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I n t h i s n o t e an a l g o r i t h m and i t s c o n v e r g e n c e t o t h e s o ­

l u t i o n o f t h e e q u a t i o n 

A x = A B x ( 1 ) 

is shown, where x€X, X is a Hilbert space and A and B are li­

near operators from X onto X. There are used some terms of the 

theory of the spectral representation of normal operator [l]. 

Let (.,.) denote the scalar product in X, the norm in X be 

defined || . II x = (.,.). Let [x] be the space of linear bounded ope­

rators on X, the norm of Tfi [x] be defined as usual : || T || = 

= sup || T x || . Let C be the open complex plane, we denote the 
l|x||=l 

spectrum of T by (T(T) and its spectral radius by r(T). Let 

spectral radius circle be a set of ^fiC, for which |A| = r(T). 

We denote it by the letter to . We define to Tfi [x] its adjoint 

T* for which (Tx, y) = (x, T*y) holds for every x, y*X. We say 
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that T is self-adjoint, if T - T and that T is normal, if 

T T = T T. We assume that r(T)>0 not to repeat it in most of 

statements. We will use the convergence theorem from [3], which 

is shown here only for the sake of completeness (without the 

proof). Iterations are constructed in the following way ([5], 

[2]) 

x
( o + 1 )

 - T x
( n )
 , x = 4^- (2) 

A 
/ (П+1) ч 

(x , y
R
) (3) 

where x ° £X, the sequences {ynj, {z ] of elements of X and 
the number sequence (k j are such that the denominators in 

(2) and (3) are not equal to zero and 

lim 
П-vв-

lim (4) 

where y^X. We remark to the next theorem, that no assumptions 

about the isolations of points from <T(T ) n to(T ) are made. 

Theorem 1. Let Is [x] be a normal operator and x € X be a 

fixed vector such that 

,(o) x ( o \ y) i 0 , y) = (E({^0!) 

where U € OJ (T) O (T"(T) and E is the spectral measure generated 

by T. 

that 

by T. Let (4) hold for y , z and y€ X. Further let k be such 

We denote x 

11 

lim "Tí>0 k-
1 -fit 0 , |/S|< 

!!->•• Í = l 

ftUÍ^J) x(0) 

(5) 

IІП д = л0 
П->o* 

and 

Then 

lim x_ 

hold, where x is the eigenvector of T corresponding to the 

eigenvalue ^ . 
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This iterative process is applied for seeking an eigen­

value and its corresponding eigenvector of the equation (2). 

The procedure is similar as in [2] or [5]. The iterations are 

constructed in this way 

,(n) . ,(n) A u
( п + 1 )

 - v
( n )

. ,(o) , ( 0 ) ( 6 ) 

and further 

.(n) 
(7) 

(u 

(u
( n )

, y 

(n
 +
 l) 

z
n> 

(8) 

where k , y 
n '

 J and z are those as in theorem 1. 
n n 

-1 

Now we can state the main a s s e r t i o n . 

Theorem 2. Let the linear operators A and B are such that A 

exists and T = A" B satisfies together with y , z , k , y 
/ \ n n n 

and x assumptions of the theorem 1 . Then u converges to 

u^ in the norm in X and 'A converges to A where u is the 
0 n ° o 0 

eigenvector of the equation (2) and 1A is its corresponding 

eigenvalue. 

Proof_: This will be denote alike the proof of theorem 3 in 

[2]. For u
( n + 1 )

 from (6) holds 

,(n+l) 
A"

1
 v

( n )
 = A"

1 .(n) (9) 

so that 

u
(n)

 = T
n
 x
(o)

 = x
(n) _ 

Applying theorem 1 to the sequence {x } finishes the proof 

of the convergence u to the eigenvector of the equation (2). 

Similarly we prove the convergence of the sequence U 1. The 
/ \ *> n * 

equation T x = A x for the limit elements x and >• from 1
 0 ^ 0 0 __, / n 

theorem 1 hold and as T = A B, we have 

B u U u 
/ 0 0 

(10) 
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Owing to the fact, that 

lim A = %~l 

__, « n o П->o 

we obtain from (10) that 

A u
o
 = \ B u

rt o o o 

what finishes the proof. 

Now we will investigate the generalized eigenvalue problem 

in case that A and B are linear operators from X into Y, where 

X and Y are complex Hilbert spaces. Under the term eigenvector 

of a couple of A and B we mean a vector for which A x t cr and 

which solves the equation (1). We will denote by [X,Y] the 

space of all linear bounded operators from X into Y. The pseudo-

inverse (Moore-Penrose) operator A is defined by the next re­

lations [6] 

A A
+
A = A 

A
+
A A

+
 = A

+ 

(A
+
A)* = A

+
A 

(A A
+
) * = A A

+ 

The following iterative process 

v 
( n )

 = A u
( n )

, u
( n + 1 )

 = B
+
 v

( n )
, u

( o )
 = x

( o )
 (11) 

is used together with (7) and (8). 

Theorem 3. Let A be a linear operator from X into Y and 

B<E[X,Y] such that R(A)CR(B), where R denotes their correspond­

ing ranges. Further let T = B A satisfy together with y
R
 , z

R
 , 

k , y and x^
0
^ assumption of theorem 1. Then u from (7) 

converges to eigenvector of a couple of A and B and ^ from 

(3) to its corresponding eigenvalue. 

Proof. We show firstly, that if x is an eigenvector and /*>Q 

its corresponding eigenvalue of the operator T = B
+
A, then x

Q 
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and ^4
Q
 also satisfy the equation (1). Let 

B
+
A x = A x 

o no o 

hold, therefore we have 

B B
+
A x = U B x 

o <• o o 

B B is the orthogonal projection from Y onto R(B) and the 

identity operator on R(B), so for every yB R(A)CR(B)CY 

B B
+
 y = y 

holds, from which we obtain 

A x = M» B x 

o co o 

Further | Ifc | = r(T) under the assumptions of theorem 2 and 

owing to this A x j- (7, i.e. x is an eigenvector under our 

definition. We have from (11) similarly, that 

u
( n + 1 )

 - B''A u
( n ) 

holds, i.e. 

(n+1)
 т

 (n) 
< = T x 

With respect to this fact the sequences (7) and (3) converge to 

the eigenvector x and its corresponding eigenvalue /*> and 

under the first part of this proof x and ^ are the solution 

of (1) and the assertion is proved. 

Finally we remark, that no assumptions on the neighbour­

hood of spectral radius circle have been made, i.e. our in­

vestigation covers the case, when the dominant eigenvalue of 

T is not isolated. The situation of not isolated eigenvalue 

was studied by Kolomy for a self-adjoint nonnegative operator 

W-
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SOUHRN 

PŘIBLIŽNÉ ŘEŠENI ZOBECNĚNÉHO PROBLÉMU VLASTNÍCH CISEL 

TOMAS KOJECKY 

Je zkoumáno řešení rovnice A x = /\ B x v Hilbertově pros­

toru; řešení se hledá pomocí iterací (6), (7), (8) a (11) v 

případě, že buď B A nebo A B jsou normální ohraničené opere 

t o r y . Je ukázána konvergence výše zmíněných i t e r a c í . 
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РЕЗЮМЕ 

ПРИБЛИЖЕННОЕ РЕШЕНИЕ ОБОБЩЕННОЙ ПРСБЛЕШ 

СОБСТВЕННЫХ ЗНАЧЕНИЙ 

Т . КОШКИ 

Показывается путь для нахождения решения уравнения 

(1) в пространстве Гильберта при помощи итерации (6), (7) 

и (8 )в случае, когда В
+
А или А" В нормальные операто­

ры. Докееывается стремление итерации. 
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