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Abstract: This paper gives sufficient conditions for the
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= y'(tz) = y'(t3) = 0, depending on the parameter A .
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1. Introduction

Let a>0 be a positive constant and let ty, to, t; € R,

—co<:tl< t2< t3< oo . Consider the differential equations

2 . fee
y - haty = f(ty,y Ly Ly T, ) (1)
and

. 2 . .
y - 4a y = g(tay’y sy ’(h) (2)



in which feC®(IxR*x1I; R), geCO(IxR>x I; R), where J =

=<t1,t3>, I =<b,cy(-0<b c¢e0), depending on the parameter
A . Our aim is to give sufficient conditions on the functions f,
g for the existence and uniqueness of solutions of (1) and (2)
satisfying the boundary conditions

y (t) = y(ty) = y (1) = y'(t5) = 0. (3)

A three-point boundary value problem for the one-parameter
nonlinear second-order differential equations was studied by the
author in [2] and [3].

"

g(t,y,y ,y).
0 has been

Three-point boundary value problem y ~~
FCty,y,y Ty T A, v () =y () = (i)
studied in [l] using a technique of Green's functions and the

Banach fixed point theorem.

2. Notation, lemmas

Let r(t,s) = sh[a(t-s)]ch[a(t-s)] for (t,s)e 32 and let
A = (2a%rCt), 1)) (€ 0), T = max {t,-t;, ty-t,f .
Lemma 1. Let heC®(J; R). Then

to
y(t) = Ashz[a(t—tz)]J r(t;,s)n(s)ds +
1
(4)
t
" (232)'1f sh?[a(t-s)]h(s)ds, ted,
t2
is the unique solution of the equation
y - 432y’ = h(t) (5)
satisfyeng the boundary conditions
y (t)) = y(ty)) = y () = 0. (6)

+ Proof. Itis easy to verify that y defined by (4) is
a solution of (5) satisfying (6). The uniqueness follows from
the fact that the trivial solution is the unique solution of the
homogeneous problem y =~ - Aazy' =0, (6).
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Lemma 2. Assume that he C°(JxI; R), h(t,.) is an in-
creasing function on I for every fixed t&J and

h(t,b)h(t,c) € 0 for teJ. @)

Then there exists the unique (1406 I such that the equation

2

y " - 4ay’ = h(t,4) (8)

with A4 = o has a (and then the unique) solution y satisfying
(3).

P roof. Setting

t
2
z(t,p) = Ashz[a(t—tz)] j r(t),s)h(s, u)ds +
t
1

1

+ (22971 [ sh®[a(t-8)]n(s, k)ds

o+
NRH'

for (t,(u)e JxI, then by Lemma 1 z is the unique solution gf
(8), z'(tl,}a) = z2(t,, 4) = Z,(tz,/ﬁ) = 0. From the equality

t
2
z'(t, u) = 2Aar(t,t,) f r(t;,s)h(s,)ds +

Y

t
+ a_lf r(t,s)h(s,/a)ds

ty

we see that z’(tB,.) is an increasing function on I and using
(7) we get z'(t3,b)z'(t3,c) £ 0. Consequently, Zl(t}’/“o) =0
for the unique /106 I and the lemma is proved.

Next we shall assume that there exist positive constants
To» T1s T2

r, T Sr (9)

0’
such that g satisfies some from the following assumptions:

<

lgCt,y,z,v,p)| = ltazr1 for (t,y,z,v, u)€ D0 XI, where D =
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= J x <=L s> X <=L, X <—r2,r2> ; (10)
g(t,y,z,v,.) is an increasing function on I for every fixed

(t,y,z,v)€e D; (1)

g(t,y,z,v,b).g(t,y,z,v,c) £ 0 for (t,y,z,v) €D; (12)

——
min ~_{(4a2r1 + B)T, 2 rl\,Zazrl + Bg ¢ r, , where

B = max {|g(t,y,z,v,s)|; (t,y,z,v,x)eDxI]; (13)
and f satisfies some from the following assumptions:

<

If(t,y,z,v,w,/a)l £ luazrl for (t,y,z,v,w,(h)é:HXI,

where H = J»<-r ,r b x {-Tp,01> X (:—rz,r2> X R; (14)

f(t,y,z,v,w,.) is an increasing function on I for
every fixed (t,y,z,v,w)€ H; (15)

£(t,y,z,v,w,b).£(t,y,z,v,w,c) =0

for (t,y,z,v,w)€ H; (16)
min{(l&azrl +OT, ZE ‘/2321‘1 +C§ £ r, , where C =
= max {[£(t,y,z,v, w5 (t,y,z,v,w, k) EH XT] ; (17)

the function w—f(t,y,z,v,w,(h) is increasing in w on R

for every fixed (t,y,z,v,/:)sJX/,—rO,rD> x -Tp,0>x
x {-Lp,Tp> X I (18)

Lemma 3. Let assumptions (9), (14) - (18) be satisfied
for positive constants £, Tps Ty and let D be as in (10). Then
there exists the unique function 9; :DXI — R such that

gl(t’y’zav,(k) = aazz + f(ty)I’Z,V’gl(t,y,z,V,‘ll),(-ll) fOI‘
(t,y,z,v,k)€DxI, (19)
g,€C%(Dx1I; R), (20)

lgl(t,y,z,v,/u)—Atazz] E 4azrl for (t,y,z,v,/u)ED)(I; (21)

gl(t,y,z,v,.) is an increasing function on I for every
fixed (t,y,z,v)eD, (22)
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na
o

[gl(t,y,z,v,b) - 4322] [gl(t,y,z,v,c) - 4322] for
for (t,y,z,v)€D, (23)

R
min{(l&azrl + BI)T, 2)}71 V2a2rl +B g ¢ r, , where

2
B, = max{lgl(t,y,z,v,‘li)—lta z| ; (t,y,z,v, )€ DxI}. (24)

Proof. (See the proof of Theorem 0.1 [4]). Let

i ) 2
(1:0,y0,zo,v0,w,(‘,:0 JeHxI. Setting p(w) = w - 4a z, -
- f(to,yo,zo,vo,w,,uo) for we R then p is an increasing function

on R, lip p(w) = Y o and thus there exists the unigque
W -0

W, €R: p(wo) = 0. If we put w, = gl(to,yo,zo,vo,/éo) we obtain

a function g;:DxI —> R satisfying (19). From |gl(t,y,z,v,/c) -

- 4322' = [f(t,y,Z,V,gl(t,y,Z,V,/u),(h)| H C for (t,y,Z,V,(h)e

€DxI it follows B1 £ C and (24) holds.

Suppose 9; is discontinuous at the point (to,yo,zo,vo,(a.o)e
€D xI. Then there exist a sequence {(tn’yn’zn’vn’/‘n)} in DxI

and and € > 0 such that iiﬂ (tn,yn,zn,vn,/tn) = (to,yo,zo,vo,(hé)

and

Loyt yzos v &) = 91ty zgavg, )| & € (25)

for ne N .

Since {gl(tn,yn,zn,vn,(un)f is bounded we can assume,

without loss of generality, that lim gl(tn’yn’zn’vn’/un) = w

n»oo 0

for some w, € R. But we know that

2
gl<tn’yn’zn’vn’/‘n) = 4a Zn +

N B Y20V 9 (LY oz v ), A)
2

and hence w, = 4a“z  + f(to,yo,zo,vo,wo,/uo). So w, =

= Ql(to,yo,zo,vo,/uo). On the other hand, by (25), one has

|W0 - gl(to’yo’zo’vo’/a‘o)l 2 £ which is a contradiction.

Since |gl(t,y,z,v,/4)—4azz| = lf(t,y,z,v,gl(t,y,z,v,{u),/1.)] £
£ 4a2rl for (t,y,z,v,)€DxI, we get (21).

Let A, eI, A< . If g;(t,y,z,v,2) z g9;(t,y,z,v, ) for
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some (t,y,z,v)€ D, then using (15), (18) and (19) we get

nv

0

gl(t,y,Z,V,i\) '4322" f(t,y,z,v,gl(t,y,z,v,?\),5‘.)

vy

2
gl(t,y,Z,V,(LL)-lta Z-f(t,y,z,v,gl(t,y,z,v,/L),)) >
> gl<t;Y7ZaV’(M-) ‘4322‘f(t9Y5Z’V,gl(taY1z;V’(u)7(LL)
contradicting gl(t,y,z,v,/«) —4a22-f(t,y,z,v,gl(t,y,z,v,/k),/4) =0.
Thus (22) holds.

Finally we prove (23). By (15) and (16) we have
£(t,y,v,w,b) £ 0, £(t,y,z,v,w,c) 2 0 for (t,y,z,v,w)e H and thus

A

gl(t’yszav9b) - Aalz = f(t:y,ziv’g]_(tyy’zyvyb)’b) 0,

v

gl(t9Y;Z;V:C) - 4322 = f(t,y,Z,V,Ql(t,Y,Z,V,C),C) 0

for (t,y,z,v)e€D.

Lemma 4. Let assumptions (9) - (13) be satisfied for
positive constants r_, ry, r,. Then to every (f sCz(J; R),
| l((l)(t)l E: Ty for t&J and i = 0,1,2, there exists the unique
/.OEI such that the equation

y - waly = gCt, (D), @), ), M) (26)

with A = (&0 has a (and then the unigque) solution y satisfying
(3) and

Iy ey € r, for ted, i =0,1,2. (27)

Proof. Let (/e:CZ(J; R), ltl(i)(t)l E r; for teld,
i=0,1,2. Set h(t,u) = g(t,(t), (1), y"(t),(«) for (t,u)edx
xI . By Lemma 2 there exists the unique Mo € I such that equation
(8) with = (440 has a (and then the unique) solution y satisfy-
ing (3).

Assume |y (t)] % ly " (§)]> r, for te J with some fe . Let
4%, %,> ¢ be the maximal interval that ?é(’t}l,qu) and

Iy'(t)]>rl for ts(”{l,"fz). Obvious Iy'("zl)| = IY’("ZZH =Ty.
If y'(§)> ry (y'(§)< - ;) then y (£)> r; (y'(t)<—r1) for
tE('h,"lz), thus y”(AZI) £ (yﬂ(AZl) £ 0) and using (10) we

obtain y " '(£) >0 (y "(t)<0) for te(%,,%,) conseguently,
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y () >0 (y(t)<0) on (4,,%,) contradicting y (%,) =

- ‘ - _ ’ £
= (y (’112) = _rl). Therefore |y (t)]| r, for teJ.
From the equality y(t) =[ y (s)ds and from (9) we get
t

2
ly(t)| ¢ r, for teJ.
Let (4a’c, +B)% € r,. Let y"(T) = 0 for i=1,2 where

t

2

t, < i'l <t,< T, < ty. Using the equalities y (1) =J y “(s)ds
i
) P
(i=1,2) and the inequality |y ~(t)] = |4azy (t)+h(t,/uo)| =
<

= 432r1 +B for te€ J we obtain

ly 4y ¢ (4azr1+B)T E r, for tel.

Let 2(1‘_1\232rl+8 ES r,. If y (t) # 0 for te Jy, where
JlCJ is an interval with an end point f, y"(f) = 0, then
integrating the equality

&y en? = wa? & (0% w2y O, ), ted

-

from f to t we obtain

t
(y"(‘c))2 = ltaz[(y'(t))z - (y’(f ))2] + Z{y"(s)h(s,/to)ds ¢

2.2
£+ 4Br1

. ‘/ 2
for teJ,. Thus |y (t)|§2‘/?1 2ary +B  for telJ.

1

£ Ba

3. Existence theorems

Theorem 1. Assume that assumptions (9) - (13) are satisfied

for positive constants r_, Iy, Tp- Then there exists k,& I such
that equation (2) with u = A4, has a solution y satisfying (3)
and (27).

Prootf. LetL = 4a’r;+B and let X = C%(J; R) be the

2
Banach space with the norm ”Y” = max{E 5 Iy(l)(t)l; te JE for
1:
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y € X finally let K = {y; ye X, Iy(i)(t)l E r; for teld, 1:0,1,2}.
K is a closed bounded convex subset of X.

By Lemma 4 to every (Pe K there exists the unique My S
such that equation (26) w1th/b (’L has the unique solution
ye K satisfying (3). Setting T(“/) = y we obtain an operator
T:K — K. We prove T is a completely continuous operator.

Let {yn}, y'ne K be a convergent sequence, lim y_ =y and

N>oco

n

let z, = T(yn)’ z = T(y). Then there exist the sequence {/‘n%
(t[ne I and /(061 such that

t
2
z (1) = Ash?[a(t - tz)]j r(t),s)g(s,y (s),y (s),y[(s), 4 )ds +
t
1

t
+ (232)“]'] shz[a(t - s)]g(s,yn(s),yr;(s),y;(s),/n)ds,
t

2 ted,
and
to
z(t) = Ash [a(t—t )1I l,S)Q(S,Y(S),y (S),y (3)’(11 )ds +
tl
t
* (232)_1f’5h2[a(t-s)]g(s,}’(s),y'(s),y“(s),/,o)ds,
b2 teld.
Hence
t2
2, (1) = zaAr(t’tz)J r(t),s)9(s,y (s),y (s)y (s), 4 )ds+
)
_1 . ,,
a f r(t,s)g(s,yn(s),yn(s),yn(s),/,n)ds, ted,
t2
and A
t{,z
z (1) =ZaAr(t,tz)JE r(tl’S)g(,S’y(s)’Y'(S)»Y"(S),/ao)ds .
t
1
t
+ a‘lj:r(t,s)g(s,y(s),y»(s)’y,'(s),(ao)ds, ted.
2



If {/tnz is not a convergent sequence then there exist convergent

subsequences {(“k f s {("r {, lim {qk = ?\1, lim My T AZ’
n n nN-+ oo n n-»oo n
I/\l< ')\2 and
t2
lim Zl; (t) = 2aAr(t,t2)J‘ r(tl,s)g(s,y(s),y'(s),y"(s),Al)ds +
N+ n A
1

t
+ a1 f r(t,s)g(s,y(s),y (s),y (s), A)ds,

'y
ty
lim 21: (t) = ZaAr(t,tz)f r(tl,s)g(s,y(s),y'(s),y"(s),)\z)ds +
N-+00 n ‘ftl
t
v a7 20,900,509,y 8,y (), 2,05
i
2

uniformly on J. Since g(t,y(t),y (t),y (t), A< g(t,y(t),y (),
y (), A,) for teJ (by (11)), we have lim z, (t3) ¢ lim zr’ (t3)
n

n-o n- oo n
contradicting z’;(t3) = 0 for all n€N. Therefore [}«n{ is con-
vergent and 1etn]_LNi”m (t‘n = (LLx. Then

t
2
(2*(t) = )nlircn z (t) = Ashz[a(t - tz)]J r(tl,s)g(s,y(s),y'(s),

ty

t
y (), Wds + (2a2) 71 f sh?[a(t - $)]g(s,y(s),y (8),y (), 4)ds

)

uniformly on J. Then of course z* is a solution of the equation

2

n

277 - 4a‘z’ g(t,y(t),y'(t),y”(t),(a*) .

z*'(tl) = z*(tz) zx’(tz) = zx'(tB) = 0 and it follows from
x

Lemma 4 A% = My » 20 = z. Since lim zgl)(t) = z(l)(t) uniformly
IR

on J for 1=1,2 then lim T(yn) = T(y) and T is a continuous
N-»eo
operator.
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Next T(K)CS = {y; ye KNC>(2), |y (t)] £ L for ted] and
because S is a compact subset of X, T(K) is a compact subset of
X, too.

By the Schauder fixed point theorem there exists a fixed
point ye K of T which has all properties demanded in the theorem.

Theorem 2. Assume that assumptions (9) and (14) - (18) are
satisfied for positive constants Ty, Ty, Tpe Then there exists
My €T such that equation (1) with 4 =4 has a solution y sa-
tisfiying (3) and (27).

Proof. By Lemma 3 there exists the unique function 9;
satisfying (19) - (24). Setting g(t,y,z,v,4) = gl(t,y,z,v,/«) -
- 4322 for (t,y,z,v,4)€D XI than g satisfies assumptions (9) -
- (13) and thus by Theorem 1 there exists Mo € I such that
equation (2) with M= My has a solution y satisfying (3) and
(27). From the equalities

y (8) - waly (1) = glt,y(1),y (1),y (1), 4 ) =

n

gy Ct,y(£),y " (£),y “(0), 4) - 4aly (1) =

£0t,y(1),y "(£),y "(£),9, (t,y(£),y "(£),y " (1), 4 ), b))
and

y () = gy (ty (1), vy (D),y (D), )

for teJ, it follows y is a solution of (1) with 4= ({Lo satis-
fying (3) and (27).

Example 1. Let t; = 1, t2€(1,2), t; = 2 and let m, n be
positive integers. Consider the differential equation

y = 27y T+ aty™(y D MsinCy 7Y + p(t) + 41+ lyy ), (28)

where peC%(<1,2>; R), |p(t)| ¢ 1 for te <1,2)>. The assumptions
of Theorem 1 are satisfied with L, =1r; = 1, r, = 9Y2 and
MELC-9,9% . Thus there exists ‘q_oe<—9,9> such that equation
(28) with _u= A, has a solution y satisfying y (1) = y(tz) =

=y (t,)) =y (2) =0and |y(t)| 21, [y ()] 21, [y" ()] £ 9VZ
for t€<1,2>.
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Example 2. Let ty = 0, t2€(0,l), t; = 1 and let v be a
positive constant. Consider the differential equation

y = Ty + t° exp(yy - 1cos(y “Darctg[(y )2 + 1] + A4 . (29)

The assumptions of Theorem 2 are satisfied with L, =1y = 1,

£, = Vé and ME <- % , —1’2—>‘ Consequently, there exists

> such that equation (29) has a solution y

N

T
My € <- 7,
satisfying y (0) = y(tz) = y’(tz) =y (1) = 0 and |y(t)]| £ 1,
[y (8)| =1, |y"(t)| 2VéT for te <0,1>.

4. Unigqueness theorems

Theorem 3. Assume that assumptions (9) - (13) are satisfied

If M s _.9_9, R MGCO(DXI;R),

for positive constants Tos Tps Ty = 5
Uy vz v

2, g g
4a® + DZ(’c,yl,zl,V,(,h) z L (t,y5,29,v, A0 (1, - 1) 20 for

Ly
(30)
(t,yi,zi,v,(t')éétl,t2>x<- r»rg>x L-1,1>x
x<—r2,r2>x I, i=1,2
and
lg-(*c,y,z,v,(h) o, 432+2—g-(t,y,z,v,('1) £ 0 for
Uy V2 (31)

(t,y,z,v, h) € <t2,t3>x<—r0,r0>x<—r1,r1>,\~<—r2,r2>.\'l

then there exists the unique ZAOE‘I such that equation (2) with
M= M, has a solution y satisfying (3) and (27). Moreover this
solution y is unique.

Proof. By Theorem 1 there exists /fOeI such that
equation (2) with 4= A has a solution y satisfying (3) and_
(27). Suppose there exists ME I, /io 2 ‘/Il’ such tha’cl equation
(2) with 4= (t'l has(_a solution yy, yl(tl) = yl(tz) = yl(tz)
= yl'(t3) = 0 and Iyll)(t)l E r; for ted, i=0,1,2. Set w=y-y,.
Then w'(tl) = w(tz) = w'(tz) = w'(t3) = 0 and from the equality
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W) = dau (1) + [9Ct,y(1),y (£),y (1), 4) -
-g(t,yl(t),y’(t),y"(t),/«o)] + [gCt,y, (1),y (1),
y T8, 400 - 9Ct,y (B),y (8),y (D), 4] +
+ LaCt,y (£, y{(1),y "1, 4) - glt,y, (1),y (1),
y; (), 0]+ [aCt,y (1), y (£, y " (1), ) -
- g(t,y; (), y[(B),y (D), 4], ted,

we get
w (1) = ADw(t) + B(Dw () + Aﬂ(t)w"(t) +a(t), (32
ted,

where a, &, B, ec®(3; R), A(t) 2 0 for ted, B(t) -
- a((t)(tz-t) £ 0 for telt,ty>, B(t) 2 0 for tedty, t3>

(by (30) and (31)) and a(t)< 0 (a(t) = 0) for te J if and only
ot iy by (o )

From equality (32) we obtain

t
w (t) = exp(f \}'(S)ds){w” (t2) +
t

2
t s
+Jf exp(-ht(r)m) [&(sIu(s) + (33)
t2 tz

+ B(s)w ' (s) + a(s)]dsz , ted

and next

o+

t S
o - | exp(tf ¢ (1)) +
2

2
S T

+f exp(-fg(v)dw[«.(?)w(?) , (34)
ty t2 '

+ B(Dw (T) + a(T)]rn} ds, ted.

If w"(t2)< 0 then w(t)< 0, w (t)< 0 on an interval (tz,xl)c
c <ty ty>, thus A(w(t) + B(t)w (t) £ 0 for te (t,,x;) and
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(by (34)) w'(x1)< 0. Conseguently, w'(t3)<[) contradicting
w (t3) = 0.

It w ' (ty)>0 then w(t) >0, w (£)<0, w (£)>0 on an in-
terval (xo,tz)c <t;,ty> . Since w (t)<w'(s) for X ¢t ég ¢

<

t
2
t,, then L (Dw(t) = - AD[ w(s)ds £ - d(u (£)(t, - 1) and
t

KOw(t) + BCw (1) £ (AL () (t, - ) + B(t))w (t) £ 0 for

te (xy,ty). From (33) it follows w ' (x_ ) >0 and thus w ™' (t) >0
for te<t;,t,> . Then of course w'(tl)<0 contradicting w'(tl)=0.

Let w"(tz) = 0. If .y = A then from the uniqueness theorem
for the initial value problem for the equation y ~ = A (t)y +
+ ra(t)y" + ¢y " it follows w = 0 and thus y = y;. If 4 < A
then w "(tz) = a(t,) <0, consequently, w(t)<0, w' (1)< 0,
w (t)<0 in a right neighbourhood of the point t, and analogously
as in the case w"(t2)< 0 we can prove w'(t3)< 0 contradicting
w'(t3) = 0. This completes the proof.

Example 3. Llet t; =1, t2€(1,2), t; = 2 and let m, n be
positive integers. Consider the differential equation

y o= 27y + 2te¥1(1 -arctg yJ(sin y”)2 +p(t) + A, (35

where pe C2(<1,2%; R), |p(t)| % lzl for t€<1,2>. Assumptions of

Theorem 3 are satisfied with r,=71; = 1, £, = 9y 2 and

Mmed- 77,—2—2Z>. Thus there exists the unique 4 € <- %,%3
such that equation (35) with & = 4 has a (and then the unique)
solution y satisfying y (1) = y(tz) = y'(tz) = y'(2) = 0 and more-

over |y(t)] £ 1, |y ()] 21, |y“(t)| £ 92 for ted1,2)>.

Theorem 4. Assume that assumptions (9) and (14) - (18) are

satified for positive constants r_, r,, r,. If ﬁ, ﬂ, —/‘)—f—,
o] 1 2 ? ) ~
y vz Uv
ﬁ(-: COHxI; R), 1 - 2t # 0 on HxI,
Dw Dw
2 9f £
2 4a +'D_z(t’yl’zl’v’wl’/) D (t,YZ,ZZ,V,WZ,/) R
4a“® + e LY (tz—t)=
of Vf
l-ﬁ(t’yl’zl’v’wl’/') l"m—(tayzyzzgvywza(lf)
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20 for (t,y;,25,V,W; )€ {tp,tyl v Lerpur dx -1y, Hx

v 2 0f
C > 2 4a” + 0z s
x -1y, myXRXI, i=1,2 and —L— 20, 45"+ 2
1 - vt 1 - f
'EW /Dw

on <t2,t3>x<- rD,rO>x<— r;,r;>x<-ry,T,> xR xI, then there
exists the unigque M €I such that equation (1) with A4 = A has
a solution y satisfying (3) and (27). Moreover this solution y
is unique.

Proof. By Lemma 3 there exists the unique function 9;
satisfying (19) - (24). Since equation (1) is equivalent to
equation (2) with g(t,y,z,v,4) = gl(t,y,z,v,ﬁ) - 4a%z and

084 2 9f

9 ,‘) 9 4a + ’DZ
B s L9 - ——= , the theorem follows immediately

dy ?f Dz f

1 - 1 - =

Uw vw

from Theorem 3.
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