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INTRODUCTION

The concept of the translation operator and its applicati-

on to the periodic boundary value problem is well-known since

the time of Poincaré [1]. However, Levinson 2] was the first

who studied its properties in detail (whence the name) with res-
pect to the second order differential equations.

Since there exists the whole theory concerning the trans-

lation operator at present (see e.g. [3]), we will not repeat

here the basic notions, but will be concentrated directly to

our goal, consisting of a suitable modification of the Levinson
operator, corresponding to the following three-point periodic
boundary value problem, namely

X = £(t,x), fec(<0,2ayx RY) 1

and x(0) = x(a) = x(2a), O # ae Rl. (2)
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Remark 1. In order to apply the modified Levinson operator, it
is necessary to assume that all solutions of (1) exist and are
uniquely determined on <0,2a ) . However, since we use the a
priori estimates technique, the existence requirement can be
strictly localized (and hence practically omitted; see bellow).
Moreover, it is possible (see [3, p.23]) to approximate uni-
formly f(t,x) by the Lipschitz functions with respect to x on
£0,2ad> in arbitrary accuracy and to apply the standard 1li-
miting argument (cf. [3, p.ZA]) to satisfy the uniqueness.

2. MODIFICATION OF THE OPERATOR TO SECOND ORDER SCALAR
EQUATIONS

Hence, let us define the modified Levinson operator
TPNX(O), where A, v &{0,1y are parameters and X(0) = (x(0),
x (0)) are the Cauchy initial values of solutions x(t) of (1),
in the following way

[Lix@-x(®],a 2 [x(2a)-2x(2)ex(0]]  for pzv= 1,
{).a[x(~.va)-x(0)],[x((»w)a)»x(\»a)]~[x(2-a)-x(0)]}(;..v)']‘a'2

for /L,VE (0,1» ,
T"VX(O)‘

[x(va)-x(0),x (va)-x (M) (va)™!  tfor p= 0,ve0,1> ,
[x“¢0),£¢0,x(0))] for A=V = 0.

It is clear that

71,1’““) 0 iff x(0) = x(a) = x(2a)

0 iff x(0)

"
"

and T ;X(0) x(a), x (0) = x'(a). NG

Lemma 1. The problem (1) - (2) is solvable, provided
£(0,x(0)) £(0,-x(0))
£¢0,x(0))|  1£(0,-x(0))]|

(£¢0,x(0)) # 0) (€9

- 36 -



holds for [x(0)] 2 Ry, where Ry is a suitable positive constant
and EW,IX(O) £ 0, TO,VX(O) #0 (ii)
for | X(0)||2 R 2 Ry (R - great enough real), independently of
(h, ve(0,1>.

Proof. As we have already pointed out, the problem considered

is solvable if
T 1X(0) = 0.

Since we employ here the topological degree arguments, the fun-
damental requirement reads [4] (see also (3))

Tl,lx(U) £0, (TO,IX(O) £0) (4)

on the sphere | X(0)|| = R. But assuming (ii), condition (4) can

be replaced by

TO’OX(O) #0 for |Ix(0)]=R (5)

by virtue of the well-known [4] invariance under the homotopy.
Furthermore, since the degree of an odd operator is not equal
to zero on the sphere according to the classical Borsuk anti-

podal theorem [4], namely

d[Tg gX(0) - Tg o(-X(0)),IX(®)|=R,0) # 0 for IX(O)]= R,

condition (5) can be still replaced by

Tg,0X(0) = (1= M)Tg o(-X(0)) # 0 for all A &(0,1> ,

which is certainly implied by (i) for £(0,x(0)) # 0. This

completes the proof.
Lemma 2. Condition (ii) of Lemma 1 is fulfilled, if all so-
lutions x(t) of (1), satisfying the following simultaneous
boundary conditions

x(va) = x(0), x'(va) = x"(0) for all ve(0,1> , (6)

x((p+1)a) = x(aa), x(a) = x(0) for all A€(0,1> n
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are uniformly a priori bounded (in case (6) with their derivati-
ves x (t) as well).

Proof. It can be easily seen (see (ii)) that

Tﬁ,lx(0> # 0 iff x(a)#x(0) or x((1+a)a)#x(ma) for all A€(0,1>

3’

Ty pX(0) # 0 iff x(va)#x(0) or x (va)#x (0) for allve(0,1>
Therefore assuming a priori estimates as above (cf. (6), (7)),
these inequalities are trivially satisfied for R great enough.

Remark 2. The criterium of the solvability of (1) - (2) is re-
presented by the assumptions of Lemma 2 and (i) (for the problem

of Poincaré it is enough to verify besides (i) a priori esti-
mates corresponding to (6), only).

3. A PRIORI ESTIMATES

Now we will proceed to the verification of such a crite-
rium, provided

lim inf f(t,x)sgn x >0, (8)
| x|-»ee

uniformly with respect to t&<0,2a)> , by which (i) is guaranteed
immediately.

Lemma 3. The uniform a priori boundedness of solutions x(t) of
problem (1) - (6) implies the same for their derivatives
x (t).

Proof. According to Hille s version [5] of the Landau inequali-
ty, we have )

x O = allxcel I xll

for all bounded functions x(t)€ Cz(Rl), where || .|l = sup |.| .

1€<0,00)
If x(t) are uniformly bounded on each subinterval of <0,2a) ,

|£(t,x)| atteins there its maximum, say Mx’ with respect to the
continuity assumed, and consequently we have
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Ix"Coll? = am I xColl,

which was to be proved.

As we can see, only a priori estimates of solutions to
(1) - (6) or (1) - (7) are needed.

Lemma 4. There exists such a positive constant S that all solu-

tions x(t) of (1) - (6) or (1) - (7) are under (8) uniformly
a priori bounded by it on the appropriate intervals of their

existence.

Proof. Relation (8) implies the existence of such an S> 0 great

enough that

x ‘sgn x = f£(t,x)sgn x > 0 (9)

for all te<0,2a> and |x|>S. If [x(0)| =S and |x(ty)| > 8
for some tDEZ(O,va), then x(t) >S becomes convex (cf. (9)),
while x(t)< - S becomes concave there by the same reason, by
which x(t) cannot evidently come to x(va) (for v = 1 to x(a)
in (7)). In this respect [x(na)]| £ S must be satisfied as well
and consequently also |x(t)| £ S for all te<0,(1+m)ay (for
M= 1 to x(2a)), because of (7). Hence, if |x(0)| = S, then
the solutions of boundary value problems (1) - (6) and (1) -
(7) are uniformly bounded by the same constant.

If |x(0)| > S, then x(t) becomes convev or concave just
from the beginning, respectively and either x(va) # x(0) again
(for v = 1 x(a) # x(0) in (7)) or x (va) # x (0) in the case
corresponding to (6) resp. x((a +1)a) # x(s a) in the case cor-
responding to (7). Thus, x(t) is bounded in the same way.

4. MAIN STATEMENT AND CONCLUDING REMARKS
Now we can give the principal result.
Theorem. The problem (1) - (2) admits a solution, provided (8).

Proof - follows immediately from Lemmas 1 - 4 with respect to

Remark 2.
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Remark 3. It would be only a technical matter to generalize the
above idea and solve (n+l)-point periodic-like boundary value
problem.

Remark 4. If f(t+a,x) = f(t,x), we obtain as a special product
of our investigation the existence of an a-periodic solution

of (1) (see Remarks 1 - 2). This result is comparable in certain
aspects to those obtained earlier by several authors (see e.g.
[6], [7] and the references included).
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SOUHRN

0 JISTE MODIFIKACI LEVINSONOVA OPERATORU
A JEJT APLIKACI NA TRIBODOVOU OKRAJOVOU ULOHU

JAN ANDRES

Jsou nalezeny postadujici podminky feSeni t¥ibodové okra-
jové dlohy periodického typu (1) - (2) na bézi adekvdtné& modi-
fikovaného operdtoru Levinsona.
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PEGUOME

OB CLHOM MOLM®UKALMYK ONEFATOPA JEBUMHCOHA ¥ EE
NPUJIOXEHVN K TPEXTOUEYHOM KPAEBOJ 3ALAYE

. AHLPEC

lloxes&HH JOCTETOYHHE YCJXOBMS DemeHuss TpexXToueuHoh
kpeeBo#t sellauy nepuomuueckoro runa /1/-/2/ He OCHOBe
cooTBEeTCTBYRIUM cnocolom ob6paloraHBoro cneparope JeBuH-
COHAa,
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