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Introduction

In order to generalize the results from (2], [3] the first
author has found in [1] the sufficient conditions for the exis-
tence of an w-periodic solution of the equation

n-1
(> aj(t)x(”'j)(t) + h(x) = p(t), n>1 (1)
J=1
where a.(t)e Cj(R), j=1,...,n-1, p(t)eC(R) are w-periodic

functions, h(x) & CI(R).

The purpose of this paper is a further improvement of the
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mentioned results, including [1], for a concrete n=2,...,8.
The proving technique consists as well as in [l] in the appli-
cation of the following standard Leray-Schauder alternative.

Proposition. Equation (1) admits an w-periodic solution if all
w -periodic solutions x(t) of the one-parametric system
n-1

X +,'~{Zl a, (") + hGo - p(t>} s Q-ddex =0, (2
J:

where u € (0,1> 1is a parameter and ¢ # 0 is a suitable real
constant, are uniformly a priori bounded together with their de-
rivatives up to the (n-1)-th order including, independently of
the parameter W, and the equation

X(n) +cx =0,
originated from (2) for ua = 0, has no nontrivial w -periodic
solution.

Let us note that the last requirement can be always satis-
fied for a sufficiently small ¢ # 0.

For the L2-estimates desired we use the well-known Schwarz
inequality jointly with the Wirtinger inequality (see [3])

w ) - e
j[x(J)'(t)_]zdt < wgf[x(J"l)(t)]zdt , 3=1,...,n-1, )
(o] . L [s)

T
@o T 27
holding for a continuously up to the (j+l)th-order differentiable

 -periodic function x(t).

The further basic tool we employ in the proof of the main
statement are the following integral identities obtained after
the integration by parts of the single terms of the sum in (1).

Lemma. The following integral identities are satisfied for every
w -periodic solution x(t) of (2):

w w
fa1<_t)x.’\_"f1)<t>x(“)(t)dt - -pfaj TP, @

o] ) . . 0o

- 150 -



w

w
[az(t)x(n_Z)(t)x(n)(t)dt - %faz"(t)[x(n'”(t)]zdt -
o]

]

o ,
- faz(t)[x(n'l)(t)]zdt : @)
[]

w

w
- 2
faz(t)x(n_})(t)x(n)(t)dt - -2f ) "))t -
[} o]

w
‘ %fa}’(t)[x(”‘”(t)]zdt , (5)
0
o
@ -
J/a4(t)x(”“‘)<t>x(”)(t)dt - %jai“)m[x(" Dn)1%at -
8] ]

_ 2 fal;'(t)[x(“‘”(t)]zdt +
/.
0

7%

: faa(t)[x(n_Z)(t)]zdt , ()
[s]
o w
fas(t)x("'s)(t)x(”)(t)dt . -%/aé”(t)[x(”'”(t)]zdt .
8] 0 .

w .
+ %[a;'(t)[x(”"‘)(t)]zdt -
[s] .

w
- %fas'(t)[x(n_”(t)]zdt , (7

s}

M w

[as(t)x(”_e)(t)x(n)(t)dt - (O D)% -

] .
w

/
3[a§4)(t)[x(n_5)(t)]zdt .
0 o

w

%faé"(t)[x(”“‘)u)]zgt -

(s]

+

- 151 -



[
- /aé(t)[x(”'”(t)]zdt , (8)
o]
w w
fa7(t)x(n_7)(t)x(n)(t)dt - -%fay)(t)[x(n_n(t)]zdt .
o (o}
w
. %[ags)u)[x(”“”)(t)]zdt -
[s]
w
_ 7fa7’"(t)[x(”'5)<t)]2dt R
[e]
[7%)
- %fa7’<t>[x<”-“>(t)]2dt. 9
[s]
Proof - is trivial.
Notation:
Alq = max {—— a (t)—a (t){ for n = 3, ,8 |
te0,wy
1 - 3 .
Ayo = max {-5a (1) +5a.(t
42 ti<0’i>232 +7a3(0)
®
A, = A t -
n2 r{v:l(xo’i>42+a4( )} for n = 5, ,8
1 .. .
Ac. = max {-za; (t)-2a, (t)
53 t‘w,‘{) 733 a, (£)f
Ags = max {A %as‘(t)}
ted0, >
A64 = max {% 24)(t)+*3(})(t)£
te{0,w)
A = A - (t) =7
n3 *?:ZB L(u>63 268 for n 8
(10)
A., = max {A a"(t)
Th 7 teco,wrbt 6 (V1
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Agy = A 7 a;(t)
o G 7

= max {—— 8(5)(12) é“(t)f
t€<0,w)

(3
A = max {A5c-7a57’(t)
85 té<0,i> 75 7 {

Agg = max {3 al®t) + 1 a0t
86~ Dt + {

n,n-1 t‘<0,w>

and for ne{Z,...,B} , 123 <n-1

A . if A, >0
. nj

nj =~
\0 it A .%0.
nj
Theorem. Let

W
(i) fp(t)dt -0,

[¢]

—max{l( nn-t (nl)(t)f for n = 2,...

(ii) J(H =0, Hiconst.): |[n"(x)] € H  for all xe R,

n-
(iii) Q := [1—3_21 A;ngj - H'wS})O, ne{2,

ag,

(iv) J(R >0, R-const.) : h(x)sgn x >h or h(x)sgn x <-h

n-1
for |x| >R, where h:= E AD[gnnJ? >0

ST 3 mn-d
i 3 <A, A.=0 for j=1,...,n-1; nei2,
with IaJ(t)I 30 Ay J {
3, L -
Dnj ; '/—Dn i nj T wGDn,j+1> 0, By

P:= max |p(t)]| .
ted0,w
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Then equation (1) for n=2,...,8 admits an w-periodic solution.

Proof. Let x(t) be a solution of (2), where x(j)(ﬂ) =
= x3(w), 3 =0,1,2,...,n-1. Substituting x(t) into (2), mul-
tiplying it by x(n)(t) and integrating the obtained identity

from 0 to @, we come to

nl°‘

w
f[x(")(t)]zdt - - fa OxMPe)x M (tyat |
o]

w @
- ;th(x(t))x(”)(t)dt»« lufp(t)x(n)(t)dt -
o] o

(1- ,u.)cfx(t)x(n)(t)dt.

]

After integrating by parts we get by means of Lemma, (W), the
Schwarz inequality and (ii), (iv) [cf. notation (10)] that

/[ (n)(t)] dt‘(z .+H Lug wlﬂ){[x(n)(t):’ dt +

+ PV f[ (M ()72t
[e]

[see (iii)]

w 2
(n) 2 P _ 12 _PVo
[[x (£)]%dt ¢ “2:- DS, D = ﬂ‘: (>0).

Applying (W) again, we come to

nj o n,Jj+

o
/[x(j)(t)]zdténﬁj, D .:= wD .. (>0
]

for j = 1,...,n-1; ne{Z,...,Bf.

According to Rolle’s theorem, the points tje (0, ),
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5= 1,...,n-1, exist such that ch)(tj> =0 for 3 = 1,...,n"1,
and thus we arrive at the inequalities

(8]
|x(j)(t)|ﬁflx(j*'l)(t)ldts VoD -=D%)(>0) (1
o]

n,3+l "
j=1,...,n-1.

Now substituting x(t) into (2) and integrating from 0 to
w , we obtain [cf. (i)]

n-1
o -
j[m(x(t)) + (1 - wex(t)]dt = - #E faj(t)x(n—J)(t)dt.
[s) j=l [s)

If min |x(t)| >R, R >0 const., then choosing ¢ # 0 in order to
te0,w)>
be [see (iv)]

ch(x)x >0

we get by means of (iv) and (11) that

=)

-1
W W ) 2 .
ilh(x(t))ldt = E flaj(t)x(”‘J)(t)ldt éwz a3 o owh,
: =
o

1
le J n,n'j ’

when multiplying the foregoing identity by sgn(cx). But this

leads to the contradiction with assumption (iv). Therefore it
must be

min |x(t)| =R
te{0,w>

and consequently

|x(t)] £ R+

ot—¢

Ix"(t)|dt € R+ VD ,:= D, (>0) (12)

for t € L0,w)

It follows from (11) and (12) that

n-1 n-1
% 1x(3 (1)) ‘jZD'(‘jj) £ 0 =00
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holds for every w -periodic solution x(t) of (2), independently

of ue(0,1>.

Hence, in view of Proposition, the proof of our Theorem is
completed.

Concluding remark.

It could be expected, in view of the obtained result, that
Theorem may be analogously extended for the nth-order equation,
where the integral identities from Lemma obey in the case of the
odd order (j=2k-1, k € N) the relation

© w
fa2k_l(t)x(n_2k+1)(t)x(n)(t)dt - —%fagﬁ'jil%t)[x(“'z‘“l)(t)]zdt .
0 o}

(%]
v e (-DK ”‘T'lfaz’k_l<t)[x(”"‘)(t)]2ut

0
(k terms),
while for the even order (j = 2k, k € N) it is

w

faéik)(t)[x(“’z")(t)]zdt _

N+~

w
J-aZk(t)x(n_ZK)(t)x(n)(t)dt

0o

¢]
w

) kfaég—Zk—Z)(t)[x(n-2k+l)(t)]2dt .
o

©
o (- l)kJaZk(t)[x(n_k)(t)]zdt
o]
(k+1 terms)

in general.
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