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In this note an algorithm and its convergence to the so-
lution of the equation

Ax = ABXx (1)

is shown, where x€ X, X is a Hilbert spa‘ce and A and B are li-
near operators from X onto X. There are used some terms of the
theory of the spectral representation of normal operator [1]

Let (.,.) denote the scalar product in X, the norm in X be
defined || . |I§ = (.,.). Let [X] be the space of linear bounded ope-
rators on X, the norm of T& [X] be defined as usual : || T || =
= s“ir)(||=l T x|l . Let C be the open complex plane, we denote the

spectrum of T by G (T) and its spectral radius by r(T). Let

spectral radius circle be a set of A € C, for which |A| = r(T).
We denote it by the letter w . We define to Te [X] its adjoint
T for which (Tx, y) = (x, T*y) holds for every x, ye X. We say
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that T is self-adjoint, if T = 1" and that T is normal, if

T 1% = 7T, We assume that t(1)>0 not to repeat it in most of
statements. We will use the convergence theorem from [3], which
is shown here only for the sake of completeness (without the

proof). Iterations are constructed in the following way ([5],

(2

(n)
el oo () X, - Xk (2)
n
(X(n+l)’ yn) -
R ) N
& (" zn)

where x(O)é X, the sequences {y”f, {zn} of elements of X and
the number sequence {kn} are such that the denominators in

(2) and (3) are not equal to zero and

lim y_ = 1lim z_ =y , (4)
imdad i n
where ye€ X. We remark to the next theorem, that no assumptions
about the isolations of points from ¢ (T)N w (T) are made.

Theorem 1. Let Te [X] be a normal operator and x<o)€ X be a

fixed vector such that

0)

ECw) x© y) = D < ) £0

where /uDG w(T)N G (T) and E is the spectral measure generated
by T. Let (4) hold for Yo » Zn and ye X. Further let kn be such

that

n
. -1
1im k = £ 0, |[fl< oo . (5)
e ]:[.6“5 n /@ A
We denote Xg = ﬂli({(ab}) x(o). Then

lim 4“h = /% and lim x = xg

n->oe n-»co

hold, where X, is the eigenvector of T corresponding to the

eigenvalue (46.



This iterative process is applied for seeking an eigen-
value and its corresponding eigenvector of the equation (2).
The procedure is similar as in [2] or [5]. The iterations are
constructed in this way

M g U(n)’ A (D) V(n)’ W0 - (o) 6)
and further
(n)
_u
Un = kn N
(n)
(u , Y )
A= — n (8)
n (u » Z)

where kn , Y. and z are those as in theorem 1.

n

Now we can state the main assertion.

Theorem 2. Let the linear operators A and B are such that A_1
exists and T = A_lB satisfies together with Yo » Zn o kn , Y
and x(o) assumptions of the theorem 1. Then u, converges to

ug in the norm in X and ﬁn converges to Ao where Uy is the
eigenvector of the equation (2) and 20 is its corresponding
eigenvalue.

Proof: This will be denote alike the proof of theorem 3 in
[2]. For u(n+1) from (6) holds

L) a1 ()

- A - alg (M )

so that
G 2o (e o ()

Applying theorem 1 to the sequence {x(n)} finishes the proof
of the convergence u, to the eigenvector of the equation (2).
Similarly we prove the convergence of the sequence { )n}‘ The

. _ L n
equation T X = /% X for ETE limit elements x and /% from
theorem 1 hold and as T = A "B, we have
At = u (10)
o /Ab s}
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Owing to the fact, that

lin a = A

n—voe

we obtain from (10) that

A u, = XO B ug

what finishes the proof.

Now we will investigate the generalized eigenvalue problem
in case that A and B are linear operators from X into Y, where
X and Y are complex Hilbert spaces. Under the term eigenvector
of a couple of A and B we mean a vector for which A x # ¢ and
which solves the equation (1). We will denote by [X,Y] the
space of all linear bounded operators from X into Y. The pseudo-
inverse (Moore-Penrose) operator A* is defined by the next re-
lations [6]

AATA = A
AtA At = At
(ATAMHX = A*A

(A ATY* = A A
The following iterative process

v(n) = A

oM WD) g () (o) (o) (11)

is used together with (7) and (8).

Theorem 3. Let A be a linear operator from X into Y and

lac[x,v] such that R(A)C R(B), where R denotes their correspond-
ing ranges. Further let T = B*A satisfy together with Yo » 2
kn , ¥y and x(o) assumptiqn of theorem 1. Then un from (7)
converges to eigenvector of a couple of A and B and ¢‘ﬁ from
(3) to its corresponding eigenvalue.

n°?

Proof. We show firstly, that if Xq is an eigenvector and (hb
its corresponding eigenvalue of the operator T = s*A, then Xq
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and /% also satisfy the equation (1). Let

Axu=-’“’0xo

+

B

hold, therefore we have
+
BB A Xy = (“b B Xg

B BY is the orthogonal projection from Y onto R(B) and the
identity operator on R(B), so for every y&€ R(A)CR(B)CY

BB y =1y

holds, from which we obtain
A Xy = (Ab B X

Further ld“ol = r(T) under the assumptions of theorem 2 and
owing to this A X # a0, i.e. X is an eigenvector under our
definition. We have from (11) similarly, that

G ey ()
holds, i.e.

LD ()

With respect to this fact the sequences (7) and (3) converge to
the eigenvector X and its corresponding eigenvalue ,ko and
under the first part of this proof L and <“b are the solution
of (1) and the assertion is proved.

Finally we remark, that no assumptions on the neighbour-
hood of spectral radius circle have been made, i.e. our in-
vestigation covers the case, when the dominant eigenvalue of
T is not isolated. The situation of not isolated eigenvalue
was studied by Kolomy for a self-adjoint nonnegative operator

[4].
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SOUHRN

PRIBLIZNE RESENT ZOBECNENEHO PROBLEMU VLASTNICH CISEL

TOMAS KOJECKY

Je zkoumdno fedeni rovnice A x = AB x v Hilbertové pros-
toru; fedeni se hledd pomoci iteraci (6), (7), (8) a (11) v
ptipadé, 7e bud B*A nebo A—lB jsou normdlni ohranicené operd-
tory. Je ukdzdna konvergence vySe zminénych iteraci.
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PESKCME

NNPYBJMKEHEOE PEWEHVE OBOBWEHHO! I1PCBJIEMH
COECTBEHHEX 3HAUEHMNN

T. HOELKH

[oxe3KB&eTCH NyTh IJSA HAXCXAEHUS peWeHus ypaBHeHUs
(1) B npocrpascTre Mmanbepra npu romowy urepamur (6), (7)
u (8 )8 cryuse, xorma B'A mau A lp HOpMeJEHHE OonepeTo-
pH. LokesHBEEeTcS CTDEMIeHuEe UTepamnKu.
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