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Abstract

We consider the second order differential equation =" = f(t,z,z’)
with a Carathéodory nonlinearity f and nonlinear boundary conditions
g1(z(a),z'(a)) = 0, g2(z(b),z'(b)) = 0. Using the topological degree
method we prove the existence of solutions provided f, g1, g2 satisfy ap-
propriate sign conditions.
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1 Introduction
In the paper we study the nonlinear BVP
" = f(t,z, ) (1.1)

g1(z(a),2'(a)) =0, g2((b), 2 (b)) = 0, (1.2)

where J = [a,b] C R, f € Car(J x R?), g1,92 € C(R?). We show sufficient
conditions for the existence of at least one solution of (1.1), (1.2). By a solution
we mean a function v € AC(J) (having an absolutely continuous first derivative
on J) and satisfying conditions (1.2) and equation (1.1) for a.e. t € J.

Such questions were studied for example in [1], [2], [3]. But in [2] the appro-
priate linear part of (1.2) was required and in [3] the upper and lower solutions
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method was used and the monotonicity of g1, g2 was supposed. Our approach is
close to [1], where problem (1.1), (1.2) is studied for a continuous right hand side
f satisfying the Bernstein-Nagumo growth conditions and g3, g2 monotonous in
the second variable.

Here, f, g1, g2 satisfy only sign conditions and neither monotonicity of g1, g2,
nor growth conditions for f are required.

Our proofs are based on the following theorems:

Continuation Theorem [1, p.40] Let X,Y be Banach spaces, L : dom L C
X — Y a Fredholm map of index 0 and Q C X an open bounded set. Let
N : X — Y be L-compact on Q, Q : Y — Y a continuous projector with
KerQ =ImZL and J : ImQ — Ker L an tsomorphism. Suppose

a) for each X € (0,1) every solution z of Lx = ANz 1s such that © & 0%Q;

b) QNz #0 for each z € Ker LN OQ and

c¢) the Brouwer degree d[No, 2N Ker L, 0] # 0, where

No=JQN :Ker L — Ker L.

Then the equation Lz = Nz has at least one solution in dom L N Q.

Generalized Mean Value Theorem [5, p. 178] Let D = [ay, b1] x [a2, b2] C R?,
a; < b;and Ay ={zx €D :z; =a;}, Bi={z € D :z; = b}, 1 = 1,2,
z = (z1,29). Further let f: D — R? z — (fi(z), f2(z)) be continuous with
fi(z)fi(z") < 0 for any ¢ € A;, ' € B;, i =1,2. Then

d(f,int D,0] = sign fi(z) - sign fo(z) = £1.
z€B) z€B>

2 The existence results for bounded
nonlinearity

First we will prove the existence of solutions to (1.1), (1.2) provided f is bounded
by a Lebesgue integrable function ¢.

Theorem 2.1 Let r € (0,00) and ¢ € L(J) be such that for a.e. t € J and
each € [—r,7]

g1(—=r,0) g1(r,0) < 0, (2.1)
g2(-7,0) g2(r,0) <0, . (2.2)
f(t,=r,0)< 0, f(t,r,0)>0, (2.3)
[f(t,z,y)| < p(t) for each y € R. - (2.4)

Then problem (1.1), (1.2) has a solution u with
—r<u(t)<r  foreachtelJ. (2.5)
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To prove Theorem 1 we will study a system of auxiliary problems. Choose
n € N and put

f(t,r,0) forz>r+1/n
f(t,T', y) + [f(t,T,O) - f(t,r,ly)]n(.l‘ - 7') forr<z<r+ I/n
f(t,z,y) for—r <z <r

G20 =0 Fe =, ) = [, =r,0) = £, —r, in(z +7)
for —r—1/n<z< —pr

f(t,—r,0) forz < —r—1/n,

9i(r,0) forz >r+1/n
gi(r,y) + [9i(r,0) — gs(r,y)]n(z —7r)  forr<z<r+1/n

) _ ) gi(z,y) for—r <z <r
gin(z,y) = 9i(=7,y) — [9:(—=7,0) — g: (=, y)In(z +7)
for -r—1/n<z < —r
gi(—r,0) for z < —r— 1/n,
i=1,2.

Now, suppose that the conditions of Theorem 2.1 are fulfilled and consider
the parameter system of equations

' = Af(t,z,2"), Ae€l0,1] (2.6))
with boundary conditions
gin(z(a),2'(a)) =0,  gan(x(b), (b)) = 0. (2.7)

To apply the Continuation Theorem for problem (2.6)), (2.7), let us use the

notation:
X =CY([a,b]), Y =L(a,b)xR?* domL = AC"([e,b]) C X,
L:domL —Y, z—(z",0,0), N:X =Y,
z = (fa(,2(), 7)), 91n(2(a), 2'(a)), g2n(2(b), 2'(D)))
Problem (2.61), (2.7) can be written in the form

Lz = ANz.
Lemma 2.2 L is a Fredholm map of indez 0.

Proof Ker L ={z € X : z(t) = c(t—a)+d, ¢c,d € R}, Im L = L(a,b) x {(0,0)}
is closed in Y, dimKer = dimR? = codimIm L = 2. O
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Lemma 2.3 For any open bounded set @ C X, N is L-compact on .
Proof Consider the continuous projectors
P:X — X,z —z'(a)(t — a)+ z(a), Q: Y=Y (yap) —(0,a,p).

Then the generalized inverse (to L) operator K, : ImL — Ker P N dom L has
the form

t p7
Ky : (y,0,0) — // y(s) dsdr.
Thus
QN : X =Y,z — (0,g1n(z(a),z'(a)), g2n(z (D), 2’ (b)),
t p7
K,(I-Q)N: X - X z— // In(s, z(s),2'(s)) dsdr.
The relative compactness of QN (Q) and K, (I —Q)N(Q) can be shown similarly
as e.g. in [6]. O

Lemma 2.4 Let problem (2.6)),(2.7) have a solution u for some X € (0,1].
Then
—r—1/n<u(t)<r+1/n, [W'{t)<p foreachtel], (2.8)

where

b
p:2(r+2)/(b—a)+/ o(t) dt. (2.9)

Proof Suppose that max{u(t) :t € J} = u(t) > r+1/n. Let t € (a,b). Then
we can find § > 0 and ¢y >t such that

W(to) =0, u(t)<0 and u(t)>r+1/n

for each t € (to,t0+ 6] C J. Thus ftto"“ u”’(7) dT < 0. On the other hand

to+6 to+d
/ u'(r)dr = /\/ f(t,r,0)dt >0,
to

to

a contradiction. Now, for £ = a we have gin(u(a),v'(a)) = g1(r,0) #0andt =b
implies gan (u(b), w/(b)) = ga(r,0) # 0. Similar arguments lead to a contradiction
provided min{u(t) : t € J} < —r — 1/n.

So, we have proved —r —1/n < u(t) £ r+1/n for each t € J. And therefore
we can find to € (a, b) such that |u/(to)| < 2(r +1/n)/(b—a). Integrating (2.6))
from o to t we get |u/(t)] < p for each ¢ € J. o

Lemma 2.5 For any n € N problem (2.61), (2.7) has at least one solution u
satisfying (2.8).
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Proof Let us put Q@ = {z € X : |2(t)] < r+ 2, |2/(t)] < p for each t € J}.
Then Lemma 2.4 implies that the condition a) of the Continuation Theorem is
fulfilled. Let @ be the projection of the proof of Lemma 2.3. Then

QNz = (0,91n(2(a), #'(a)), g2n(2(b), 2'(1)))

forz e X.Since Ker L={ze X :z(t)=c(t—a)+d, ¢c,d R}, Ker LNQ =
{zeX z(t)=c(t—a)+d, |e(b—a)+d| <r+2,|d] <r+2}. Naturaly, the
conditions |c(b—a)+d| < r+2,|d| < r+2and p > 2(r +2)/(b— a) imply
|2'(t)] = |c| < p for each t € J.
Let us suppose QNz = 0 for some z € Ker L N 0Q. It is equivalent to

gin(d,c) = 0 and gan(c(b —a) + d,c) = 0 for one of four possibilities:

a) d=r+2, le(b—a)+d| <r+2,

b) d=-—r-2, le(b—a)+d| <r+2

c) elb—a)+d=r+2, |d<r+2,

d) c¢b—a)+d=-r—-2, |[d<r+2.

But in these cases we have by (2.1) and (2.2)

a) gin(r+2,¢)=g1(r,0) # 0,
b) gin(-=r—2,¢) = g1(-r,0) #0,
¢)  gan(r+2,¢) = g2(r,0) £ 0,
d)  gan(=7—2,¢) = ga(-7,0) # 0.

Thus QNz # 0 for each z € Ker L N 9N and the condition b) is fulfilled.
Now, put J : Im@Q — Ker L,(0,,8) — «(t —a) + 8. Then Ny = JQN :
Ker L — Ker L has the form

No(e(t — a) + d) = gin(d, c)(t — @) + gan(c (b — a) + d, c).
Therefore, since {(t — a), 1} is a basis for Ker L,
d[No,Ker LN Q,0] = d[(g1n(d, ¢), g2n(c (b —a) + d,¢)), T, 0],
where I' = {(d,c(b—a)+d) : |c(b—a)+d| < r+2, |d < r+2}. Using
(2.1), (2.2) and a), b), ¢), d) we get by means of The Generalized Mean Value
Theorem

d[(91n(d, ¢),g2n(c (b—a) +d,¢)),T,0] = sign g1n(r + 2, ¢) - sign gan(r + 2, ¢) # 0.

So, the condition c) of the Continuation Theorem is satisfied and problem (2.61),
(2.7) has at least one solution u € dom L N 2. By Lemma 2.4 u satisfies (2.8).
O
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Proof of Theorem 2.1 For n € N let us consider the sequence of BVPs
" = fu(t,z,2), (2.61)

gin(z(a), 2'(a)) = 0, gan(z(b),2'(b)) = 0. (2.7)

In Lemma 2.5 we proved for any n € N the existence of a solution u, satisfying
(2.8). By the Arzela-Ascoli Theorem and the integrated form of the equation,
one gets the existence of a converging subsequence of (u,)$° whose limit is a
solution u of (1.1), (1.2) satisfying (2.5). O

3 The existence results for unbounded
nonlinearity

Theorem 3.1 Letr, R € (0,00) be such that for a.e. t € J and each x € [—r, 7]
the conditions (2.1), (2.2), (2.3) and

ft,z,R)>0, f(t,z,—R)<O, (3.1)
g2(z, R) - g2(z,—R) < 0 (3.2)

are fulfilled.
Then problem (1.1), (1.2) has at least one solution u satisfying (2.5) and

—R<U(@#)<R  foreachteJ. (3.3)

Proof Let us put

f(t,l',R) fOI'y>R
ft,z,y) =< f(t,z,y) for—-R<y<R
ft,z,—R) fory< —R,

ga2(z,R) fory>R
g2(x,y) = g2(z,y)  for—R<y<R
g2(z,—R) fory< —R,
and consider the problem

' = f(t,x,x’) (3.4)
g91(z(a),2'(a)) =0, ga(z(b),z'(b)) = 0. (3.5)
The functions f, g1, go fulfil the conditions of Theorem 2.1 with

Sa(t) = sup{|f(t,x,y)| HEAS [—T‘, T]:y € [—R,R]}

122



So, problem (3.4), (3.5) has a solution u with —r < u(t) < r on J. Suppose
max{u'(t) : t € J} = /(o) > R. Let ty € [a,b). Then we can find § > 0 such
that R < u'(t) < u/(to) for each ¢ € (to,to + 6). On the other hand by (3.1)

to+6 to+é
/ u(r)dr = / f(r,u(r), R)dr > 0,
to to

a contradiction. Further u'(b) > R implies ga(u(b), u'(b)) = g2(u(b), R) # 0. So
u'(t) < R for each t € J. The inequality —R < u/(t) for each t € J can be
proved by similar arguments. Thus (3.3) is valid and therefore u is a solution
of (1.1), (1.2) as well. O

Theorem 3.2 Let r, R € (0,00) be such that for a.e.t € J and each z € [—r, 7]
the conditions (2.1), (2.2), (2.3) and

ft,z,R) <0, f(t,z,—R) >0, (3.6)
g91(z,R) - g1(z,—R) < 0 (3.7

are fulfilled. Then problem (1.1), (1.2) has at least one solution u satisfying
(2.5) and (3.3).

Proof Theorem 3.2 can be proved similarly as Theorem 3.1. m]

4 Examples

Let us show some possibilities for f satisfying the conditions of Theorem 3.1:
Suppose k, n € N, f1,f2 € L(J), f3 € L*(J) and f;(t) > 0 for ae. t € J,
1 =1,2. Then we can choose

a) f superlinear:

flt,z,y) = fl(t)zzk'lex + fz(t)yzn"ley + f3(t);

b) f linear:
[tz y) = L)z + f2(0)y + f(2);

c) f sublinear:
f(tz,y) = f1(t) *Vz + fot) "3/y + fs(2);
d) f nonmonotonous:

fi(t)sin(z + y) + fa2(t)ycosy.
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Similarly for g;, 7 = 1,2, we have e.g. the following possibilities. Suppose
EneN, o, €R,i=1,2, 010 #0, aaffy #0.
= izl 4 By e 4
=iz + By + i
=o; *V + B Yy + vi;
= a;sin(z +y) + Biy cos y.

a) gi(z,y
b) gi(z,y
o) gi(z,y
d) gi(z,y
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