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Consider
x 7= h(x) + [£Ct,x,x )] ", (1)
where hGC(Rl), feCl(RB) and f is T-periodic in t, i.e.

f(t,x,y) T £(t+T,x,y)

(= U, x,y) = AT, x,y)  BE(E,x,y) = AE(E+T,x,y)  E(E,x,y) = (E+T,x,y
2t ot " = = .

X VX ’ VY 0%
One can readily check that, for example, the equation

x 7+ alxDIx” + b(x)x” + h(x) = p(t),
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studied in [1] - [3], [5] - [7], takes the form (1). Hence, our
purpose here is to extend the results concerning the existence
of T-periodic solutions to this type of equations.

We apply the following well-known (see e.g. [7], p.103) Le-

ray-Schauder alternative.

Proposition. If all solutions x(t) of the one-parameter family
of equations

x 7 = (1- wex +y{h(x) + [f(t,x,x')]'(kue(0,1> (L)

and their derivatives up to the second order including, satisfy-
ing the boundary conditions

x(T) =x(0) = x (T)-x"(0) = x“(T)-x"7(0) =0 (2)

are uniformly a priori bounded on the interval <0,T> for suffi-
ciently small values of a real constant ¢ # 0, independently of
Me(0,1>, then equation (1) admits a T-periodic solution.

Remark. It is clear that the standard requirement in order the
equation x = cx, originated from (la) for 6 = 0, to have no
nontrivial T-periodic solutions is trivially satisfied for every
c # 0.

We can give the following

Theorem. If a positive constant R exists such that
h(x)x =0 or h(x)x=0 for |x| >R, (3)

while all the zero points of h(x) are isolated, and if positive
constants L, £, = with AT’ + 472 €492 still exist such that

£2(t,x,y) = &+ 0x% « py? for all t,x,y, (4)
then equation (1) admits a T-periodic solution.

Proof. Applying Proposition, we want to show the uniform a
priori estimates for all solutions of (1) - (2) and their de-
rivatives up to the second order. Hence, let x(t) be such a
solution.

At first, we will prove that

min |x(t)| = R.
te(o,Tx> | (5)
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Substituting x(t) into (Lw) and integrating the obtained identi-
ty form 0 to T, we get

T

J[Zlh(c(t))+(l-p.)cx(t)]sgn (1) dt = 0

0

after multiplying it by sgn x(t), when

min |x(t)| > R.
te<0,T>

Choosing ¢ in order ch(x)x = 0 to be satisfied for |x| >R, we
come to a contradiction to (3). Thus, (5) must be valid, and
consequently

T T 1
R +f|x'(t)ldt <R + T [fx'z(t)dtjzé
0 0

[

|x(t) ]|

1
2

[

.
R + ﬁ_T:{j x “2(t)dt] (6)
24 0

be means of the well-known Schwarz and Wirtinger inequalities
(see e.g. [3]).

Now, we will prove the existence of positive constants D
and D such that

|x(t)| €D and Ix“(t)| =D’
Substituting x(t) into (1u), multiplying the obtained identity

by x (t) and integrating it by parts from 0 to T, we arrive by
means of the Schwarz inequality at the relation

.
fx”z(t)dt
0

.
[L/f(t,x(-t),x'(t))x"(t)dt =
0

T T 1
[ffzu,x(t),x'(t»dt.[x"z(tm}? ,
0 0

n

i.e. (cf. (4), (6))

T T T
fx"z(t)dt s[fzu,x(t),x'(t»dt £ KT + e{ (1)t +
0 0 0
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.
. J‘(-Z—Iﬁ-\_—)zgx"z(t)dt 2 7{L + 8R? +

l
2

+ 28R T T[f “2(t)dt]
T

( BT)(L)ZI “Zetyat{

T = Ux (t) }

when using the Wirtinger imequality.

Because of {) := 1- (1-+ BT)(T/ZT')2 >0, a constant
1
02 := M+ M2+ aN)? with M= 28R VT T2/2%° Q2 and
V2
T(A + BR%)/Q) (implied by the above relation) certainly
exists such that
T

fx"z(t)dt =02,
0

and sonsequently also (cf. (6))

Ix()] 2R + T —=0,:= 0,
29

as well as

T T 1
[x (t)] ‘—‘f [x“(t)]dt £ ﬁ[fx”2<t)dt]2 < |To,:=0",
0 0

be means of the Schwarz inequality with respect to the existence

of a point tle (0,T) with x'(tl) = 0 implied by Rolle’s theorem,

i.e. we arrived at (7).

At last, we will prove the existence of a positive constant

D" such that

Ix“(t)] €D . (8)

This will be performed by means of the Landau 1nequallty (see
[4]) saying that
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Ix“ONZ=allx O x|l , where [[.1l:= max|.|.
t €{0,T)

Therefore, we have furthermore that (cf. (7))

i.e.

1 w 2 . . .
:=7(K+ K“+4L), K:=4D F2, L:= 4D (H+|c|D+F0+FlD ),

0

Ix ") ||1% £ 4D'[H+ IS £Ct, x(1),x (£) + |l l|x<t)||]ﬁ
4D (H+ |c|D+ ||2£/9t] + ||2£/9x]|[D" +
+ |19 E/9x 7] JIx7(t)||) = 4D Ui+‘C|D+F
+F07+ Follx (D,

(8), where

and H:= max |h(x)]|,

-
1

Ix|<D

- max I 1f(t,x,¥ I

0 H

Fl = max ‘ 1f(; X,¥) for ted0,T>, |x| =D,|ly| =D’
X

F2:= max l—li&z-'--)f-‘-y-Z

Vy

To be more precize, inequality (8) is correct for the equation
which is equivalent to (lu) on the domain t€<0,7>, |x| €D,

lyl % D", but this is without any loss of generality. This com-
pletes the proof.
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