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Abstract: An existence theorem of the Leray-Schauder type
for the problem z" = g(t,z,z"), z(c) - z(a) = A, z(b) - z(d) = B,
where a,b,c,d,A,BE€(-00,00), agc £ d<b, is proved.
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1. The existence theorems of the Leray-Schauder .type have been
proved for the Picard and periodic problems for example in [1,2].
Here, we shall prove such a theorem for the following four-point

problem at resonance
z" = g(t,z,z") ' (1.1)
z(c) - z(a) = A, z(b) - z(d) = B, (1.2)

where a,b,c,d,A,B€ (-e0,00) (=R), a<c € d<b, and g satisfies
the local Carathéodory conditions on [a,b]x R2.
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The guestions of existence and uniqueness of the solutions
of. problem (1.1), (1.2) were studied in [3-5] and various effec-
tive conditions were found. The proofs were based on the Schau-
der fixed-point theorem and a priori estimates there.

The Leray-Schauder type theorem which is proved here enables
to obtain further effective existence conditions. Using this
theorem we do not need to prove a priori estimates for the so-
lutions of (1.1), (1.2).

Let go(t) = clt2 + c,t for each t € [a,b], where
= [B/(b - d) - A/(c - a)]/(b -c +d - a),
= [A(b+d)/(c-a) - B(c+a)/(b-d)]/(b-c + d-a).

1
€2
Putting
£(t,x,y) = glt,x + g (t), y + g/ () - 2¢; ,
u(t) = z(t) - g (¥) ,
we get from (1.1), (1.2) the problem
u" = £(t,u,u’), (1.3)
u(c) - u(a) = 0, u(b) - u(d) =0 . (1.4)

So, from now on, we can consider problem (1.3), (1.4).

2. Notations, definitions and auxiliary results

We shall use the terminology from [1,2]. Let X,Y be real
vector normed spaces and domLC X a vector subspace. In what
follows

L: domL = Y
will be a linear mapping and

N: X =Y
will be a mapping not necessarily linear.

Definition 1. L will be called a Fredholm mapping of index
zero iff

(i) dim Ker L = codim Im L< + oo ;
(ii) Im L is closed in Y.

It follows from the definition above and from basic results
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of linear functional analysis that there exist continuous projec-

tors
P: X =+ X and Q: Y = Y
such that
Im P = Ker L and Ker Q@ = Im L,

so that X = Ker L@ Ker P, Y = Im L ® Im Q as topological direct
sums.

Consequently, the restriction Lp of L to dom LMKer P is
one-to-one and onto Im L, so that its (algebraic) inverse

Kp: Im L - dom LNKer P

is defined.

Definition 2. Let L be a Fredholm mapping of index zero
and let 2 < X be an open bounded set. A continuous mapping N
will be called L-compact on £I iff the mappings QN: {3 - Y and
K (I-Q)N: £ — X are compact, i.e. continuous on £I and such
“that QN(QX) and Kp(I—Q)N(fi) are relatively compact sets.
One can show that Definition 2 does not depend upon the
choice of the continuous projectors P and Q, which justifies
the terminology. See [1, p.lBJ.

Since dim Ker L = dim Im Q< oo, there exists an isomorphism

J: Im Q - Ker L. (2.1)

Let us consider the .mappings
N O x [0,1] - v, (x,2) = N¥(x,a)
with N*(.,1) = N, and

N, = JAN*(.,0) : Ker L — Ker L. (2.2)

We shall need the following theorem, which is proved in [1,p.29].
Continuation theorem. Let L be a Fredholm mapping of index
zero and let ¢ X be an open bounded set. Let N be L-compact
on Q) x [0,1]. Suppose
a) for each A €(0,1), every solution x of
Lx = N¥(x,A)
is such that x g 9Q.,
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b) QN*(x,0) # 0 for each x€ Ker LN QL) and
c) the Brouwer degree d[NO,fl(]Ker L, 0] # 0.
Then the equation
Lx = Nx
has a least one solution in dom LA .

In what follows
ACi(a,b) [Ci(a,b)] denotes the set of all real functions having
absolutely continuous [continuous] i-th derivatives on [a,b],
i=0,1,
LP(a,b) is the set of all real functions y with |y|P Lebesgue
integrable on [a,b], pe [l,oO).
We say that some property is satisfied on D = [a,b]X RZ, if it
is satisfied for almost each(=a.e.) te€ [a,b] and for each x,ye&R.
We shall suppose that f satisfies the local Careathéodory condi-
tions on D, i.e.

£C ,x,y): [a,b] = R is Lebesgue measurable on [a,b] for each
x,y€R,

£(t,","): RZ = R is continuous on R? for a.e. te [a,b] and

S“p{lf(tix’y)l c x|+ y] % Q}e:Ll(a,b) for each ? €(0,+00).

We shall write fe:Carloc(D).

By a solution to (1.3), (1.4), we mean a function xe& ACl(a,b)
verifying (1.3) for a.e. te [a,b] and (1.4).

Let us denote
X = Cl(a,b) with the Cl-norm [Ix 1 1 C mfx ﬁlx(t)l +|x'(t)|l,
c b

tela,

b
Y = L'Ca,0) with the Ll-norm Iyl | =f ly(t)|dt
L

a
and
dom L = {xeAcl(a,b), x satisfies (1.8)} .
Further, let us define the mappings
L: dom L — Y, x s x" (2.3)
and

N: X = Y, xr £ ,xC), x () . (2.4)
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The problem (1.3), (1.4) is equivalent to the equation
Lx = Nx, (2.5)

i.e. xedom L satisfies equation (2.5) iff><eAC1(a,b) is a so-
lution of (1.3), (1.4).

3. Lemmas

Lemma 1. The linear mapping (2.3) is a Fredholm mapping
of index zero.

Proof. Ker L consists of all solutions of the homogen-
ous problem u" = 0, (1.4) and thus Ker L consists of all cons-

tant functions on [a,b].and
dim Ker L = dim R = 1. (3.1)

Im L is the set of all functions ye Ll(a,b) for which there .
exist functions xedom L verifying the equation

x"(t) = y(t)

(3.2)
for a.e. te[a,b]. The solution of (3.2) has the form
ts
x(t) = Kt + B + I f y(P)d?ds | (3.3)
a’‘a

where &, B € R. The condition xe&dom L implies x(a) = x(c, anu
x(b) = x(d) and therefore :

cC s b s
_ 1 ~ I | ~
KL = - = ff y(T)dds ———b_df[ y(T)d Tds . (3.4)
a a d a
Let us denote cy = (b +d)/2 - (c + a)/2 +id
b s cC s
1 1 -~ 1 ~
y - [b—ﬁff y@ates - 2| | y(L)d't‘ds]. (3.5
o d a a‘a
We can see that
Im L = {ye L@, §- Uf . (3.6)

If yeYNIm L, then § # 0 andy - §e€Im L. It means that

dim Y/Im L = dim R = 1. (3.7
How, we shall prove that Im L is closed in Y. Let Y, € Im L

(¥n€N) and let there exists Y€ Y such that
Lim [y, - yHLl =0.
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Then there exists a subsequence (ym )‘1 converging to y for a.e.
n

te [a,b]. This implies the existence of he Ll(a,b) such that

Iym (t)|< h(t) for a.e. tel[a,b] .
n

So, we can use the Lebesgue convergence theorem and ge.
b s c s

¢ -1 [ _1 NV e - L y(T)dTds| =
y . [b_dij(t)dtds c—aff'
d a a a
bs cC s

-4 [E}‘d[[ lin y_(Dd%ds - %ff lin y_ (¥)dds|=

o] d a Nl d n A n—-so® n
= lim y =0

N->e mn

We have proved ? =0, i.e. yeIm L, which completes the proof.
Let us put

P: X — X, x > x(a)
(3.8)
Q: Y =Y, yry.

Lemma 2. The mappings P,Q defined in (3.8) are continuous
projectors.

Proof. From (3.8) it follows that P2 - P, 02 = Q and
P, Q are linear. We can also see that P, Q are continuous because
Hle - P><2||Cl E ||xl - x2||Cl for any x;, x,€X and

<

-1
”le-ﬂyanl = Z(b'a)lcol ||y1-y2”L1 for any Yl’y2€Y .

Lemma 3. Let lcX be an open bounded set. Let Q and N be
the mappings (3.8) and (2.4), respectively. The the mapping
QN: €2 — Y is compact.

Proof. Since Q is bounded, there exists M1€(0,+ 00)
such that

Il y < My s
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for any x€{ and since feCar; (D), there exists he Ll(a,b)
such that

[f(t,x(t),x'(t)l $ h(t) for a.e. te[a,b] (3.9)
and for any xe L .

Let us choose arbitrary functions x_€ £1(neN) and let there
exists X, € Q such that

lim ||xn - XOH L= 0.

n-vw C
Then
i?l £, % (£),x /(1)) = £0t,x (1), x () (3.10)

for a.e. te€[a,b] .

In view of (3.9) and (3.10), using the Lebesgue convergence theo-
rem, we get

b
tin [ TeCtx (8 ,x(0) - 100 x ()]t =

nwe

b
- [hin £Ct (8,67 (0) = 1Ctxg(8),xg(0)]at = 0,

i.e. lim llen - Nx0l| , = 0, which means that N is continuous.
n+oce L

From this, by Lemma 2, it follows that QN is continuous.

According to (3.7), dim ImQ = 1 and therefore QN(RY) is
relatively compact iff it is bounded in Y. Let us choose an ar-
bitrary x€ £ . Then, by (3.9),

IlQNxHLl EM, (3.11)

where M, = 2(b - a) | h(t)dt. Lemma is proved.

Cc
o]

o

Lemma 4. Let (2(:X be an open bounded set. Let L and N be

the mappings (2.3) and (2.4), respectively. Then N is L-compact
on XY .
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Proof. LetP,Q be the mappings (3.8). We shall verify
the conditions of Definition 2. In Lemma 1 we have proved that
L is a Fredholm mapping of index zero and from Lemma 3 we get
the compacteness of QN. Now, we shall find the mapping

Kp: ImL — domL NKerP

which is the generalized inverse to the restriction Lp = L/KerP.
Clearly KerP = {xe'X : x(a) = 0}. Let us consider the equation
(3.2) with the boundary condition

x(a) = x(c) =0, x(d) = x(b) . (3.12)
Problem (3.2), (3.12) is equivalent to the equation
pr =y , where yeImL.

According to (3.3), (3.4), (3.5), (3.6), we can get the solution
of (3.2), (3.12) in the form

cC s t s
x(t) = - ; - :f{ y(T)d Tds +ff y(T)dTds .
aa aa
Therefore

c s t

Ky - t-a f f y(T)dTds + f
p c - a -

a a

a

y()dTds . (3.13)

™0

Since [|[K_.y - K_z]| 1 =2 -a+ Dly - z|l { for any y,zeInL,
p P e L1

Kp is continuous. Since Q and N are continuous (see Lemma 2 and
the proof of Lemma 3), the mapping Kp(I—Q)N is continuous as
well.

Now, let us show that the functions of Kp(I—Q)N(ZI) are
equi-bounded in X. Let v be an arbitrary function of Kp(I—Q)N(Q).
Then there exists xe §) such that v = Kp(I—Q)Nx, i.e.

c - 23

C S
() = - t—@ff (£(T,x(2),x () - D)dTds +
a a
t s (3.14)
+jJ(NTJ@LXYﬂ)—%MT%,
a a



where

£(T,x(T),x (TVdTds -

[s

o
o|""

[ R ¥ 0]

£1(T,x(T),x '(T))d’i’ds] .

]
o
[ L
[+3]
=0
o0 a~ o

Consequently, in view of (3.9), (3.11), we get

IIVIICI My, (3.15)

b
where Mg = 2(b—a+1)(Ih(s)ds + Mz)
a

Further let us show that the functions of K_(I - @N()

are equi-continuous in X. Let v have the form (3.14) and
t, s e[a,bl . Then

[v(t) - v(s)| % M4|t-s| R (3.16)

where M, = 2 (h(T) + DdT , and similarly

oY

us

S
V) - v @] [ h@aT ] v ftesiy/G-a) . GaD
t

Since h& Ll(a,b), then for any & >0 there exists gl>0 such
that

s
|s-tl<d, = IJ h('t)d'r|<—§— ) (3.18)
t
Let us choose an arbitrary € €(0,+e0) and
< .
§ % min {51, E/3M, , E(b—a}/}MZ}
According to (3.16) - (3.18), we get

ls-tl<d = llv(s) - v(t)llcl<E (3.19)

for each ve Kp(I —Q)N(ﬁ)
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From (3.15), (3.19) and the Arzela-Ascoli theorem it follows
that the set Kp(I-— Q)N(ﬁ) is relatively compact. This completes
the proof.

Lemma 5. Let 1< X be an open bounded set and let

t*e Carloc([a,b]x sz [0,1]). Then the mapping
NGQ x[0,1] = v, (A e £C,xC),x (), A)

is L-compact on £1 x[0,1].

Prootf. Lemma 5 can be proved in a similar way as
Lemma 4. On the space X x[U,l] we work with the norm
[Cx, | = ”x”[jl + A for (x,A)exe[0,1].

4. The main result

Let us choose the function

t*e car, ([a,b]x RZ x [0,1])

loc
such that
£%(t,x,yl) = £(t,x,y) on D,
and consider the set of the equations
u" = AE¥(t,u,u LN, X efo,1]. (4.11)

Let us put

o1
fo(X) ~ b-d

S C S
j £%(t,x,0,0)dtds - = f J‘ £%(t,x,0,0)dtds . (4.2)
a a a

Qo

Existence theorem of the Leray-Schauder type. Let there
exists an open bounded set Ll c X such that

(a) for any A€ (0,1), every solution u of the problem (4.14),
(1.4) satisfies ulg 92 ;

(b) for any root x,€ R of the equation fo(x) = 0, the condition
xog dQlis fulfilled, where X, is considered as a constant
function u(t) = Xg s ON [a,b] ;

(c) the Brouwer degree d[fo, A ,0] # 0, where A < R is the set
of such constants ¢, that the constant functions u(t) = c
belong to Q.
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Then problem (1.3), (1.4) has a least one solution in €2 .

Proof. FromLemma 1 and Lemma 5 it follows that L and
N* satisfies the conditions of the Continuation theorem. Accord-
ing to (3.8) and (4.2) we have QN*(x,0) = fo(x) and in view of
(2.1), (2.2) and (3.1), N = kf_, where ke R, k # 0. Therefore
the conditions (a), (b), (c) of the Continuation theorem are
satisfied as well, which completes the proof.
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