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1. INTRODUCTION

Let h> 0 be a positive number, X = {YJ y& c®(¢ -h,0> )} be

the Banach space with the norm |y|| = max|y(t)! for ye X.
te<-h, 0)
Consider the retarded functional differential equation

y" - a(t)y = f(t’yt’l“') (1)

in which q: J — (0,ee), f: Jx XxI — R are continuous, where
3 =<t,t>, T =Ca,b)y, ~oeCt; Ltyoe, ~wLalbL oo,
containing a parameter /k.

Let tze (tl’tB) be an arbitrary fixed number. The problem
considered is to determine sufficient conditions on q, f such
that it is possible to choose the parameter/¢ so that there
exists a solution of (1) with an initial function from X sa-
tisfying boundary conditions

y(tl) = y(tz) = y(t3) =0 . (2)



There is discussed also the conditions for the uniqueness of so-
lutions of the problem (1), (2) with an initial function from X.

For the differential equation
y' - aty = £,(t,y,m) GRD)

the boundary value problem (1), (2) has been considered in [2].

2. NOTATION, PRELIMINARY RESULTS

Let u, v be solution of the equation
y" = q(t)y (qeC®(3), q(t)>0 for teld), (@)
u(t;) =0, u’(tl) =1, v(t)) =1, v'(tl) = 0. Putting

r(t,s):=u(t)v(s)-u(s)v(t),
ri(t,s);=u'(t)v(s)-u(s)v'(t) (

or
2t (t,s))

for (t,s)€ 9%, then r(t,s)»0 for t, £ sct ¥ t5, r(t,s)<0 for
t) T tes Tty r(,8)>1 for (t,5)€ 32, t # s and r(t,t) = 1
for t€J (see Lemma 1 [2]).

If ge.Co(J), one can easily check that the function y
defined by '

r(ty,t) (2
y(t):= ;({;71?7 r(tl,S)g(s)ds +] r(t,s)g(s)ds, te,
4 2.
is the unique solution of the equation

y" - a(t)y = g(t)
satisfying the boundary conditions
y(t)) = y(t) = 0

Lemma 1 ([2]). Let heC%(I xI), h(t,.) be an increasing
function on I for every fixed t€ J and

h(t,a)h(t,b) £ 0 for ted .
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Then there exists the unique /«0, («-OGI such that the equation
y" - q(t)y = h(t,m) (3)

with A = (“‘o has the unique solution y satisfying (2).

For ze C%(< t)-h,t3) ) and t€J we detine z,, z, €X by
z,(s):=2(t+s), s e <-h,0)>.

Say, that y is a solution of (1) on <t1'h’t3> with an
initial function ‘/, P ax (at the initial point tl) if
yeCD(Ltl-h,t3_>)nCZ(J), ytl = ? and the equality y"(t) -

- q(t)y(t) = f(t,yt,(b.) holds for te€J.

For every positive constant r and every l./, f/e X we define
Xp := {vs vex, yo =0, llyll€ e}, x¥ := {y; yecot,-n,t53),

r
vy = ¥, max ly(t)] £ e and Y o= {y; yeXx, llyl®r}.

1

na

Next we shall assume that q, f satisfy for a positive
constant r some of the following assumptions:

l£Ct,y, )| & ralt) for (t,y,a)€dxX_ x1I; (4)
f(t,y,.) is an increasing function on I for every fixed

(t,y)e Ix X 5)
£(t,y,a)t(t,y,b) £ 0 for (t,y)edxX . (6)

Lemma 2. Suppose that assumptions (4) - (6) are satisfied
for a positive constant r. Then to every &, & eC°(<t1—h,t3>),
lL(t)]| € ¢ for te {t;-h,t3) there exists the unique/.o,v 6«061
such that the equation

y" - Q(t)y = f(ty 0"1;,(41) (7)

with /A = (“o has the unique solution y satisfying (2). For this
solution y the equality

ly(t)| £ for ted (8)

holds.
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Proof. Define h(tmk);=f(t,¢t%h) for (t,a)€ I xI. Then
hec®I x1), h(t,a)h(t,b) * 0 for teJ and h(t,.) is increasing
on I for every te€J. Thus by Lemma 1 there exists the unique /40,
/4061 such that eguation (8), which may be written in the form
(3), with M= ({40 has the unique solution y satisfying (2). To
prove (8) let |y(t)] ¢ Iy(f )|> r for t€J and some f‘(tl’tB)'
If y( E )>r (y(f )< -r) then y"( f )>0 (y"(f )< 0) by assumption
(4) and therefore y does not have in the point t = f a local
maximum (minimum) which is a contradiction.

3. EXISTENCE THEOREM

Theorem 1. Let assumptions (4) - (6) be satisfied for a po-
sitive constant r. Then to every (/, (/e )(r there exists some /40,
(ﬂoel such that equation (1) with /41 =(44.0 has a solution y with
the initial function {/ satisfying (2) and (8).

Proof. Llet Y& X, and > X:. By Lemma 2 there exists the
unique /40, /«OEI such that equation (7) with A =(lt0 has the
unique solution y satisfying (2) and (8). Defining y on the in-
terval <t;-h,t) > by ytl:= ‘f, then putting T(&A) = y we obtain

an operator T, T: X! — X%, Thus T(&) = y if and only if

ytl = k‘f’

2 t

r(t,,t) : f
29
y(t) = ow r(t;,8)1(s,d A )ds +t r(t,s)1(s,d,d )ds
t
1 2

for t€J, where Mo (aOeI is some (then unique) number.

Xg is a convex bounded closed set in the Banach space
c%(< t,-h,t %) with the norm || y|l_ := max |y(t)| for ye C°(t,-h,

173 0 tect,-h, Loy 1
t3> ). 1Mt

Next we shall prove that T is a completely continuous ope-
rator. To prove that T is a continuous operator let {p(n% s

o(nosX" be a convergent sequence, lim & _ =d . Let y = T(L ),
r hpee D n n
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y = T(D(). Then there exist a sequence {/‘n}’ (&neI and a number
(IAO, /4061 such that .

t
r(tz,t)
Yn(t) = W r(tl,s)f(s,(o(n)s,(hn)ds +
t
! (%)
t
+ fr(t,s)f(s,(v(n)s,/ﬁ.n)ds , t€J, neN,
t)
t
iy, t) (2
y(t) = W r(tl,s)f(s,o(s,./to)ds +
t
1

t
+ f r(t,s)f(s,v(s,/«O)ds, teld,
t2

and

(yn),Cl = ytl = \{7, neN.

If 5/1”} is not a convergent sequence then there exist convergent
subsequences { , lim =2 , lim = A , A< A

/‘kn}’ {(“rn} Lim /‘kn 1 My = g A<y
Using (9) we obtain

t2
(t) —(—5r(t2’t) f ( ( A
lim y, (t) = r(t,,s)f(s, d _, )ds +
e kn rtz,tl A 1 s 1
1

t
+ f r(t,s)f(s,o(s, Al)ds ,
t

t

2
i (1) Fltpt) f r(t,,s)f(s, & _, A.)d
lim vy = , s s s +
e Tn r(t,,t) ) 1 50 2
1
t

+ {r r(t,s)f(s, 0(3, Az)ds_
2
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uniformly on J. Since f(s,o(s, A1)< f(s,o(s, 7«2) for s¢Jd,
r(t;,s)<0 for s€(t),t,> and r(t;,s)>0 for s« {ty,t5), we get

lim y, (t3)< lim y (t3),
n

Nyoo Nvyoe n

contradicting yn(t}) = 0 for all n€ N. Consequently {(hn} is
convergent, lim (M’n = /.4- Taking the limit in (9) for n -» oo we

have nee
tZ .
r(t,,t) -
(z(t):=) lim yn(‘t) T t(tl,s)f(s,ocs,(k )ds +
ny e 2’71 tl
t
= f r(t,s)f(s,o(s,(‘:)ds
t2

uniformly on J. But this implies z is a solutien of the equation
y" - q(t)z = f(t,o(t,(l.)

satisfying (2), thus by Lemma 2 /:= (ho and z = y. Then lim Yo =Y
nyo=

and T is a continuous operator.

Let yexr, and z = T(y). Then ze€ X:, z"(t) = q(t)z(t) +
+ f(t,yt, M) for te€d where M €1 and z(t)) = z(t,) = z(t3) = 0.
If z'(f) = 0 for some fe J (and this f always exists), then
from the equality

t
2 (1) %' (a(s)z(s) + £(s,yg, ho))ds, ted,

follows that

lz°(t)| £ (rmax q(t) + A)(t3-t;) (=:L) for teJ,
teld
where A :=Jm)(axI If(t,y,(k)l. Consequently T(XZ)C £_=={Y,; YEX;’,
Ix r.

y’ 2 or . Since ig a compact set o . by e
ly (t)] €L for ted}. s X is t set of x¥ by th
Ascoli s theorem, T(Xg) is compact, too.

!

- 112 -



By the Schauder s fixed point theorem there exists a fixed
point y of T. This y satisfies the assertion of Theorem 1.

Corollary 1. Let assumptions (4) - (6) be satisfied for

a positive constant r. Then to every \/, (/e. Xr there exists some
/‘o’ (4406 I such that equation (1) with M= (“o has a solution y
with the initial function (f satisfying (8) and

y(t) =y (1) = y(tp) = 0,

Proof. Let {xn}, x € (tl,t3) be a decreasing convergent
sequence, lim x_ = tl' By Theorem 1 there exists a sequence
{Jan} , (ug’gl such that equation (1) with 4= A has a solution

Yo Yn€ Xr with the initial function l/ satisfying
Yolty) =y (x)) = y (t3) = 0, nen.
Next we have

|yr'](t)| S, |Y;.'|(t)\ % rmax q(t) + A for t€J and neN,
tel

where the constants A, L are defined in the proof of Theorem 1.
Using the Agcolifs theorem, without loss of generality, we may
assume {ynl (t)} are uniformly convergent on J for i = 0, 1,
and since I is a compact interval we may assume {/1“} is a con-

vergent sequence, lim /hn = /«0. Then the function y defined by
naw

y(t):= lim yn(t) for te <t1—h,t3> is a sol:tion of equation
‘Nyoo

(1) with 4 = M satisfying (8), (10) and v, ® Y.

Example 1. Let h>0 be a positive constant, let

positive integer, p, g€ €°(3), gec®(< 0,h >), 0¢ Py
$p,, alt) 2

Let

n be a
< p(t) 4
m>0 for t€J, where Py» Py, m are positive constants.

m - ap, >0,

0
J |?(—5)|ds £ min {apl,m—apz}
h
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with a positive constant a>» 0. Consider the equation

t
y" - a(t)y = f g(t-s)y"(s)ds + JLICF (11)
t-h

Equation (11) may be rewrite in the form (1) with f(t,yt,(u) =

0 0
= f g(-s)y"(t+s)ds +4p(t). Since |f(,y,(A)l ¢ f|g(—s)|ds +

“h -h
+ap, S m for (t,y, A)€IxX xT where X; ={y; ye€®(<-n,05),
y(ty) =0, [y(t)] ¥ 1 for te J} , I =<-a,ay, £(t,y,.) is an
increasing function on I for every fixed (t,y)€ JxX;, assumptions
of Theorem 1 and Corollary 1 hold with r = 1. Thus to every V,

Y e )_(1 there e)fists some A ((141), /4051((44161) such that
equation (11) with (h = (“o (/|:<)l) has a solution y (yl) with
the initial function Y satisfying (2) and |y(t)] ¢ 1 for teJ
(yp(t)) =y (t) = y;(t5) = 0 and ly, (t)] 21 for ted).

4. UNIQUENESS THEOREMS

Theorem 2. Suppose that for a positive constant r the fol-
lowing inequality

<

"

[ECty k= £ CE,youm0 1 2 hC) lly -y, ll 5 (t,yquh),

(t,yz,(u)e IxY . x1

(12)

is satisfied, where he C°(J). Let at least one from the following

assumptions
tz .S
J Q™ + h(T))dTds ¢ 1 . (13)
Y
ta
f (q(s)(s—tl) + h(s)(s—tl—h))ds £ (14)
t
1
holds.
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If equation (1) with some tA = (ho’ (hos I has a solution vy
with an initial function ‘f, 9”6 X, satisfying (2) and (8), then

this solution y is unique.

Proof. Suppose equation (1) with A = (ho, M€l

solutions Yis Yo e.XZ satisfying yi(tl) = yi(tz) = yi(t3> = 0

(i = 1,2) for some Y, V’e Xp- Define w:= y; - y,. Since w(tl) =
= w(tz) = 0 there exists some f e(tl,tz);lw(t)i E ‘w(? )| for
te<lt),t,7 and w'(f ) = 0. Assume assumption (13) holds. From

A

fw" ()] £ qCt)|w(t)] +h(t)Hth, t€ed,

follows that

"

lw ' (t)] £ jg(q(s)lw(s)] + h(s)llwsll)dsi , ted.
1

(1%)

Putting X(t):= max |w(s)| for te€J, then llwt\|= max lw(t+s)| &
_histo

tlését
£ X(t) for t€J and

t
w1 ¢ [ (ate) « nenxtedes, e {fL )

Consequently
t2 t2 s
lw(t)| & f lw'(s)|ds ¢ f(f(q«r)m@))x('r)ﬁ )ds,
t ¢ t € < f t,)

If x(§ )> 0 then
1 S
X( f ) = tW(E)l E Jg( §(q('Z‘)+h('2'))X(T)d'2‘>ds 4

tz S
<x(§)f J' (q(®)+h(T))dTds ¢ x(g)
t

1 5
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by assumption (13), which is a contradiction. Tius w(t) = 0 and
then yl(t) = yz(t) for te (tl, 27 -

Assume assumption (14) holds. Since |w(t)| & f lw'(s)]ds,

t
fw,ll = max |w(t+s)| £ max J' lw (T)|dT for t € {t,,t,) , we
th hssto hisf0 o 1272
have |w(t)| £ Y(t))(ty-1), [lwy Il Y(t))(t,-t-h) for tedt),t,>
where Y(t):= max Iw (s)l, t€<t;,t,> . Consequently, in virtue
tl—s~
of (15) we have
t

lw'(t)] £ Y(t2)| j; (q(s)(tz—s)+h(s)(tz-s—h)ds|, t el tl,t2> s

and if Y(tz) £0,
t

2
Y(t)< Y<t2>f (a(s) (ty-5)+h(s) (t,=s-h))ds & Y(t,)

Y

by assumption (14), which is a contradiction. Thus w(t) = a
constant for t€ (tl,tz) and since w(t;) = 0 we obtain w(t) = 0
and thus yl(t) = yz(t) for te<t;,t,>

We see, if at least one form the assumptions (13) and (14)
holds, then yl(t) = yz(t) for te< thty > and by a uniqueness
theorem (see [1], Theorem 2.3, p.42) we obtain Y1 = Yo

Theorem 3. Assume f(t,y,(h) has a continuous Fréchet deri-
vatives with respect to y on J«x er I for a positive constant
r»0 and

28 :
oy By w20 for (ty w€IxY « 1, fe¥y,

ﬂ(t) 20 on <-h,0)>. (16)

If equation (1) with some ¢A = /ho’ (koe I has a solution y
with an initial function lf, (/e Xr satisfying (2) and (8),
then this solution y is unique.
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Proof: Assume equation (1) with A= /%,<h0€ I has solutions
y1» Yo € Xz, y, # ¥, satisfying y;(t;) = y; (15) = y;(t5) = 0
(i = 1,2) for some 'f, V € X_. Putting w:= y,-y,, then

w(t) = g(tHw(t) + %5- (4, (R d Wy » €T,

where t“ =y, + Atwexr for t€J and some Ate(ﬂ,l), p(t):=
1= é%%(t,(td)t,zho)wt is continuous for te€ J and 4%§(t,(t£)t,

M dw, 20 for all t€J with w(t+s) 2 0 for s €<-h,0>. Let
o to€ {ty,t3) be w(t) = 0 on <tl,tq) and w(t) # 0
in every neighbourhood on the right of to‘ If w (to) = 0 then

for some t

L S
w(t) =f {(Q(T)W(T)w(?'))d'?'ds for te(to,t3> ,
t

0o o

and since |p(¥)| $ KlleH for Te€ J, where K:= max H%f-(t,y,/!o)ll,

(t,y)dJrXr

we obtain
s

t
Jw(t)] §f y(q(T)lw(T)l + Kl ds, tedty,ts).
Tt

0o O

Putting X(t):= max |w(s)| for t € {t st3y, then hw, |l & x(t),
t %55t o t
)

consequently
t S : -
Wl £ xo [ [ @ « 0aTds,  teiytyy,
to to
and
t
X(t) & x(t)f f (q(T) + K)dTds .
to to
Thus
t s

(g(T) + K)dTds , t E(to’t3> ,

—
na

Ca g —

o+ —y
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which is a contradiction. Therefore w'(to) # 0 and if w'(t0)> 0
(w’(t0)< 0) then w(t) >0 (w(t) <0) for te(toﬁ), w(t) = 0 where
telt ,t5> . Then p(t) 2 0 (p(t) 2 0) for te <t ,t> and for
this t we have w"(t) >0 (w"(t)< 0) which contradicts w(%) = 0.
Also, w = 0 and Yy = Yy which contradicting the assumption
yi ¥y

Example 2. Consider equation (11) where p,q,g satisfy the
assumptions of Example 1 and in additional n is an odd positive
integer, g(t) ¥ 0 for t € <0,h > . Since the function f defined
in Example 1 has a continuous Fréchet derivative —?D—f,(t,y,/t) on

0
91 _ n-1

JxX;x T and —,5—y(t,y,/u)/; = nJ' g(-s)y (t+s)ﬂ (s)ds for

~h
(t,y,/«)EJxXlx I,/Se X2, the assumptions of Theorems 1 and 3
are satisfied. Therefore to every \f, ‘fs X1 there exists some
/110, /uDeI such that equation (11) with /4: (ho has a solutions
y with the initial function ¢’ satisfying (2) and |y(t)| & 1
for t€J (by Theorem 1). This solution y is unique by Theorem 3.
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SOUHRN

TRIBODOVA OKRAJOVA ULOHA PRO FUNKCIONALNT
DIFERENCIALNT ROVNICI 2. RADU SE ZPOZDENIM 0BSAHUJICI
PARAMETR

SVATOSLAV STANEK

Necht h >0 je kladna konstanta a X = {y; ye C%(< -h,05)}

je Banachitv prostor s normou ||yl = max |y(t)|. Je vysetiovana
(13 )

funkciondlni diferencidlni rovnice se zpoZdénim
y" - q(t)y = f(t9Yt9(l‘)y (1)

kde q:J:= <tl,t3) —> (0,00), f: JxXx<a,b>—> R jsou spojité
funkce. Necht t26 (tl"tB)' Jsou uvedeny podminky kladené na
funkce q a f, které jsou postadujici k tomu, aby pro kaZzdou
pocdtecni funkci Ys XDC.X existovalo /Aoe<a,b> takové, Ze
rovnice (1) pro /1= (14,0 mé feSeni y splnujici okrajové podminky

y(tl) = y(tz) = y(t3) =0 . (2)

Rovnéz je vy3etfovdn problém jednoznatnosti FeSeni okrajové
Glohy (1), (2).
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PEIME

TEOPEMH CYNECTBOBAHMA [IQUTH-NEPMOIMYECKVX PEMERMfA
INSSEPEHIMANEHEX YPABHEHUAI NEPBOTIO NOPALKA

C. CTAHEK ;

B peforTe IoKkasamo cxeAyLmee yTBepxAemue: IlyeTs u, V
- nourm-mepuozMuecxne CL - dymxmmm, o £ v(t) £ u(t) £ 4
nas teRr, rae o, Se R, Oyers £:Rx<&,f0— R - mouTH-

-nepuoinueckes fyHxknus nepemenHo# it paBHOMepHO JIaAS xe(o( ,/S)
u

VN

P(u(D)-£Ct,u(t))) £ 0, Y ()-£(t,v(1))) 2 0, teR,

v e{-l, 1§ . Ecan ")i (t,x)cyniecwnye-r He MHOXecTBe H:=
:= {(t,x); teR, v(t) £ x £ u(t)} wm é\)-—r%—)% (t,x) ¢ M pas
(t,x)€H, raem, M - noxoxuTesrHHEe NOCTOSHEHE, TO yYpPEBHEHUE

x = £(t,x)

)

umeer B H nouTn-nepuoiMueckKoe pemeHMe. PesyAbLTAT KAADCT-
pupyercs He NATH KOHKpeTHHX IudpdepeHnusALHHX YPEBHEHUSX.

- 120 -



REFERENCES

[1] Hale, J.: Theory of Functional Differential Equations. Springer-
Verlag New York Inc., 1977.

.[2] S tanék, S.: Three-point boundary value problem of nonlinear
second-order differential equation with parameter, to appear.

RNDr.Svatoslav Stanék, CSc.,

Katedra matematické analyzy
a numerické matematiky

771 46 0lomouc
Czechoslovakia

Acta UPO, Fac.rer.nat.97, Mathematica XXIX, 1990 , 107 - 121.

-121 -



		webmaster@dml.cz
	2012-05-03T21:05:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




