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A C T A U N I V E R S I T A T I S P A L A C K I A N A E O L O M U C E M S I S F A C U L T A S R E R U M N A T U R A I ^ I U M 

1992 Mathematica XXXI Vol .105 

ON A CLASS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS 

FOR THIRD-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 

WITH PARAMETER 

SVATOSLAV STANEK 

(Received October 27, 1990) 

Abstract. In this paper we study the existence of solutions 

of a one parameter value problem y' ' ' (t ) -Q[y , y ' , y ' ' ](t). y' (t) = 

F[y,y' ,y" ,u]{t), a(y)=0, y'(t^-y'(t2)«y'(t3)«0 in which 

Q.X3—>X, F:X3*I—>X are continuous operators, <x: X—>R is a 

continuous increasing functional, a(0)=0, where X^C (<t ,t >), 

I=<a,£>>, -oo<t <t <t <OD, -o3<a<b<oo, 
' 1 2 3 ' 

Key words: Third-order functional differential equation 

depending on a paramerer, functional boundary value problem, 

Schauder linearization technique, Schauder fixed point theorem. 

MS Classification: 34K10, 34B15. 

1. INTRODUCTION 

Let -co<t <t <t <oo, -oo<a<b<oo, J=<t ,t >,I=<a,b> and l e t X be 
1 3 3 ' 1 3 

t h e Banach space of C°-funct ions on J wi th the norm 

liyll=-max{ l y ( t ) I ; t e j } . Consider the f u n c t i o n a l d i f f e r e n t i a l 
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equation 

(1) y" ' (t) «- Q[y,y' ,y" }(t).y' (t) - F[yty
f
 fy" fu](t) 

in which Q.X3—>X, F:X xl—-or are continuous operators, 

Q[y, z,w](t)>0 on X for all tej, depending on the parameter u. 

Let a:X »R be a continuous increasing (i.e. a(x)<a(y) for 

all x,yeX, x(t)<y(t) on J) functional, a(0)=0. The purpose of 

this paper is to obtain by the Schauder linearization technique 

sufficient conditions imposed on Q, F such that equation (1) 

admits, for a suitable value of the paramerer \±, a solution y 

satisfying the boundary conditions 

(2) <x(y)=0, y'(ti)=y
/(t2)-=y'(t3)=0. 

A special case of (1) is the differential equation 

y' "-g(t,y,y' ,y" ) •Y'=f(t/y,y' ,y" ,u) 

in which gec°(JxR3) , f€C°(JxR3xj) and g(t,y, z,i/) >0 for all 

(t,y,z,w) e JXR3. 

Many sufficient conditions are known for the existence and 

uniqueness of solutions of boundary value problems for the 

third-order differential equations under various types of 

boundary conditions using different techniques ( see for example 

[1]-[31], [34]). 

The boundary value problem 

y " '=h(t,y,y' ,y' ' )f(t,y,y' ,y' ' ,y' ' ' ,u), 

y(t )=y(t )=y(t )=0 where u is a parameter, was investigated 

in [25] using a suitable version of the Banach fixed point 

t h e o r e m . 

2. NOTATION, LEMMAS 

Let <p&C2(J) and let u , v be the solution of the 

differential equation 

Y' '^QiVfV' ,<P' ' ](t) .y, 

u<p{ti)=0> % ( t i ) = 1 ' r p ( t i ) a s 1 ' r f f i ( t i ) = 0 - F o r ( t # s ) € j x j d e f i n e 

r(t,s;<p) by 

r{t,s;i>)=Uy{t)Vy{s)-u (s)v U) (~-r(s, t;p)). 

Then r(t,s;<p)>0 f o r t -ss<t-st and r(t,s;<p)<Q f o r t -^t<s-st 

( s e e [ 3 2 ] ) . 
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Lemma 1. Assume f>ec2(Jh h€C°(Jxj), h(tt.) is increasing 
on J for each fixed tej and 

(3) Mt,a).h(t,b)-sO for all t&j. 

Then there is a unique UQ&I such that the differential equation 

(*) y' '=0f9,f>' ,f' ' ](t).y+h(X,u) 

with u=uQ admits a solution y satisfying' 

T5j y(ti)=y(t2j=y(t3)=0. 

Moreover this solution y is unique. 

Proof. Setting 

r(t ,t;ę) 
7{t'*)mrUz.tli9)\ 

2 
r(t , s;<p)h(s, д)ds+ r(tfs;<p)h(s,u) s 

t t 
1 2 

for (t,u)<sjxi, y is the unique solution of (4) satisfying the 

boundary conditions y(t ,ji)=0=y(t , u) and since 

r(t . t ;->) 

У
( t
з ^

) =
r ( t ,t ;„) 

r( t f s; (p)h(s, д)ds+ 

t 

t 
• з 

r(t ,s;<p)h(st д)ds, 

t . 
1 2 

y(t , . ) is an increasing function on I, y(t ,a).y(t ,b)a-o 

(by (3)) and hence y(t , u)=0 only for a unique umU*I* 

Consequently, equation (4) admits a solution y satisfying (5) 

if and only if U=M . This solution is necessary unique. 

Lemma 2. Assume the assumptions of Lemma I are fulfilled. 

Then there is a unique u €i such that the differential equation 

(6) y' ' '=Q[<p,<p' ,<p' ' ](t).y'+h(t,u) 

with U=M admits a solution y satisfying (2). Moreover this 

solution y is unique. 

Proof. By Lemma 1 there is a unique UQ£I such that equation 

(4) with u=u admits a (and then unique) solution z satisfying 

z(t )=z(t )*=z(t )=0 consequently, equation (6) admits a solution 

y satisfying y' (t )=y' (t^^y' (t3)=0 exactly if U^UQ and then 

t 
y(t)=f z(t)ds+c are all such solutions, where c is an arbitrary 

Jt 
c o n s t a n t . 
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r
t t t 

Since a( \ z(s)ds+c )<0, a( | z(s)ds+c )>0 for c <-I f z(s)dsi, c> 
J t 1 J t 2 i J 2 

t ° t ° 
tit z(s)dsll and p(c) :=-a(f z(s)ds+c) is a continuous increasing 

\ 
function on R, p(c )<0, p(c )>0, the equation p(c)=0 has a 

unique solution CQ. Therefore y-=f z(s)ds+c is a (and then 

o 
unique) solution of (6) with u=uo satisfying ( 2 ) . 

Remark 1 . If a(y)=0 for some yex, then y(£)=0 for a £ej. 

In the opposite case either y(t)>0 or y(t)<0 for all tej and 

since a(0)=0 and a is increasing we have either a(y)>0 or 

a(y)<0, r e s p e c t i v e l y . 

Next we will assume there are positive constants r , r , r , 
* o' i' 2f 

(i) '•1(vt
1

)sro 
such that the operators Q, F satisfy the following assumptions : 

(ii) lF[yo,yi,y2,^](t)lsri.Q[yo,yi,y2](t) for all t<zJ and 

[y 0 ,y i /y 2 /M]€Dxj , where D={[yo,yi,y2]; y*X, Hy^-Si^ for 

i~=0, 1,2}; 

( i i i ) F [ y o , y i , y 2 , / L i i ] ( t ) < F [ y o , y i , y 2 , ^ ] ( t ) for a l l t*J, 

lY0,YlfY2]eI> and u^ u^I, Ut<U2; 

( i v ) F [ y o , y i , y 2 , a ] ( t ) . F [ y o , y i , y 2 , J b M t ) s o for a l l t e j and 

ly0,YlfY2]eD; 

(v) m i n { ( l + r B ) i , 2 ( r (A+r B)y}^r , where 

.A=sup{llF[yo,yi,y2,fu]H; [y^y^y^u^D*!}, 

B=sup{llQ[yo,yi,y2]H; [y^y^Y^D} , T« max{t^-t^ t^t2}. 

Lemma 3 . Assume assumptions (i)-(v) are fulfilled for 

positive constants r , r and r . If <p&C2(J), \\q>U)\\ -* r 

(1=0,1,2), then there is a unique u ej such that the 

differential equation 

(7) Y" '~Qlf>,<p' ,9" nt).y'~F[<p,<p' ,<p" ,u](t) 

with u^u admits a (and then unique) solution y satisfying (2) 

and moreover 

(8) lyml*r for 1=0, 1,2. 
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Proof. Setting h(tfu)*-F[f,$' ,p" ,**l(t) for (t,M)ejxj, then 

h€C°(Jxj), h(t, . ) is increasing on I for every fixed teJ (by 

(iii)), h(t,a) ,h(t,h) -s 0 on J (by (iv)) consequenty, by Lemma 2 

there is a unique u ej such that equation (7) with M=JU admits a 

(and then unique) solution y satisfying (2). 

Let ly'(t)|s|y'(£)|>r. f o r a 1 1 t € j a n d a £ €(t/t 3)-
 I f 

y'(£)>ri (y'(V<~r ) then by (ii) we have y"'(£)>0 (y'"(£)<0) 

which contradicts that y' has a local maximum (minimum) at the 

point t=£. Thus ||y'||<r . Since y(7))=0 for a -qej (see Remark 1) 

and t 

y(t)=§ y'(s)ds 

we have ||y||-s( t -t ) lly' ll-sro. 

Let r ^(A+r B)z. Since y'(t )=y'(t )=y'(t )=0 there are 

^ i ^ W ' ?2€(t2
,t3) s u c h t h a t y/ ' ̂ V 0 -" 7' ' (^2

) a n d f o r m t h e 

equalities 

t ( . 
y' ' (t)=J JF[ ?>,¥>' ,<p' ' ,UQ](s)+Q[<p,<p' ,cp" ](s).y' (s)|ds, tej,i=l, 2, 

we obtain 

| y " (t)\s(A+rB)(t2-ti) f o r t € < t i f t 2 > 

a n d 

\y" (t)\*(A+rB)(t3-t2) for te<t2,t3>, 

consequently, lly' ' ||-Sr . 

Let r £2(r (_4+r B)) . Let y"(t)*0 on an open interval J cj 

with an end-point £, y " (£)=0. Integrating the equality 

g^(y' ' (t))2=2Q[*>, *>',*>' ' ](t).y' (t)y" (t)+2F{f ,f' , f>' ' ,H Q] (t). y " (t) 

from f to t (ej ) after evident estimates we obtain 

t t 
(y" (t))2*2r Bl f ly"(s)lds|+2Al f ly"(s)ldsl = 

i J^ Je 

= 2(_4+riB) ly' (t)-y' (£) Is-U^U+^B) 

hence 

ly" (t) Js.2(r
i
(Л+r

i
B))

ł for all tєj 

and lly' ' ll-sr . This completes the proof. 

75 



3. EXISTENCE THEOREM 

Theorem 1. Assume assumptions (i)-(v) are fulfilled for 

positive constants r , r and r . Then there is u ej such that 
* o' 1 2 0 

equation (1) with u-u admits a solution y satisfying (2) and 

(8). 

Proof. Let Y be the Banach space of C^-functions on J with 

the norm |}yll2«Hyll + l!y' H + liy" II and let X={y;y€Y, ||y(n|!-̂ ri for 

i=0,l/2}. X is a closed bounded convex subset of Y. Let peX. By 

Lemma 3 there is a unique ju ej such that equation (7) with U^U 

admits a (and then unique) solution y satisfying (2) and (8). 

Setting T((p)-y we obtain an operator T:X—>K and to proof of 

Theorem 1 it is sufficient to show that T has a fixed p o i n t . 

Let {y }cX be a convergent sequence, lim y =y and let 
n n-»oo n 

T(y )=z , T(y)=z . Then there are a sequence {,u }ci and a u ej 
" n n n 0 

such that we have (see the proof of Lemma 2) 
t 

z (t)-=f p (s)ds+c for all t<zJ and n^N 
n J . n n 

and 
t 

z(t)=f p(s)ds+c for all teJ, 
Jt ° 

I 
where c , c eR, 

o' n r(t2ft;yn) Г
* 

p
n

(t)
"r(t .t

f
;y ) r(t

t
,s;y )F[y ,y' ,y" ,џ ](s) s+ 
ì 

t 

t 
ľ r(t,s;y )F[y ,y' ,y" ,џ ](s)ds, 

J . n n n n n Ьг 

r(t ,t;y) vЬг 
P(t)т

"r(t ,t ;y) rít1'
s;-f)Fty'y''Jr'1 ,Д

0
](s)ds+ 

2 1 J -t 
1 

J r(t,s;y)F[y,y',y" ,д
o
](s)ds 

and 
2 

t. 

t t 
a(f p (s)ds+c )-=0, a( Г p(s)ds+c )=0, 

»J . n П «J . 0 

1 1 

P
й

(t
l

)вP
n

(t

2

)S=
Pn

(t
З

)aB
°' PÍt^-фíV-pít^-O. 
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If {11} is not a convergent sequence there are convergent 

subsequences 

K }' K }'
 lim U
* "V

 llm Ur =V W 
and then 

r(t ,t;y) r
t

2 

lim p (t)- ;.
2
 . A 

*k r { t , t ; y) 
n~>co n 2' 1 '

J
 J 

r(t ,s;y)F[y,y',y'',A ](s)ds+ 
i 

t 
1 

J r(t,s;y)F[y,y',y' ' ,\i]($)ds, 
t 
2 

1 І D 1 P
г

 ( t ) =
r(t

2
 t -У) 

r(t
o
,t;y) p

t
2 

rU^s^jFty^' ,y' ' ,X2)(s)ds+ 
t 

J r(t,s;y)Ғ[y,y' ,y' ' ,Л
2
](s)ds 

t 
2 

uniformly on J. Since r(t ,t ;y)<0, r(t ,t ;y)>0, r(t ,s;y)<0 

for all s€(t ,t >, r(t ,s;y)>0 for all -?€<t , t ) and (by (iii)) 

F[y,y',y",Xi](t)<F[y,y',y",X2](t) on J, 

we have lim p (t )<lim p (t ) which contradicts p (t )==0 for 
© n->oo * k 3 n-*oo ^ r 3 n 3 

n n 

a l l neN. Hence {/i } i s convergent and l e t l im ji =*!*. 
n n - » e o n 

Since jf p (s)ds I is uniformly bounded on J, a is an 

t 
increasing continuous functional and <x(J pn(s)ds+CR)-=0 for all 

netf, we see {c } is a bounded sequence. If {c } is not a 
n *» 

convergent sequence t h e r e a re convergent subsequences 

K }' K }' liBl S =d.' l iB Cr =<V V * * ' V r/ V n ; n-KJO n n~*0> » 

and 
t t 

lim z (t)-=f p(s)ds+d , lim x (t)-=[ p(s)ds+d 
n-*03 n t n-H» ti t 

uniformly on J, where 
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r(t t;y)
 Г

C 

p ( t )
* r T Г ~ t

 ; y
) r(t

1
,*;y)ГІy,y'

/
y",łi ](s)ds+ 

2 1 J . 
c. 

t 
Г r(t,s;y)F[y,y',y" ,м*](s)ds for all tej. 
t 

2 

Next we have 

t t_ 
0=lim a(f p (s)ds+c )=a(f p(s)ds+d ), 

J . k k J . 1 
n->O0 t n n t 

1 1 

t t_ 
0=lim a(f p (s)ds+c )=a(f p(s)ds+d ), 

J . r r J , 2 
n-»00 t n n t 

1 1 

consequently, d =d which contradicts d <d . Therefore {c } is 
1 2 1 2 n 

convergent, lim c =c* and then 
n~»oo n 

t 
(z*(t):=) lim Zn(t)=Л p(s)ds+c 

t 
i 

t__ 
uniformly on J and a( f p(s)ds+c*)=0. Evidently z* is a solution 

J
t 

I 

of the differential equation 

v,"-Q[y,y',y" ](t) .v'=F[y,y' ry" , u"](t) 

and a(z*)=0, z*'(t )=z*'(t )=z*'(t )=0. 

From Lemma 2 it follows u*=u and z*=z. Due to the fact that 

lim z{i)(t)=zli)(t) 
n 

n-»oo 

uniformly on J for i=0,l,2, lim T(y )=T(y) and T is a continuous 
n->oo n 

operator. 

L e t <peK and T ( p ) = y . From t h e e q u a l i t y 

Y" ' (t)~Q[<p,<p' ,<p" ](t)y' ( t ) + F [ ? ) , ? ) ' , ( p " , u o ] ( t ) 

holding on J for a uo€l, we get lly" ' ll-s_4+r B (: =r ) consequently, 

T(K)c{y; yeC3(J), ||y(1)||̂ ri for 1=0,1,2,3} (*:£). By the Ascoli 

theorem £ is a compact subset of Y and therefore T(K) 

is a compact subset of Y too. This proves T is a completely 

continuous operator and by the Schauder" fixed point theorem 

there is a fixed point of T. 
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Remark 2. Using the results from the paper [33] we can 

prove that the boundary conditions y'(t )**y'(t )«y'(t3)*Q in (2) 

can be repalced by y' (t )-y'(t )=y' (t )=y'(t )-y'(t )=0 , where 
1 4 2 3 5 

t <t <t <t <t . 
1 4 2 5 3 

Example 1. 

Consider the equation 

y/"(t)-k(t)exp{|y(ho(t))y'(hi(t))l}y'(t) = 

(9) =m( t) cos (s(t)y" (h2(t)))+u.p(t) 

i n which k,m, s,p, hec°( < - l , 1> ) , h : < - l , l > K - l , 1> , ( i = 0 , l , 2 ) , 

k0sk(t)*klt P0*p(t)&pit | /n(t)l-sifoPo /(2(po+p i)) for t € < - l , l > , 

where k ,k ,p ,p are positive c o n s t a n t s . The assumptions of 

Theorem 1 are fulfilled with J=<-1, 1> , I=<-k / (2(pQ+pi)) , 

ko/(2(po+pa))>, rQ=l, r%~t, r2 = (ico+e
iJfi)

i. Let t2€(-l,l) and 

let a be a continuous increasing functional on the Banach space 
1 

C°(J) with the sup norm, a(0)=0 (for example oc(y)=[ y(s)ds or 
±1 

00 

a(y)= y/Sky(xk), where £k€(0,oo), z^j for Jr-=1, 2, . . . , n). By 
k=l 

Theorem 1 there is u el such that equation (9) with U^U admits 

a solution y satisfying 

and 

«(y)=0, y' (~D=y'(t2)=y' (1)«0 

ly(t)l-si, ly'(t)|s±, \y" (t)\*(kQ+e*ki)* for all tej. 

Next let -Kt <t <t (1. By Remark 2 there is u el such that 
4 2 5 J 1 

equation (9) with u=u admits a solution y satisfying 

and 

O - Í У ^ - O , y ; ( - i ) - y ; ( t 4 ) = y ; ( t 2 ) = y ; ( i ) - y ; ( t s ) = o 

ly^t^Ul, Iy;(t)|si, lyJЧtìlsíJc^+в*^)* for all tєj. 
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