fo) = 0, u/(t) < 0 and u(t) > r + 1/n 

for each t G (*o,*o + 6] C J. Thus f*°+6 u"(r) dr < 0. On the other hand 

pt0 + 6 pto+6 

/ u"(r)dT = X f(t,r,0)dt>0, 
Jto Jto 

a contradiction. Now, for i = a we have gm(u(a), u'(a)) = gi(r, 0) 7̂  0 and * = b 
implies g2n(u(b), u'(b)) = g2(r, 0) / 0. Similar arguments lead to a contradiction 
provided min{H.(£) : t G J} < —r — 1/n. 

So, we have proved - r - 1/n < u(t) < r + 1/n for each * G J. And therefore 
we can find x0 6 (a, b) such that |it'(^o)| < 2(r + l / n ) / ( b - a ) . Integrating (2.6A) 
from to to t we get |u'(t)| < p for each t £ J• a 

Lemma 2.5 For an?/ n G N problem (2.6i), (2.7) has at least one solution u 
satisfying (2.8). 
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Proof Let us put Q = {x G X : \x(t)\ < r + 2, \x'(t)\ < p for each t G J}. 
Then Lemma 2.4 implies that the condition a) of the Continuation Theorem is 
fulfilled. Let Q be the projection of the proof of Lemma 2.3. Then 

QNx = (0, gln(x(a)) x'(a)), g2n(x(b)) x'(b))) 

for x G X. Since Ker L = {x G X : x(t) = c(t - a) + d, c, J G M}3 Ker L n Q = 
{z G X : z(t) = c(t - a) + a1, \c(b - a) + d\ < r + 2, \d\ < r + 2}. Naturaly, the 
conditions |c(b — a) + d\ < r + 2, |d| < r + 2 and p > 2(r + 2)/(b - a) imply 
\x'(t)\ = |c| < p for each t E J. 

Let us suppose QNx = 0 for some x G Ker L n d£l. It is equivalent to 
gin(d, c) = 0 and a2n(c (b — a) + J, c) = 0 for one of four possibilities: 

a) J = r + 2, \c(b-a) + d\ < r + 2, 

b) d=-r-2, | c ( b - a ) + d| < r + 2, 

c) c ( b - a ) + d= r + 2, | J | < r + 2, 

d) c ( b - a ) + a ' = - r - 2 , |d| < r + 2. 

But in these cases we have by (2.1) and (2.2) 

a) gin(r + 2,c) = gi(r.O) / 0, 

b) gln(-r-2,c) = a i ( - r , 0 ) / 0 , 

c) g2n(r + 2, c) = g2(r, 0 ) ^ 0 , 

d) g2n(_r-2,c) = <7 2 ( - r ,0 )^0 . 

Thus QNx / 0 for each x G Ker L n dCl and the condition b) is fulfilled. 
Now, put J : Im Q -> Ker F, (0, a, /?) -> a(i - a) + f3. Then N0 = JQN : 

Ker L —> Ker L has the form 

No(c(2 - a) + d) = ain(J, c)(t - a) + g2n(c (b - a) + d, c). 

Therefore, since {(r — a), 1} is a basis for Ker L, 

J[N0, Ker L n Q, 0] = J[(gin(J, c), g2n(c (b - a) + J, c)), T, 0], 

where T = {(d, c(b - a) + d) : \c(b - a) + rf| < r + 2, |J| < r + 2}. Using 
(2.1), (2.2) and a), b), c), d) we get by means of The Generalized Mean Value 
Theorem 

d[(gln(d, c),g2n(c(b-a) + d, c)),T,0] = signg i n(r + 2, c) • signg2n(r + 2, c) / 0. 

So, the condition c) of the Continuation Theorem is satisfied and problem (2.6l), 
(2.7) has at least one solution u G domL n Q. By Lemma 2.4 u satisfies (2.8). 

D 
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Proof of Theorem 2.1 For n £ N let us consider the sequence of BVPs 

x" = fn(t,x,x'), (2.6i) 

gln(x(a),x((a)) = 0, g2n(x(b), x'(b)) = 0. (2.7) 

In Lemma 2.5 we proved for any n £ N the existence of a solution un satisfying 
(2.8). By the Arzela-Ascoli Theorem and the integrated form of the equation, 
one gets the existence of a converging subsequence of (wn)i° whose limit is a 
solution u of ( IT) , (1.2) satisfying (2.5). • 

3 The existence results for unbounded 
nonlinearity 

Theorem 3.1 Let r, R £ (0, oo) be such thai for a.e. t £ J and each x £ [—r, r] 
the conditions (2.1), (2.2), (2.3) and 

f(t,x,R)>0, f(t,x,-R)<0, 

g2(x,R)-g2(x,-R) < 0 

(3.1) 

(3.2) 

are fulfilled. 
Then problem (1.1), (1-2) has at least one solution u satisfying (2.5) and 

R < u'(t) < R for each t £ J. (3.3) 

Proof Let us put 

f(t,x,y) = < 

{ f(t,x,R) for y > R 

f(t,x,y) îoт-R<y<R 

[ f(t,x,-R) for y < -R, 

h(x,y) = { 

and consider the problem 

[ g2(x,R) for y > R 

g2(x,y) for -R<y < R 

{ g2(x,-R) for y < -R, 

x" = f(t,x,x') 

gl(x(a),x/(a)) = 0, g2(x(b),x'(b)) = 0. 

The functions L<h,</2 fulfil the conditions of Theorem 2.1 with 

<p(t) = sup{|/(t, x, y)\:xe [-r, r],y € [-R, R}}. 

(3.4) 

(3.5) 
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So, problem (3.4), (3.5) has a solution u with —r < u(t) < r on J. Suppose 
max{it'(i) : t £ J} = u'(t0) > It. Let t0 £ [a, 6). Then we can find S > 0 such 
that It < u'(t) < u'(to) for each t £ (to^o + <5)- On the other hand by (3.1) 

/ u"(T)dT= I f(T,U(T),R)dT>0, 
Jto Jto 

a contradiction. Further u'(b) > It implies g2(u(b),u'(b)) = g2(u(b),R) / 0. So 
7i'(i) < I^ for each r £ J. The inequality —It < u'(£) for each t £ J can be 
proved by similar arguments. Thus (3.3) is valid and therefore u is a solution 
of ( IT) , (1.2) as well. • 

Theorem 3.2 Let r, R £ (0, oo) be such that for a.e. t £ J anJ each a; £ [—r, r] 
*he conditions (2.1), (2.2), (2.3) and 

f(t,x,R)<0, f(t,x,-R)>0, (3.6) 

gi(x,R)-gi(x,-R)<0 (3.7) 

are fulfilled. Then problem (1.1), (1.2) has at least one solution u satisfying 
(2.5) and (3.3). 

Proof Theorem 3.2 can be proved similarly as Theorem 3.1. Q 

4 Examples 

Let us show some possibilities for / satisfying the conditions of Theorem 3.1: 
Suppose k, n £ N, / i , / 2 £ L(J), f3 £ L°°(J) and '/*(*) > 0 for a.e. t £ J, 
i = 1,2. Then we can choose 
a) / superlinear: 

f(t, x, y) = h{t)x2k~lex + h(t)y2n~ley + f3(t); 

b) / linear: 
f(t,x,y) = h(t)x + h(t)y + h(t); 

c) / sublinear: 

f(t,x,y) = h(t) ^-^ + f2(t) ---yy + /3(<); 

d) / nonmonotonous: 

/ i (t) sin(a? + y) + f2(t)y cos u. 
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Similarly for git i = 1,2, we have e.g. the following possibilities. Suppose 
k,n£N, auPi GR, i = 1}23 c*i ^ 0, a2/?2 ^ 0 . 

a) y2(;r,y) - aix
2k~1ex + ft^^e^ +7z-; 

b) ^(z,;y) = « ^ + ' A y + 7i; 

c) 0i(*,y) = <*.• 2fc_\/J + A- ^ - ^ + 7̂ ; 

d) (7,(.T, y) = of. sin(a? + y) + Ay cos y. 
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