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ACTA UNIVERSITATIS PALACKIANAE OLOMÜCENSIS FACULTAS RERUM NATURALIUM 

1992 Mathematica XXXI Vol.105 

ON FUNCTIONAL EQUATION 
<p<p(x) = X, X e (-00,00) 

Miroslav Laitoch 

(Received March 20th, 1991) 

Abstract. This paper deals with the solutions of the 

functional equation 

(1) <p<p(x) = x, x e (-00,00), 

where <p<p(x) denotes the composite function <p[<p(x)] . 

Every function <p identically satisfying the equation (1) is 

called the solution of the equation. We shall be interested 

in solutions from the set of simple functions on (-00,00) and from 

the set of continuous functions on (-00,00). 

Key words: Functional equation, inverse function. 

MS Classification: 39B20. 

(A) Solution in the set of simple functions defined on (-00,00). 

Theorem Al. Let <p map simply (-00,00) onto itself. Then 

there exist the function <p~x inverse to tp on C-oo,oo) and it holds: 

<p~1(x) = <p(x) «=> <p<p(x) * x 
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Proof. 

As <p is simple on (-00,00), there exists the inverse function 

<p of £>. Since <p maps (-00,00) onto itself, <p~ maps again 

(-00,00) onto itself. From the definition of the inverse function 

follows that ^)"V(x)fX, <p<p~ (x)=x. Provided that ip'1 (x)=<p(x), we 

get <p<p(x)=x in both cases. 

On the contrary , let <p satisfy the functional equation 

<p<p(x)=x. If we set in this equation <p(x)-yf we get <p(y)=x and 

from here y=<p~ (x). Then we have <p~ (x)-<p(x). 

Example A 1. 

x for x e (-00,00) rational, 
Let (p - I 

^ -x for x e (-00,00) irrational. 

Then evidently <p<p(x)=x for x € (-00,00) . 

Let us note that <p maps simply (-00,00) onto itself. 

(B) Solution in the set of continuous functions defined 

on (-00, 00). 

1. Perpendicular coordinate axes x, y divide the plan E into 

4 quadrants: 

I. quadrant contents points [x,y], for which x -t 0, y -t 0 

II. quadrant contents points [x,y], for which x -£ 0, y £ 0 

III. quadrant contents points [x,y], for which x -s 0, y ^ 0 

IV. quadrant contents points [x,y], for which x £ 0, y £ 0 

The line y = x is called the axis of the I. and III. quadrants. 

The line y = -x is called the axis of the II. and IV. quadrants. 

Mapping of the point [x,y] on the point [X,Y] in the plane E is 

denoted [x,y] -> [X,Y], which means x -> X, y -» Y. Let us consider 

these point mappings: 

(i) rotation about the origin through the angle 45°: 

^ 2 >l 2 

x -> X = ~ j - (x-y), y -> Y = — (x+y), 

(ii) rotation about the origin through the angle -45°: 

>|2 ^ 2 

x -> X = — • (x+y), y -> Y = — (-x+y), 
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(iii) symmetry with respect to the axis x: x -> X • x, 

y + y = - y, 

(iv) symmetry with respect to the axis y: x -> X = - x, 

y -> Y = y, 

(v) symmetry with respect to the origin of the coordinates: 

x->X = ~ x , y->Y = - y , 

(vi) symmetry with respect to the axis of the 1. and 3. 

quadrants: 

x -* X = y, y -> Y = x, 

(vii) symmetry with respect to the axis 2. and 4. quadrants: 

x_>X = -y, y->Y = -x. 

Let us note that it is possible to obtain the mapping (vii) 

by the composition of the mappings (i), (iv) and (ii). 

Proof. 

Mapping (i): Let us consider a rotation about the origin 
i . - m 

through the angle 45°: z -> w=e .z, where z=x+iy, w=X+iY. 
i • i 

-7T1 N 2 

Since e4 .z=(cos-+isin-).(x+iy)=- —[(x-y)+i(x+y)], 
4 4 2 

N| 2 \| 2 

we have X=—(x-y), Y=—(x+y). 

Similarly we can prove the case of the mapping (ii): 

Let us consider a rotation about the origin through 

- ihi 

the angle - 45°: z -> w=e . z, where z=x+iy, w=X+iY. 

- jTTl S 2 

Since e .z=(cos- -isin - ).(x+iy)=~ L(x+y)+i(-x+y)], 
4 4 2 

^2 M 2 
it is X=—(x+y), Y=—(-x+y). 

Similarly assertions (iii)-(vii) can be p r o v e d . 

The graph of the function f given by the equation y=f(x) is 

mapped by the mappings (i)-(vii) on the graph of the function F 

given by the equation Y = F(X) gradually as follows: 

(i) rotation about the origin through the angle 45° 

i 2 4 2 
y=f -> — (x+y)=F[—(x-y)], where y=f(x) (Bl) 
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(ii) rotation about the origin through the angle -45° 

iz iz 
y=f -» — (~x+y)=F[—(x+y)], where y=f(x) (B2) 

(iii) symmetry with respect to the axis x 

y=f .* F=-f(x) (B3) 

(iv) symmetry with respect to the axis y 

y=f Ht F=f(-x) (B4) 

(v) symmetry with respect to the origin of the coordinates 

y=f -> F=-f(-x) (B5) 

(vi) symmetry with respect to the axis of the Land 3. quadrants 

y=f -> F=f"1(x), where f"1 denotes inverse function of f 
(B6) 

(vii) symmetry with respect to the axis 2. and 4. quadrants 

y--f .» F=-f
_1(-x) (B7) 

Proof. 

If we substitute for X and Y from the formulas (i) - (vii) 

respectively into Y = F(X) then the function F is given by the 

expressions (Bl) - (B7) respectively. 

Definition Bl. 

We say that the real function f of the real variable x, 

f=f(x), xe(-oo,oo) belongs to the set M, if it has these qualities: 

(VI): f is continuous on (-00,00), 

(V2): either f increases from -00 to +00 

or f decreases from +00 to -00 on (-00,00). 

Let us note that the property (V2) includes conditions: 

either lim f(x)=-oo and lim f(x)=oo 
x •-> -co x -> CO 

or lim f (x)=oo and lim f(x)=-oo. 
x -» —00 x -> 00 

Theorem Bl. 

Let f,g€M. Then also function F defined by (l)°-(7)° 
as follows: 

(1)° F*=ff(x), where ff denotes composite function f[fu)], 
(2)° F**f~1(x), where f"1 denotes inverse function of f, 
(3)° F--f(x). 
(4)° F=f(-x), 
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(5)° F^fg(x), vhere fg denotes the composite function f[g(x)]t 

(6)° F=-l+f(x+l)t vhere leR is a constant, 
(if'F^-f^-x) 

belongs to M. 

Let us note that the function F in (6) can be called also 

the translation of the function f in the direction of the axis 

of the 1. and 3. quadrants of 1 and the function F in (7) is 

called a symmetrical function to the function f with respect to 

the axis of the 2. and 4.quadrants. 

Proof. 

(1)° The hypothesis (V2) follows that the composite function 

ff is defined on (-00,00). The propert (VI) follows that f is 

continuous on (-00,00). Therefore the function ff has the property 

(VI). 

Further let us assume that f is increasing, i.e. if a<b, 

a,b€R, then f(a)<f(b), f(a), f(b)eR. Consequently ff(a)<ff(b), 

i.e. ff is increasing evidently from -00 to +00 . 

Let us assume that f is decreasing, i.e. if a,beR, a<b, 

then f(a)<f(b), f(a), f(b)eR. Consequently ff(a)<ff(b) i.e. ff 

is increasing from -00 to +00 . 

The function ff has the property (V2) and therefore belongs 

to M. Similarly the assertions about the function F defined by 

the formulas (2)°-(7)° are possible to prove. 

2. Now we shall search a solution <p of the functional equation 

(1) SPf(x)=x, xe(-oo,oo), 

in the set M. 

Let us note that it is possible because the right side of 

the equation (1), i.e. the function x belongs to M and if <p e M, 

then also the left side of the equation (1), i.e. the function 

<p<p e M in according with the assertion of theorem Bl. 

Theorem Al can be stated here in the adapted form. 

Theorem B2. Let <p^M be a solution of the equation (1). Then 
the function fp'1 is also a solution of the equation (l). At the 
same time it holds <p ejf and 

(2) fp'x(x)=<p(x) for xe(-00,00). 
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Proof. 

Let us put ft>(x)-=y or x-«-<p~ (y) in (1), where x, ye (-00,00). 

Because (1) is fulfilled identically , we get that <p(y)=x and 

from here y-<p~ (x). Therefore <p~ (x)=<p(x) and (2) is valid. 

By (2) we get that <p~ <p~ (x)-<p~ <p(x)-x for x«=(-oo,oo), as 

follows from the property of the inverse function, therefore it 

holds that <p~ is a solution of the equation (1) and according 

to the theorem Bl we have <p~ <EM. 

Let us note that from (2) we conclude, that the solutions 

of the equation (1) are functions <p which are inverse onto 

itself. The graph of every solution of the equation (1) is 

therefore symmetric with respect to the axis of the 1. and 3. 

quadrants. 

Let us note, if <p e M is the solution of the equation (1) , 

then from the theorem B2 we know that <p~ =<p and therefore 

<p<p(x)=<p~l<p _1(x)-=x 

holds. 

Theorem B3. Among the increasing functions of the set M 

there is the only function <p=x satisfying the equation (1). 

Proof. 

The proof will be done by a contradiction. If the assertion 

were not true , a point Xoe(-oo,oo) would exist such that for the 

increasing solution <p of the equation (1) it would hold 

<p(Xo)*Xo. 

If it were Xo«p(xo) , then with regard to the increase of 

the function <p it would be <p(xo)<<p<p(xo); but regarding this fact 

that <p<p(x)=x, xe(-oo,oo) , we would get that >̂(xo)<Xo, that is a 

contradiction to the assumption xo<cp(xo). 

Similarly if <p(xo)<xo, then with regard to the increase of 

the function <p it would be <p<p(xo) <<p(xo); but with regard to the 

fact that <p<p(x)=x , xe(-oo,oo), we would conclude that Xo<<p(xo) f 

which is a contradiction to the assumption <p(xo)<xo. 

Thus for every xe(-oo,oo) we have <p(x)=x. 

(a) Let us note that the graph of every decreasing solution <peM 

of the equation ( 1 ) going through the origin of coordinates must 
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lay in the II. and IV. quadrants. 

(b) If we move the graph of the solution <p of the equation (1) 

in the direction of the axis of the I. and III. quadrants, we 

again get the graph of the solution of the equation (1). 

We get all solutions of the equation (1) by moving of 

graphs of those solutions of the equation (1) which are going 

through the origin of coordinates in the direction of the axis 

of the I. and III. quadrants. 

We can formulate the assertion of the notation (b) as follows: 

Theorem B4. Let cpetf be a solution of the equation (l), then 

also the function <f> defined by the formula (6)° 

(3) 4>=-l+(p(x+l), 

where JeR is any constant, is a solution of the equation (1) and 

at the same time <p&M. 

Proof. 

According to the theorem Bl is <peH. 

Further 00(x)=-l+<p[-l+^p(x+l)+l]=-l+^(x+l)=-l+x+l=x, 

because (p(p('K)-x for x€(-oo,oo). 

Theorem B5. Let (p e M be a solution of the equation (1), 

then also the function <p defined by the formula (7)° 

(4) <t>=--(p~-(-x), 

where (p~ is the inverse function of (p, is a solution of the 

equation (1) and at the same time <p e M. 

Proof. 

According to the theorem Bl we have 0€M, (p~ eM. Further 

00(x)=-^p"1[-(-^~1(-x) ]=-̂ ~1 p̂"1(-x)=-(-x)=x holds because by the 

theorem B2 (p~ is a solution of the equation (1). 

Let us give now examples of solutions of the equation (1) , 

the graphs of which go through the origin of coordinates. 

1. The function p(x)=x, xe(-00,00) is the solution of the equation 

(1) , for which «̂=M and tp(0)=0 hold. This solution is called 

trivial. 

2. The function <p(x)=-x, x€(-oo,co) is the solution of the equation 

(1) , for which <peM and f>(0)=0 hold. 
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3. The function p defined by the formula 

kx, k<0, for X2.0 
f>(x) - { t 

v -x for x*0 
k 

is the solution of the equation (1), for which tpeM and <p(0)=0 

hold. Obviously for x--0 we have <p(x)^Q and therefore 

$>¥>(x)=-(kx)=x, for x-̂ 0 we have y>(x)so and therefore tp̂ >(x)=k(-x)=x. 

If we put the functions introduced in the examples 1.- 3. 

instead of the functions <p in the theorem B4, we obtain gradually 

for the solution <p of the equation (1) these expressions. 

4. For (p{x)-x we have $ = -l+(x+l) = x. We can say that the 

trivial solution is invariant regarding the mapping (3). 

5. For <p(x)=-x we have 0=-l+(-x-l)=-x-21, leR arbitrary number. 

The function <p is the solution of the equation (1) because 

M(x)=-(-x-21)-21=x. 

6. Let keR. k<0. For 
( * *>(*)- { , kx for x-̂ 0 

x for x-̂ 0 

we have 
-l+k(x+l)=kx+l(k-l) for x-s-1. 

Ф(x) ={ 
x+l)= ^x+K

1
-!) for XŁ-1. 

The function <f> is a solution of the equation (1) because 
for x-s-1 we have #(x)£-l and therefore 0<^(x)=-l+~-[-l+k(x+l)+l ]=x, 

for x-t-1 we have <p(x)^-l and therefore 04>(x)=-l+k[-l+^(x+l)+l]=x. 

If we lay the functions introduced in the examples 1.- 3. 

instead of the functions <p in the theorem B5, we gradually 

obtain these expressions for a solution <p of the equation (1). 
7. For tp(x)=x we have <p~ (x)=x and therefore #=-(~x). We can 

say, that the trivial solution is invariant regarding the 

mapping (4). 

8. For <p(x)=-x we have <p'1=-x and therefore 0=-[-(-x) ]=-x . We 

can say that the solution p=-x is invariant regarding the 

mapping (4). 

9. Let k€R, k<0. For ^ < 
f kx for x-£0 

f>(x) = { 
v -x for x^O 
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we have 

and then 

"'(x)- { kx for xso 

^X for Xă:0 

Kx)Ҷ 
ғ
 (-x)=--(-x)=---x for X-SO 

k k 
_ -1 

9
 (-x)=-k(-x)=kX fOГ X2-0. 

The graphs of the function <P and f are symmetric with respect to 
the axis of the 2. and 4. quadrants. 

The following examples are examples of functions which are 

solutions of the equation (1) and have derivatives of all orders 

on (-co, oo) excepting one point of the definition interval. 

10. The function ^ ^
 f o r

 ^ Q 

<p' « 

-ln(x+l) for x^O 

has the graph symmetric with respec to the axis of the I. and 

III. quadrants. The graph lays in the II. and IV. quadrants and 

the same time cp(0)=0. The function <p is a solution of the 

equation (1) because 

tp(x)=e"
x
-l-t0 for x-50, 

p(x)=-ln(x+l)-sO for x-^0, 

and also 

-ln(e~
x
-l+l)=x for X2-0, 

ęę(x)=\ 

Therefore fp is a solution of the equatior {1). At the same time 

p(0)=0 and further for x--0 we have 

/ -x 

tp *-e , 
/ , -x 

V "=-e , 

f(n)-(-l)n.e-x 

,and 
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for x-̂ 0 we have 

From here we get 

( n ) / ,
 ч
n (n-1) t ę =(-1) 

n 
( x+1) 

<p' (0-)=-l, 

tp" (0-) = l, 

<p' ' ' (0-)=-l, 

*>(n)(o-) = (-i)r 

and 
<p' (0+)=-l, 

<P' ' (0+)«l, 

<p' ' ' (0+)=-2, 

*>(n)(0+) = (-l)n.(n-l)! 

The function <p has derivatives of all orders in every point 

except the point x-*0. In the point x=0 it has only derivatives 

of the 1 . and 2 . o r d e r s . 

If we apply the assertion of the theorem B5 on the function 

<p of the example 10, we get the following example. 

11. The function 

f ln(-x+l) for X-SO 
-1 i фж-ę (_x) 

-e + 1 for x-tO 

is a solution of the equation (1). 

Because 

*(x)«-ln(-x+l)fc0 for x-*0, 

#(x)*~ex+ls0 for x-tO, 
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we have 

KжH 

• e
1
"

1
- "

1
^ for

 X S 0 

ln(-(-e
x
+l)+l)-x for X2-0. 

At the same time #(0)=0. 

Further for x-̂ 0 we have 

for x-sO. we have 

Ф' 
1 

- x + 1 ' 

Ф' 
, 1 

Ф' 
2 ' 

( - x + 1 ) 

Ф' / / __ --2 

3 
( - x + 1 ) 

Ф' 
n ) ( n - D ! 

Ф' 
n 

( - x + 1 ) 

Ф' 
X 

=-e , 

Ф' / x 

=-e , 
X 

Ф' ' ' = - e . 

ф{ 
n ) X 

= -e . 
From here 

*
(n)
(0-)=-(n-l)!, 

0
(n)
(O+)=-l. 

Therefore the function <P has a derivative of an arbitrary 

order in every point except the point x=0. In the point x=0 it 

has only the derivatives of the 1. and 2. orders. 

The notation (a) leads us to the fact that we obtain the 

graphs of the decreasing functions of M which are the solutions 

of the equation (1) having a zero point in the origin from the 

graphs of continuous even functions on (-00,00) going through the 

origin and lying in angles with sides in axes of the I. and III. 

quadrants and II. and IV. quadrants containing the real axis by 

the rotation about the origin through the angle -45°. 
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Theorem B6. Let a function $ have these properties: 
1. is continuous on (-00,00), 
2. is even, i.e. $(-x)=4(x) for every xe(-oo,oo), 

3. <f>(0)=0, 

4. \<p(x)\<\x\ for xe(-oo,oo), x*0, 

5. every parallel with the axis of the II. and IV. quadrant 

intersects the graph of <p just in one point; 

then the function <p defined by the equation 

(a) <p(— x+<fi( x ) )=—( -x+<p( x ) ) , xe(-<x>,<n), 

has these properties: 

1. is continuous on (-00,00), 

2. is a solution of the equation <p<p(x)=x, 

3. <p(0)=0, 

4. <p(x)>0 for x<0, <p(x)<0 for x>0, 

5. every parallel with the axis y intersects the graph of <p 

just in one poin and the function <p fulfilling (a) can be 

expressed by the equation 

(A) <p[il(x-<p(x))^[x+<p(x)], X€(-00,00). 

Proof. 

By rotation of a graph of the function y=0(x) about the 

origin through the angle -45° we obtain the image Y=<p(X) and at 

the same time X=-----(x+y), Y=~(-x+y). From here the definition of 

the function <p and its properties 1,3,4,5 follow. We prove the 

property 2 in this way: considering that the function <p is even 

we get from (a), if we write -x instead of x that 

(ax) p[i|(-x+^(x)]-Ji [x+<Mx)]. 

From here: 

<p<p[Jl(-x+<fi ( X ) ) ] = ^ [ - i | ( x + 0 ( x ) ] = - l | [ - x ^ ( x ) ] , XG(-oo, 00) 

and in consequence of the validity of (a) we have <p<p{t)-t, where 

t=—[-x+#(x) ], te(-oo,oo). The property 2 of the function <p , e.i. 

%> is the solution of the equation (1), is proved. Now we derive 

the formula (A). Let us set 

(5) l|[-x+0(x)]=t, t€(-oo,oo). 

in (at). ' 
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From (5) and (a ) we get 

From here 

ęJí[x+ф{x)]~Ц[-ҡ+ф{ҡ)l+ím^Z+íж. 

•t+p(t)И2.x 
GГ 

(6) i i [ « t + f ) ( t ) 3 - - x . 

Let us form the composite function $[-L-(t-f (x) ) ]. By the help 

of (6) we get gradually 

<t>[^t-<p{t))]=<t>{-x)~*{x)^[t+f{t)]t 

because we get the expression on the right side from (5) by the 

help of (6): 

<p{x)=x+)2.tJ~[-t+<p{t)]+i2.t^[t+<p{x)]; 

therefore we obtain 

>[%t-í>(t))]«í2[(t+í>(t)], 

and this proves the validity of the formula (A) for te(~oo,oo) 

On the contrary the theorem B7 holds. 

Theorem B7.Let function <p have these properties: 

is continuous on (-00,00), 

is a solution of the functional equation <p<p(x)=x, xe(~oo,oo), 

<p(0)=0, 

<p(x)>0 for x<0; <p(x)<0 for x>0, 

every parallel with the axis y intersects the graph of <p just 

in one point; then the function $ defined by the equation 

(A) <p[^x-<p(x))]^[x+<p(x)], x€(-oo,oo), 

has these properties: 

1. is continuous on (-00,00), 

2. is even, i . e . <p(-x)=<p(x) for every jre(-oo,oo), 

3. 4>(0)**0, 

4. \<p(x)\<\x\ for xe(-cQ,co), x*0, 

5. every pmrallel with the axis of the II. and IV. quadrants 

intersects the graph <t> just in one point and the function <p 
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fulfilling (A) can be expressed by the equation: 

(a) fli±(x+<Hx))]J±l(-x+4>(x)]t jrer-03,00). 

Proof. 

By a rotation of the graph of the function y=f>(x) about the 

origin through the angle 45° we obtain the image Y=#(X), and at 

the same time X«i--(x-y), Y=-^(x+Y). The definition of the 

function 4> and its properties 1,3,4,5 follow. We prove the 

property 2 as follows: 

Let us set f>(x) instead of x, in (A). With regard to 2 we obtain: 

(Ai) *[%fKx)-x))]«%»>(x)+x]. 

From the equality of the right sides in (A) and (Ai) we conclude 

the equality of left sides and so we have #(~t)=#(t), where 

t=---[x~<p(x) ]. The property 2 of the function <i> is proved. 

Now we derive the formula (a). 

Let us set 

(7) ~[x-f(x)]«t, t€(-oo,oo). 

in (Ai). 

From (7) and (Ai) we obtain: 

• (t)-^[x+f(x)]-i|[x-f>(x)]+<2.f)(x)--t+>l2.f)(x). 

From here 
-t+0(t)H2.?(x) 

or 

(8) if[-t+#(t)]-*(x). 

Let us form the composite function f>[—(-t+^(t)) ]. By the help 

of (8) we obtain gradually f>[i|(-t+0(t)) ]=w(x)=x=^[t+*(t) ] for 

we get the expression on the right side of the previous formula 

from (7) by the help of (8): 

XH2.t+^(x)H2.t+i|[-t+#(t)]«^|[t+*(t)]; 

therefore we have 

viЦ(-t*ф(t)]жЦit+ф(t)ì. 

That proves the validity of the formula (a) for te(-oo,co). 
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Example 12. 

An example of even functions are branches of the hyperbola 

(H) - - 4 + - i ! - 1. 
a b 

which has the centre in the origin. The transverse axis of 

length 2b lies in the axis y, the conjugate axis of length 2a 

lies in the axis x. We shall suppose 0<b<a. As the graph of 

hyperbola (H) - of each of the two branches - is symmetric with 

respect to the axis y, it is also symmetric with respect to the 

axis of the 1. and 3. quadrants after the rotation about the 

origin through the angle -45°. 

The equations for the rotation of a point about the origin 

through the angle -45° are 

xJi(X-Y), y-l|(x+Y). 

A f t e r s u b s t i t u t i o n i n t o (H) and r e a r r a n g e m e n t we g e t 

- b 2 ( X - Y ) 2 + a 2 ( X + Y ) 2 = 2 a 2 b 2 , 

(Hi) (a
2
-b

2
).Y

2
+2(a

2
+b

2
).XY+(a

2
-b

2
).X

2
-2a

2
b
2
=0. 

From here, either 

(H2) [ ( a 2 - b 2 ) . Y + ( a 2 + Ь 2 ) . X ] 2 = 2 a 2 b 2 [ 2 X 2 + ( a 2 - b 2 ) ] 

o r 

(H3) [ ( a 2 - b 2 ) . X+ ( a 2 + b 2 ) . Y ] 2 * 2 a 2 b 2 [ 2Y2+ ( a 2 - b 2 ) ] ; 

The e q u a t i o n (H2) r e s p e c t i v e l y (H.3) can be w r i t t e n t h i s way: 

(H4) I ( a 2 - b 2 ) . Y + ( a 2 + b 2 ) . X l H 2 . a M [ 2 x 2 + ( a 2 - b 2 ) ] 

r e s p e c t i v e l y 

(Hs) I ( a 2 - b 2 ) . X + ( a 2 - b 2 ) . Y l H 2 . a b > l [ 2 y 2 + ( a 2 - b 2 ) ] . 

From (H4) we g e t 

(Hs) Y - - a 2 + b 2 X + £ ^ 2 x 2
+ ( a 2 - b 2 ) , e - * l . 

By t h e h e l p o f (Hs) we g e t 

YY = - a 2 + b 2 .Yf H 2 a b U 2 Y 2 + U Z - b 2 ) ] = 

JLŻÈL.Y+ S£l ( a 2 -b 2 ) .X+(a 2 +b 2 ) .Y] -X 

e'**l. As the expressions on the left side in (H4) and (Hs),i.e. 
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(a
2
-b

2
).X+(a

2
+b

2
). Y and (a

2
-b

2
). Y+(a

2
+b

2
). X are at the same time 

always of the same sign, cc'=l. We can see that the function Y 

defined by the formula (H6) fulfils the equation (1). 

By the help of the formula (He) let us calculate now the 

derivative Y'. We have 

a
2
+b

2
 , c >|2.ab 4 

I « — — + 2N2. (a
2
-b

2
)
 < ( 1 +

 a
2
-b

2

} 

2 .2 

-2Ч2. (a
2
+b

2
).^(l+

 a
 +

 D
 )+ c.4Ü.ab 

2x 

If c=-l, it is obviously Y'<0. 

If c-+l, we shall show that also Y'<0. Indeed, then 

2 ,2 

- 2 A 2 . (a
2+b2).s|(l+-a—^—)+4N2.ab -

2x2 

= -2>|2. [ ( a 2 + b 2 M ( l + a ~ b ) - 2 a b ] . 
2x2 

2 .2 

As V( 1+ - )>1, it is possible to write: 
2x2 

2 2 

>l(l+ a "b ) = l+5(x), 5(x)>0. 
Then we have 

[ ( a 2 + b 2 M ( l + -~ a -~^ b —)-2ab] = ( a 2
+ b 2 ) ( l + 6 ( x ) ) - 2 a b = 

2 x 2 

= ( a - b ) 2 + ( a 2 + b 2 ) . S ( x ) > 0 , 

t h e r e f o r e Y ' < 0 . 

If we set c=l in (He), we get the branch Yi of the hyperbola. 

Now we translate this branch in the direction of the 1. and 3. 

quadrants to go through the origin of the coordinates. We get: 

(H7) Yi= - 4-f.b- -JL±bL(x+-l|b)+ -%*§ UzU+lfb^ + U'-b*)] 
a -bJ a -b 

after rearrangement 

- ( a 2 + b 2 ) X H 2 . a2b+^ 2 . a M ( 2X2+2^| 2 . bX+a2) 
Yi^ 

F o r X=0 we g e t f rom (H7) t h a t 
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Tl(o)- -i | b-
 ih!£^l +ii^ilb*+u*_b*». 

a -b a -b 

-l-§--a2b+i§ b 3 . 1 | b a ~ _ l | b 3 + n . a 2 b 
. _ _ =0/ 

therefore the branch Yi of the hyperbola (Hi) is going through 

the origin of c o o r d i n a t e s . 

Example 13, 

The equation 
2n-l , 2n-l , , , _. _-T 

x +y =k, k*0, neN, 

defines on (-00,00) a function which can be explicitly 

expressed by the equation 

(Fi) y^-Ntk-x2*-1) 

For composite function YY(x) it holds: 

, x 2 n - 1 , r. , 2 n - l h 2n-l \2n-l- 2n-l • 2n-1 

yy(x)= N[k-( Nk-x ) ]= u =x; 

so the function expressed by the formula (Fi) is a solution of 

the equation (1). We obtain the equation 

(-^•N-f ) 2 n - 1
+ ( y +

2 n - 1 ^ j2*-1-* 

for the translated curve (Fi) in the direction of the axis of 

the 1. and 3. quadrants that is going through the origin of the 

coordinates. From here we obtain the explicit expression of the 

curve 

,— \ 2n-l I / k x , 2*1-1.-- , ,2n-l| k ..2n-l-, 

(F2) y= - N | ( _ ) + >j[k-(x+ N — ) J. 

Easily can be verified that the function defined by the equation 

(F2) is a solution of the equation (1). 
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