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ON RELATED TRANSDUCERS 
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(Received A p r i l 30, 1989) 

1. INTRODUCTION 

The general s t r ing-ma tching problem, searching for a pa t­
tern in a s t r i n g , has been widely s tudied since the early se­
v e n t i e s . Two fundamentally d i f f e r e n t approaches have been used 

in solving i t according to w h e t h e r i t is the p a t t e r n or the 
s t r i n g which changes more o f t e n . 

F i r s t l y , consider the fixed p a t t e r n w (over an alphabet A) 
we are searching for. I t is easy to build the d e t e r m i n i s t i c 
f i n i t e automaton (DFA) M which recognizes the language A*w -
the set of all words over A ending w i th w . Then we can l e t M 
work on the s t r i n g inside which the p a t t e r n w is expected and 
get a " r e a l - t i m e " search a lgor i thm (see, e.g., [2], [3]). 

The subjec t of this paper is the other approach supposing 
that we are searching for a varying p a t t e r n in a fixed s t r i n g , 

say x. In this case efficiency is reached by preprocessing x. 
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The set F ( x ) of all subwords (factors) of x, being finite, is 

recognized by some minimal DFA M ( x ) . Furthermore, in most of 

applications we are interested not only in the basic informa­

tion (if the pattern z is a factor of x or not) but a position 

of z in x is needed, t o o . The function pos(z,x) taking as its 

value the position of first occurrence of z in x (undefined 

otherwise) is left sequential and can be computed by a (sequen­

tial) transducer having M(x) as its underlying a u t o m a t o n . Such 

transducers have been examined in detail by Crochemore in [l], 

Basic concepts and results from there will be briefly 

presented in Section 2 . However, the careful reader is asked 

to get familiar with the complete article [l] . This is espe­

cially needed for understanding the proof of our Theorem 

(Section 3 ) . 

2. FACTOR TRANSDUCERS 

All the words considered in this and the latter sections 

are elements of the free monoid A* generated by some finite 

alphabet A. The empty word of A is denoted by 1. Letters of 

A will be denoted by a,b,c,... and words from A by x,y,z,u, 

v,w,... . The notation |w| is used for the length of the word 

w . 

The set of all factors (substrings) of x is 

F(x) = {w€A* | 3 u , v € A * , x = uwv j . 

The left sequential function 

p (y) = shortest w «. A such that 3 u,veA , 

w = uy and x = wv 

is defined from F(x) to the set of all prefixes of x. 

In Section 1 remembered left-sequential position function 

is now defined from F(x) to N as 

pos(z,x) = |px(z)l " lz| • 
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The set F(x), being finite, is recognized by the minimal 

DFA M(x). The transducer having M(x) as its underlying auto­

maton and associated with the function pos(z,x) is called (mi­

nimal) factor transducer of the word x and will be denoted as 

C(x). An example of the factor transducer is shown in the 

following figure. 

q j / 0 q 2 / l 

q3 /2 q 2 / 0 

v° 1 

q 5 / 0 | 

q 3 / 0 

Fig.l. Factor transducer C(abaab) 

For example, 

pos(aab,abaab) - 0+2+0 - 2 

For x eA , the number of states of C(x) is denoted by 

e(x). E.g., e(abaab) = 6. But e(baaba) = 7 (construct 

C(baaba) ! ) . 

In [l], Crochemore stated two important propositions 

about factor transducers: 

Proposition 1. The number e(x) satisfies 

if |x| * 3, e(x) - |x|+l 

if IxI > 3, |x|+l ^ e(x) * 2|x|-2 and 

e(x) = 2 | x | -2 iff x6ab*c , a/b , b/c . 

(see [l], p.73) 

Proposition 2. On a given alphabet A, factor transducer C(x) 

can be built in time and space both linear in 

the length of x. 

(see [l] , p.78) 
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Moreover, for each xcA*, a e A one can compute e(xa) from 

e(x) and some add i t i ona l fac ts about F(x) and C(x) ([l], p.72). 

3. RELATED TRANSDUCERS 

Given f a c t o r transducer ( l e t s a b b r e v i a t e FT) C(w) of a 
P 

word w, consider FT C(w ) of the mirror image of w. We shall 
R 

call the FT s C(w) and C(w ) to be r e l a t e d . Since re la ted 

transducers can be used to similar purposes (see Sec t ion 4), 

our main goal in this paper is to compare their sizes, e(x) 
R x 

and e(x ), for various xeA . Re turning to example in Sec t ion 
P 

2, we can find out a l i t t l e difference between e(w) and e(w ) 
for w = abaab . 

Now we ask, how large this difference can be for other 
words from A . I t is a b i t surprising that there are words w 

P 
such that the two values e(w) and e(w ) are "spanned" over 
nearly the whole i n t e r v a l <,|w|+l » 2|w|-2> determined for 
them in P r o p o s i t i o n 1 . 

Theorem . Le t w = a b nab n + for some p o s i t i v e i n t e g e r n 

Then e(w) = 2|w|-4 , 

e(wR) = |wR|+2 = |w|+2 . 

Proof. 

1) F i r s t l y consider w = a bnabn+ 

9 
I t follows from Propos i t ion 1. that e(a b) = 4. Since 

s(a2b) = 1 ( the empty word) and b€F(a2b), e(a2b2) = 

= e(a2b) + 1 = 5 . Now set x = a2bx. Then s(x) = b1"1 , 

b " b€F(x) and thus e(a b 1 + ) = e(xb) = e(x) + 1. Therefore 

e(a b ) = n+3 for every n. (Cf. wi th the automaton M(a b ).) 

Now l e t x = a2bn. Then s(x) = b n _ 1, safe(x) = 1. Since 

bn_1a <£ F(x), e(xa) = e(x) + lb11"1! + 1 = (n + 3) + (n-1) + 

+ 1 = 2n + 3. 

For x = a b a we have s(x) = a, abeF(x) which gives 

e(a bnab) = e(xb) = e(x) + 1 = 2n + 4. In general, if x = 

a2bnab1 (i * n-1) then s(x) = b1, bib€F(x) 
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e(a2bnab1+1) = e(xb) = e(x) + 1 = 2n + i + 4. Thus 

e(a2bnabn) = 3n + 3. (Cf. with the DFA M(a2bnabn).) 

For x = a b ab we have s ( x ) = a b n , s a f e ( x ) = a and s i n c e 

ab n b 4 F ( x ) , e ( a 2 b n a b n + 1 ) = e ( x b ) = e ( x ) + | a _ 1 a b n | + 1 = 

= 3 n + 3 + n + l = 4 n + 4 . 

The proof of 

e(w) = 4n + 4 = 2|w| - 4 for w = a2bnabn+1 

is now completed. 

2) Now examine the reversal of w, w = b n + abna 

R R 
It is a bit simpler to prove that e(w ) = |w | + 2 : 

It is easy to see that e(b ) = n + 2. For this word we 

have s(bn+1) = bn and safe(bn+1) = bn. Since bna * F(b n + 1), 

e(bn+1a) = e(bn+1) + |(bn)_1bn| + 1 = n + 3. Furthermore, if 

x = bn+1a, s(x) = 1 and e(bn+1ab) = e(xb) = e(x) + 1 = n + 4. 

In general, for x = b n + ab1 (assuming i - n-1) we obtain 

s(x) = b1, bib€F(x) and e(bn+1ab1 + 1) = e(xb) = e(x) + 1 

from where we can derive e(bn+ abn) = 2n + 3. 

Let's take now this word, x = b n + abn : s(x) = bn, 

bna£F(x). Hence e(bn + 1abna) = e(xa) = e(x) + 1 = 2n + 4. 

Finally, examine x = b n + abna : From C(bn+ abna) we see 

that s(x) = bna, safe(x) = bn and so (remember bna2 4 F(x)) 

we compute e(w ) = e(b ab a ) = e(xa) = e(x) + 

+ |(bn)"1bna| + 1 = 2n + 4 + 1 + 1 = 2n + 6. 
P 

This completes part 2) of our proof since for w 

= b abna we have obtained 

e(wR) = 2n + 6 = |wR| + 2 = |w| + 2 . 

4. CONCLUSION 

There are at least two important reasons for considering 

related FT s : 
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1) While C(w) working on a word x e F(w) outputs position 
P 

of beginning of the first occurrence of x in w, C(w ) working 
P 

on x outputs position of the end of the last occurrence of 

x in w. So the related transducers can be used to examine 

multiple occurancies of a given factor x in word w. More pre­

cisely, the string z e F(x) has multiple occurrence in x iff 
P P 

pos(z,x) + pos(z ,x ) < i xI — |z| 

2) If we are interested only in finding some occurrence of 
p P 

x in w (not necessarily first), C(w ) working on x will bring 
p 

the same profit as C(w) working on x. Moreover, C(w ) can be 
sometimes much smaller than C(w) as pointed out in Section 3. 
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SOUHRN 

PŘÍBUZNÉ TRANSDUCERY 

PETR LISONĚK 

V návaznosti na definici (faktorového) transduceru C(w) 

slova w jakožto jistého Mealyho stroje operujícího nad všemi 

podslovy slova w, podanou v [l], je v našem článku uvedena 

myšlenka studovat společně "příbuzné" transducery C(w) a 
P 

C(w ) pro pevné slovo w. Jsou uvedeny dvě aplikace tohoto 
přístupu - snížení počtu stavů transduceru a jednoduchý algo­

ritmus nalezení opakovaných výskytů daného podslova ve slově 

w. 
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PE3EME 

POДCTBffiHЫE TPAHCДУЦEPЫ 

П. ЛИСОНЕК 

Приведенная статья относится к понятию факторного 

трансдуцера С(м) ив статьи /1/. В нашей статье предло­

жена идея иеучать вместе "родственные
1
* трансдуцеры с (и ) 

Р 
и С(и ) и8-зе /по меньшей мере/ двух аппликаций: 
уменьшение трансдуцеров и искание повторяющихся появле­

ний некоторого фактора в слове и. 
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