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Abstract: An existence theorem of the Leray-Schauder type 

for the problem z" = g(t,z,z'), z(c) - z(a) = A, z(b) - z(d) = B, 

where a ,b,c ,d , A ,B € (- «o, ot>), a < c = d < b , is proved. 
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1. The existence theorems of the Leray-Schauder /type have been 

proved for the Picard and periodic problems for example in [l,2J. 

Here, we shall prove such a theorem for the following four-point 

problem at resonance 

z" = g(t,z,z') (1.1) 

z(c) - z(a) = A, z(b) - z(d) = B, <1.2) 

where a,b,c,d,A,B € (- oo, oo) ( = R), a < c = d < b , and g satisfies 

the local Caratheodory conditions on [a,b]xR . 
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The questions of existence and uniqueness of the solutions 

of. problem (1.1), (1.2) were studied in [3-5] and various effec­

tive conditions were found. The proofs were based on the Schau-

der fixed-point theorem and a priori estimates there. 

The Leray-Schauder type theorem which is proved here enables 

to obtain further effective existence conditions. Using this 

theorem we do not need to prove a priori estimates for the so­

lutions of (1.1), (1.2). 

Let gQ(t) = c,t + c2t for each tc[a,b], where 

cx = [B/(b - d) - A/(c - a)]/(b - c + d - a), 

c2 = [A(b+d)/(c-a) - B(c+a)/(b-d)]/(b-c + d-a). 

Putting 

f(t,x,y) = g(t,x + gQ(t), y + gQ(t)) - 2c ̂  , 

u(t) = z(t) - go(t) , 

we get from (1.1), (1.2) the problem 

u" = f(t,u,u'), (1.3) 

u(c) - u(a) = 0, u(b) - u(d) = 0 . (1.4) 

So, from now on, we can consider problem (1.3), (1.4). 

2. Notations, definitions and auxiliary results 

We shall use the terminology from [l,2]. Let X,Y be real 

vector normed spaces and domLCX a vector subspace. In what 

follows 

L: domL -+ Y 

will be a linear mapping and 

N: X -* Y 

will be a mapping not necessarily linear. 

Definition 1. L will be called a Fredholm mapping of index 

zero iff 

(i) dim Ker L = codim Im L< +©o ; 

(ii) Im L is closed in Y. 

It follows from the definition above and from basic results 
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of linear functional analysis that there exist continuous projec­

tors 

and Q: Y — Y P: X -• X 

such that 

Im P = Ker L and Ker Q = Im L, 

so that X = Ker L © Ker P, Y = Im L © Im Q as topological direct 

sums. 

Consequently, the restriction L of L to dom LOKer P is 
p 

one-to-one and onto Im L, so that its (algebraic) inverse 

K : Im L -+ dom L/Uer P 

is def ined. 

Definition 2. Let L be a Fredholm mapping of index zero 

and let jQ cr X be an open bounded set. A continuous mapping N 

will be called L-compact onJTI iff the mappings QN:jQ -> Y and 

K (I-Q)N: JQ. —*> X are compact, i.e. continuous on .CI and such 
P _ —• 

that QN(X1) and K (I-Q)N(jTL) are relatively compact sets. 

One can show that Definition 2 does not depend upon the 

choice of the continuous projectors P and Q, which justifies 

the terminology. See [l, p.13]. 
Since dim Ker L = dim Im Q<oo, there exists an isomorphism 

J : Im Q -* Ker L. (2.1) 

Let us consider the .mappings 

N* : a X [0,1] -

with N*(.,l) = N, and 

(x,A) н* N*(x,л) 

N = JQN*(.,0) : Keг L Keг L. (2.2) 

We shall need the following theorem, which is proved in [l,p.29]. 

Continuation theorem. Let L be a Fredholm mapping of index 

zero and let ilc X be an open bounded set. Let N be L-compact 

on£ix[0,l]. Suppose 

a) for each A c(0,l), every solution x of 

Lx = N*(x,.A ) 

is such that x^3fl, 
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b) QN*(x ,0) 4 0 f o r each x £ Ker L O B J C I and 

c) the Brouwer degree d [ N o , Q . n K e r L, 0] 4 0. 

Then the equa t ion 

Lx = Nx 

has a least one solution in dom LO.C1 . 

In what follows 

AC1(a,b) [Cx(a,b)] denotes the set of all real functions having 

absolutely continuous [continuous] i-th derivatives on [a,b], 

i = 0,1, 

Lp(a,b) is the set of all real functions y with |y|p Lebesgue 

integrable on [a,b], pe[l,«*-0. 

We say that some property is satisfied on D = [a,b]x R , if it 

is satisfied for almost each( = a.e.) tc[a,b] and for each x,yeR. 

We shall suppose that f satisfies the local Careatheodory condi­

tions on D, i.e. 

f(*,x,y): [a,bj—*R is Lebesgue measurable on [a,b] for each 

x,y€R, 

f(t,*,'): R2 -* R is continuous on R2 for a.e. tc[a,b] and 

sup {|f(t,x,y) | : |x| + |y| = <D J € L1 (a, b) for each 0 c(0, + oo). 
We shall write f € Car-. (D). loc 

By a solution to (1.3), (1.4), we mean a function xe AC (a,b) 
verifying (1.3) for a.e. tc[a,b] and (1.4). 

Let us denote 

X = C 1 ( a ,b ) w i t h the C1-norm | |x | , = max { | x ( t ) | + | x ' ( t ) | l , 
C1 t<[a,b] 

i i b 

Y = L x ( a , b ) w i t h the L -norm | |y | | x = f | y ( t ) | d t 

and 

dom L = fxgAC (a,b), x satisfies (1.4)| 

Further, let us define the mappings 

L: dom L -» Y, X K xM 

and 

N: X - Y , x h-* fC,xC), x ' O ) . 

(2.3) 

(2.4) 
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The problem (1.3), (1.4) is equivalent to the equation 

Lx = Nx , (2.5) 

i.e. x€ dom L satisfies equation (2.5) iff xeAC (a,b) is a so­

lution of (1.3), (1.4). 

3. Lemmas 

Lemma 1. The linear mapping (2.3) is a Fredholm mapping 

of index zero. 

P r o o f . Ker L consists of all solutions of the homogen­

ous problem u" = 0, (1.4) and thus Ker L consists of all cons­

tant functions on [a,b].and 

dim Ker L = dim R = 1 . (3.1) 

Im L is the set of all functions ye L (a,b) for which there, 

exist functions x c dom L verifying the equation 

x"(t) = y(t) 

for a.e. tc[a,b]. The solution of (3.2) has the form 

(3.2) 

t s 

x(t) = -U + B + f J y(r)d?-ds , 
(3.3) 

a a 
where cC, O C R . The condition xedom L implies x{a) - XKCJ dim 

x(b) = x(d) and therefore 

c s b s 

r ( ( y(r)drds = - -jig- J f y(r)d?-ds . 
d a 

c s 

a a 

(3.4) 

Let us denote cQ = (b + d)/2 - (c + a)/2 ind 

У = 

b s c s 

ig- J J y(t)drds - ~ jj y(T)drd£ 
d a a a 

We can see t h a t 

Im L = iyЄ L ^ í a . b ) , ў - o\ 

( 3 . 5 ) 

( 3 . 6 ) 

I f ycYVIm L, then y / 0 and y - y c Im L. I t means t h a t 

dim Y/Im L = dim R = 1 . ( 3 . 7 ) 

How, we s h a l l prove t h a t Im L i s c l o s e d i n Y. Let y * Im L 

( V n c N ) and l e t t h e r e e x i s t s y c Y such t h a t 

l i m | y n - y| 0 . 
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Then there exists a subsequence (y ), converging to v for a.e. 
n 

t € [ a , b ] , This implies the existence of heL (a,b) such that 

|ym ( t ) | < h ( t ) for a.e. t € [a,b] . 
n 

So, we can use the Lebesgue convergence theorem and ge <. 

У = 
0
 L d a a a 

)dTds 

b s 

hj J iU y„ (WdTd. -Č-T// 
d a a a n--^ n 

lim v = 0 
n-w mn 

We have proved y = 0, i.e. y € I m L, which completes the proof. 

Let us put 

P: X -* X , x J— x(a) 
(3.8) 

Q: Y 

Lemma 2. The mappings P,Q defined in (3.8) are continuous 

projectors. 

P r o o f . From (3.8) it follows that P2 = P, Q2 = Q and 

P. Q are linear. We can also see that P, Q are continuous because 

11 Px, - Px 211 1 - ||x1 - x2|| 1 for any x,, x 2e X and 

llQy1-Qy2H x = 2(b-a)|c or
1 ||y1-y2H i for any y 1 , y 2 € Y . 

Lemma 3. Let CLcX be an open bounded set. Let Q and N be 

the mappings (3.8) and (2.4), respectively. The the mapping 

QN: £3 —* Y is compact. 

P r o o f . Since O . is bounded, there exists M-e(0,+ ©o) 

such that 

llxll , < M, , 
C1 l 
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for any x e H- and since fcCarloc(D), there exists h€ L (a,b) 

such that 

|f(t,x(t),x'(t)| =• h(t) for a.e. tc[a,b] (3.9) 

and for any xc XI . 

Let us choose arbitrary functions x^Q^CneN) and let there 

exists xQ € Q such that 

lim H xn " xolll = °-n-»«* b 

Then 

lim f(t,x n(t),x n(t)) = f(t,x Q(t),x o(t)) (3.10) 
n •* «• 

for a.e. t €. [a ,b] . 

In view of (3.9) and (3.10), using the Lebesgue convergence theo­

rem, we get 

b 

lim f [f(t,x n(t),x n(t)) - f(t,x Q(t),x o(t))]dt = 

b 
= f [lim f(t,x n(t),x n(t)) - f(t,x o(t),x o(t))]dt = 0 , 

i.e. lim || Nx - Nx || - = 0, which means that N is continuous. 
n-*<*» L 

From this, by Lemma 2, it follows that QN is continuous. 

According to ( 3 . 7 ) , dim ImQ = 1 and therefore QN(fl) is 

relatively compact iff it is bounded in V. Let us choose an ar­

bitrary x c 2 X . Then, by (3.9), 

llQNxH x = M2 , (3.11) 

2(b - a) h(t)dt . Lemma is proved, 
where M? = r ^ p J 

a 

Lemma 4. Let QcX be an open bounded set. Let L and N be 

the mappings (2.3) and (2.4), respectively. Then N is L-compact 

on 51 . 
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P r o o f . Let P,Q be the mappings (3.8). We shall verify 

the conditions of Definition 2. In Lemma 1 we have proved that 

L is a Fredholm mapping of index zero and from Lemma 3 we get 

the compacteness of QN. Now, we shall find the mapping 

K : ImL 
P 

domL OKerP 

which is the generalized inverse to the restriction L = L/KerP. 

Clearly KerP = Ix€ X : x(a) = Oj . Let us consider the equation 

(3.2) with the boundary condition 

x(a) = x(c) = 0 , x(d) = x(b) . 

Problem (3.2), (3.12) is equivalent to the equation 

(3.12) 

L x = y , where y £ ImL . 

According to (3.3), (3.4), (3.5), (3.6), we can get the solution 

of (3.2), (3.12) in the form 

C S 

x( * > - - f H / / y < * )d?ds 
a a 

t s 

f ( y(r)drds . 
a a 

Therefore 

K : y 
P У 

c s t s 

i-f-f f f y(T)d?ds + ( ( yCttdTds (3.13) 

a a 

Since ||K
n
y - K

ri
z|| - = 2(b - a + l)||y - z|| - for any y,z£lmL, 

p p ci Li 

K is continuous. Since Q and N are continuous (see Lemma 2 and 

the proof of Lemma 3), the mapping K (I-Q)N is continuous as 

well. 

Now, let us show that the functions of K (I-Q)N(JI) are 

equi-bounded in X. Let_v be an arbitrary function of K (I-Q)N(Q), 

Then there exists xe -Q such that v = K (I-Q)Nx, i.e. 

c s 

v(t) *H// ( f ( r ,x( r ) ,x ' ( r ) ) - f)drds + 

t S 

J ( (t(r,-x(t),x'c*» - f )dr d s , 

( 3 . 1 4 ) 
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where 
b s 

-* = é~ [b-ďf Í f(T,x(í),x'(«dřds -
d a 

e s 
- ^ - r - a f { f ( T , x ( T ) , x ' ( T ) ) d T d s ] . 

a a 

C o n s e q u e n t l y , i n view of ( 3 . 9 ) , ( 3 . 1 1 ) , we get 

II v II , * M, . (3.15) 

where M3 = 2(b - a + l)(f h(s)ds + M2) . 

a 

Further let us show that the functions of K (I - Q)N(Q) 

are equi-continuous in X. Let v have the form (3.14) and 

t, s € [a,bl . Then 

|v(t) - v(s)| i M4|t-s| (3.16) 

where M4 = 2 j (h(T) + f)dT , and similarly 

a 

|v'(t) - v'(s)| * |fh(T)dT | + |t-s|M2/(b-a) . (3.17) 

t 

Since h€L1(a,b), then for any £ > 0 there exists C>1 > 0 such 

that 

-x\<f1 =$> |J" h(í)dr|< (3.18) 

Let us choose an arbitrary 6 €(0, + <*>) and 

& * min {$x, £/3M4 , £(b-a)6M2} . 

According to (3.16) - (3.18), we get 

|s-t|<<$" => ||v(s) - v(t)|| ,<£ 
C1 

for each v€ K (I - Q)N(Q) . 
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From (3.15), (3.19) and the Arzela-Ascoli theorem it follows 

that the set K (\- Q)N(£1) is relatively compact. This completes 

the proof. 

Lemma 5. Let CLcz X be an open bounded se t and l e t 

f * € C a r l Q C ( [ a , b ] x R X [ 0 , l ] ) . Then the mapping 

N*: D, X [ 0 , l ] - * Y, (x,.A) H-» f ( \ x ( ' ) , x ' ( ' ) , . A ) 

i s L-compact on l l X [ 0 , l ] . 

P r o o f . Lemma 5 can be proved i n a s i m i l a r way as 

Lemma 4 . On the space X x [ o , l ] we work w i t h the norm 

l l ( x , J O | | = 11 x 11 ! + l-A | f o r ( x , J l ) € X c [ 0 , l ] . 

4. The main result 

Let us choose the function 

f K^Car l o c([a,b]^ R
2 * [0,l]) 

such that 

f*(t,x,y,l) = f(t,x,y) on D, 

and consider the set of the equations 

u" = Af*(t,u,u , A ) , A € [Q,l] . (4.1 A ) 

Let us put 

b s c s 

fQ(x) = "bTd f f f*(t,x,0,0)dtds - ^ J f f*(t,x,0,0)dtds . (4.2) 

d a a a 

Existence theorem of the Leray-Schauder type. Let there 

exists an open bounded setXlcX such that 

(a) for any-Ac(0,l), every solution u of the problem (4.1JI), 

(1.4) satisfies u ̂  3 Xi ; 

(b) for any root x € R of the equation fQ(x) = 0, the condition 

x ^ 3 H i s fulfilled, where x is considered as a constant 

function u(t) = x , on [a,b] ; 

(c) the Brouwer degree d[fQ, A ,0] /- 0, where A C R is the set 

of such constants c , that the constant functions u(t) = c 

belong to £1 . 
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Then problem (1.3), (1.4) has a least one solution in CI . 

P r o o f . From Lemma 1 and Lemma 5 it follows that L and 

N* satisfies the conditions of the Continuation theorem. Accord­

ing to (3.8) and (4.2) we have QN*(x,0) = f
Q
(x) and in view of 

(2.1), (2.2) and (3.1), N
Q
 = kf

Q
 , where keR, k i 0. Therefore 

the conditions (a), (b), (c) of the Continuation theorem are 

satisfied as well, which completes the proof. 
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