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A b s t r a c t 

In this paper many examples of Riemannian manifolds satisfying 
the condition C.C — LQ(g, C) are given. It is proved that every semi-
symmetric Einstein manifold as well as the product of two manifolds 
of constant curvature of dimensions > 2 are manifolds satisfying this 
condition. 
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1 Introduction 
Let (M,g) be a connected n-dimensional, n > 4, Riemannian manifold of class 
C°° with not necessarily definite metric g and the Levi-Civita connection V . 
Let S and S ,S(X,Y) — g(SX,Y), be the Ricci tensor and the Ricci operator 
of (My g) respectively,where X, Y E E(M),E(M) being the Lie algebra of vector 
fields on M. We define on M the endomorphisms R(X, Y) , X AY and C(X,Y) 

by 

R(XrY)Z = {VX,VY}Z-V[X)Y]Z, 

(XAY)Z = g(Y)Z)X-g(X)Z)Y) 

C(X,Y) = R(XyY) - - 1 ^ ( K A SY + SX A Y) + ^ _ ^ _ 2)X A Y 
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where X, Y, Z € E(M) and K is the scalar curvature of (M,g). Furthermore, 
for the Weyl curvature tensor C of (M, g), 

C(X1,X2,X3,Xi) = g(C(XuX2)X3,X4), 

Xi £ H(M),we define the (0,6)-tensors C • C and Q(g,C) by 

(C-C)(XUX2,X3,X4;X,X) = -C(C(X,Y)X1,X2,X3,X4)-

...-C(Xi,X2,X3,C(X,Y)X4), 

Q(g,C)(Xl,X2,X3,X4;X,Y) = C((X A Y)Xl,X2,X3,X4) + 

... + C(X1,X2,X3,(XAY)X4). 

Similarly, for the Riemann-Christoffel curvature tensor R of (M,g), 

R(X1,X2,X3,X4) = g(R(XuX2)X3,X4), 

we define the tensors R • R and Q(g} R). 
In this paper we will consider Riemannian manifolds (M, g) satisfying the follow­
ing condition : 
(*) the tensors C • C and Q(g, C) are linearly dependent at every point of M. 
This condition is fulfilled on M if and only if the equality 

CC = LQ(g,C) (1) 

holds on the set Uc = {% € M\C(x) ^ 0}. The condition (*) arose during 
the study of warped product 4-manifolds ([3]). It was proved ([3],Theorem 2) 
that any warped product manifold My Xp M2 , dimM\ = dimM2 = 2, fulfils 
(*). It is trivial that every conformally flat manifold fulfils (*). In the paper 
we will present various examples of non-conformaily flat manifolds realizing 
(*). Furthermore, we will state that any product of two manifolds of constant 
curvature of dimensions > 2 as well as any pseudosymmetric Einstein manifold 
satisfies (*). 

2 Manifolds with the vanishing tensor C • C 

Let (M1g)i n > 4, be a Riemannian manifold satisfying the following condition 

UJ(X)C(Y, Z) + u(Y)C(Z, X) + u>(Z)C(X, Y) = 0, (2) 

where a; is a 1-form on M and X, Y, Z £ S(M). Many examples of manifolds 
fulfilling (2) are given in [10] and [11]. As an immediate consequence of Theorem 
1 of [6] we obtain the following corollary. 

Corollary 2.1 Let (M,g), n > 4 be a manifold satisfying (2) for a certain 1-
form u>. If a; is non-zero on a dense subset of Uc then the equality C • C = 0 
holds on M. 
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3 Pseudosymmetric Einstein manifolds 

A Riemannian manifold (M, g), n > 3, is said to be pseudosymmetric ([5]) if on 
M the following condition is satisfied: 
(**) the tensors R • R and Q(g, R) are linearly dependent at every point of M. 
The manifold (M, g) is pseudosymmetric if and only if 

R.R=LRQ(g,R) (3) 

on the set UR = {x £ M\Z(R)(x) ^ 0}, where LR is some function on UR , 
Z(R) = It - n(7f_1}G and G is the (0, 4)- tensor defined by 

G(XX, X2, N3, K4) = </((Ni A K2)K3, K4). 

It is clear that any semisymmetric manifold (R • R = 0, [13]) is pseudosymmet­
ric. There exists many examples of pseudosymmetric manifolds which are not 
semisymmmetric (e.g. [5], [1]). There exists also pseudosymmetric Einstein ma­
nifolds. For instance, every Einstein hypersurface immersed isometrically in a 
manifold of constant curvature is pseudosymmetric ([7]). 

Theorem 3.1 Any pseudosymmetric Einstein manifold (M,g), n > 4. satisfies 
the condition (*). 

P r o o f Since (M,g) is Einsteinian, C has the form 

C = R- K G. (4) 
n(n — 1) 

Using this and the definitions of C • C,R • R and Q(g, R) and (3) we obtain on 
UR : 

C • C = Z(R) R=RR- - Q(g, R) = LQ(g, R), 
n(n — 1) 

where L = LR— n(^_x\- Further, by (4), the equality C-C — LQ(g, R) turns into 

C - C = LQ(g, C). But this, together with the remark that UQ C UR, completes 
the proof. 
As an immediate consequence of the above theorem we obtain the following 
corollary. 

Corollary 3,1 Any semisymmetric Einstein manifold (M,g),n > 4, satisfies 
the condition (*). 

4 Produc t of manifolds of constant curvature 

Let (M,g) and (M,g ) , dimM = p, dimM = n - p, 2 < p < n, 2 < n - p, 
be manifolds of constant curvature covered by systems of charts {V;x'a} and 
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{V; y01} respectively. Here and below, a, 6, c,d £ {1, . . . ,p}, and a, (3, 7, 8 £ {p-f 
1,..., n}. It is easy to verify (e.g. by making use of formulas (12) - (16) of [3]) that 
the local components of C of the product manifold M x M with the standard 
product metric g x g which may not vanish identically are those related to 

Cabcd = -7 —77 G abed, (5) 
P(P~~ 1) 

Caadb = } -Gaa0b, (6) 
p(n - p) 

Ca(3y6 = 7 77 TrGafiyd, ( 7 ) 
( n - p ) ( n - p - l ) 

where 

PІP - ! ) ( " - P)(n - p - 1), Л" 
/> = 71—гттr—^ (—:—ÎT + (n-l)(n-2) > ( P - 1 ) (n-p)(n-p-l)" 

K and K are the scalar curvatures of (M}g) and (M,g) respectively. Further­
more, by making use of the definitions of C • C and Q(g, C), we can verify that 
the only components of C • C and Q(g,C), which may not vanish are those 
related to 

( C • C)aabcd(3 = 77~- T~; 77Gdabc(Jap, ( 8 ) 
p 2 ( n - p ) 2 ( p - 1) 

r r r ^ - ( n - l ) p 2 

V^ • ^)aa(3ydf3 ~ -JZ "77 779ad^6aj3-y , 
p J(n — p)^(n — p — 1) 

(9) 

Q(y,C)aabcdp = ~7 777™ ^GdabcQap, (10) 
p ( p - l ) ( n - p ) 

Q(g,C)aapyd6 = : 77 779adGsa(3y (11) 

p(n — p)(n — p — 1) 

From (8) (11) it follows that the equality 

C C = - _ £ _ Q f o . C ) 
p(n ™ P ) 

holds on M x M. Combining this with the main result of [13] we obtain the 
following theorem. 

T h e o r e m 4.1 The product of two manifolds of constant curvaiure of dimensi­
ons > 2 ?s a semisymmetnc manifold satisfying (*). 
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5 Warped products realizing (*) 

In this section we will consider warped products of manifolds of constant curva­
ture satisfying (*). 
Let (M,g) be an 1-dimensional manifold and (M,g) an (n — l)-dimensional, 
n > 4, manifold of constant curvature and let F be a positive smooth function 
on M. It is well known that the warped product M Xf M is conformally flat. 
Let (M,g),dimM > 2 and (M,g), dirnM > 2, be two manifolds of constant 
curvature and let F be a positive function on M . For the function F we define 
on M the (0,2)-tensor T by 

T = V(dF) - —dF ® dF. (12) 
2F 

Now it is easy to check (e.g. using formulas (5)-(9) of [3]) that if T is proportional 
to g on M then the local components of the Weyl tensor of M Xp M fulfil (5)-
(7) with a certain function p. Moreover, if T is proportional to g on M then 
M Xp M is pseudosymmetric. In [4], by making use of this method, an example 
of a compact pseudosymmetric manifold realizing (*) was found. Other examples 
of warped products of manifolds of constant curvature with T proportional to 
g are given in [4], [1] and [8], We present now some additional examples of this 
type. 

Example 5.1 Let M = {(p,t)\p > 0} be an open subset ofIt2. We define on M 
the metric g by gn = 1. g22 = cosh p, g12 = g2i = 0- We put F(t,p) = sinh p. 
It is easy to check that the tensor T, defined by (12), fulfils T = 2Fg. Further­
more, let (M,g), dimM > 2, be a mamfold of constant curvature. Thus, in viev 
of the above statements, M XpM is a pseudosym,metric manifold satisfying (*). 
The manifold M Xp M was considered zn [9]. 

We give now an example of a non-pseudosymmetric warped product manifold 
satisfying (*). 

Example 5.2 Let M = {(p, t)\p > 0, t > 0} be an open subset of R2 and let 
'2,2 

on M be given the metric tensor g defined by g\\ = m_l\ 2 ; #22 = — mt4
p_ /2 , , 

<7i2 = <hi = 0, where m, q, A are constants such that m2 + A2 7-. 0 and q2-\-A2 ^ 0 
and m - ^f- > 0 and mtA - t2 + q > O.We put F(p, t) = p2t2. Then the tensor 

T, defined by (12), has the following local components : 

2A/<\ „ q KF 
— 9 n , T \ 2 = T21 = 0,i22 = A T J o" Tn = —r.-gn<T12 = T21 = 0.T22 = 2 ( § - — ) 22- (13) 

Further, let (M,g), dnnM > 2, be a manifold of constant curvature. We will 
consider the warped pro! net M Xp M. This manifold is a spherically symmetric 
perfect fluid solution vf Einstein's equations (see [14] , [12] ) . 
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Using (13) and the formulas (5)-(9) and (12)-(16) of [3] we can verify that 
the nonzero components of C of the manifold M Xp M satisfies (5)-(7) with the 
scalar p defined by 

2(n - 3) 1 ( k 2q 

n-l F V ( n - 2 ) ( n - 3 ) t2 

Now we can easily check that the manifold M Xp M satisfies (*). 
Moreover, we can also state that M Xp M is a non-pseudosymmetric mani­

fold, provided that p is a non-zero constant. 

At the end of this paper we note that there exist also pseudosymrnetric Einstein 
manifolds which are not warped products (see [2] ). 
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