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Abstract. The Sturm comparison theorem is proved for
i-conjugate numbers, i = 1,2,3,4, defined in [2]. To prove the
theorem, we use a method used in [1], where the comparison
theorem is generalized to the second order linear systems.

Consider the second-order linear differential equation in

the Jacobian form
y" + p(t)y = 0, (p)

where pe CU(j), p # 0. The set of all solutions, except the
trivial solution, is denoted (p).
Let a,b€ j, a<b be arbitrary points, then [a,b]c j. Let
Jgi[a,b], i =1,2,3 or 4 denotes the set of all functions
t1eC2[a,b] such that
h(a) = h(b) = 0, h'(a) = h'(b) = 0, h(a) = h'(b) = 0,

. (1)
h (a) = h(b) = 0 respectively.
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The function h e £ [a,b], i = 1,2,3,4, will be called i-ad-
missible on [a,b]. The numbers a,b are called i-conjugate, i =
= 1,2,3 or 4, relative to the equation (p) if there is a solution
u € (p) such that ue Jei[a,b], i =1,2,3,4 respectively.

Let u€ (p). Then we have u"(t) + p(t)u(t) = 0 for any te€ j.
Multiplying this equation by u we obtain uu" + pu2 = 0 and
integrating from a to t, t €[a,b] we get

t t
[uuljz - f vt f puzdt = 0, (2)
a a

where uu'" was integrated by parts.

It holds that

[uu']g = u(tu’ () - ulalu’(a). (3)

Let J[q;a,t] denote the functional

t
J{usa,t] = f (w2 - pudrdt, tela,b].
a

Then (2) can be written as
. - vt
Jluza,t] = [uu Ja . (4)
Lenma 1. Let ue(p). Then ue J/F(i=1,2,3,4) if and only if
J[u;a,b] = 0.

Proof. First we assume that u e Jﬂf where i = 1,2,3,4.
Then the equality (4) with t = b yields J[usa,b] = fuu1? -
= u(b)u ' (b) - uladu'(a) = 0.

Conversely if J[q;a,b] = 0 then from (4) with t = b we
obtain [uu’]z = 0 or

u(b)u’(b) - ula)u'(a) = 0. (5)
(1) yields immediately that the equality (5) is held for

ue d%i[a,b], i = 1,2,3,4. Now let us show that the equality (5)
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is not satisfied for any other solution of the equation (p).

Let F(t) = u(t)u’(t). By (5) we have F(a) = F(b) (# 0). The
function F is continuous and has the derivative F (t) = u'z(t) -
- p(t)uz(t) in j so that we can use the mean value theorem.
There is f € Ja,b[ such that

F(b) - F(a) = (b - a)F’(f)
or

u(®)u"(b) - ua)u’(a) = (b - a)[u 2(f) - p<§>u2<§>]. 6)

We consider the possibility that (5) is satisfied for ue€ (p)
such that u¢ Jéi[a.b]. Then we have

w2y - pC§ou’Cf) = 0. N

If u(f) =0 [u'(f) = 0] then the equation (7) yields u'(f) =
=0 [u(f) = 0 since according the assumption p(t) # 0 for te j]
and (5) would be satisfied only for the trivial solution. The-
refore there is not any solution ue& (p),11¢ Jﬁ[a,b] such that
u(b)u’(b) - u(a)u'(a) = 0.

Remark. Lemma 1 says that b is an i-conjugate point
of a relative to (p) in the interval Ja,b] if and only if
J(u;a,b] = 0.

Lemma 2. Let ue(p) and J[uja,t] >0 for te]a,b]. Then
there is no i-conjugate point (i = 1,2,3,4) to a relative to
(p) in the interval Ja,b].

Proof. It is a consequence of Lemma 1. If we assume the

existence of such a point 7 € ]a,b[ then Lemma 1 yields
J[q;a,y ] =0 a%d we are led to a contradiction.

Lemma 3. Let ue(p) and J[u;a,b]< 0. Then in the open
interval ]a,b[ there exists an i-conjugate point ¢ (i = 1,2,3,
4) to a relative to (p).

Proof. According to (3) and (4) we have J [u;a,t] -
=u'2(t) - p(t)uz(t). If u(a) = 0 then J'[u;a,a] = ulz(a)> 0
since u is not the trivial solution. Since J[u;a,a] = 0 and
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J'[UJa,a] > 0 then J[uja,t] > 0 in some right reduced neighbour-

hood of the point a. If J[q;a,b] < 0 then by Darboux property

of a continuous function there exists a point ce]a,b[ such

that J[u;a,c] = 0. The point c is i-conjugate to a by Lemma 1.
Let us define the functional J[h;a,b] for i-admissible

functions h (i = 1,2,3,4) by the formula

b
J[h;a,b] =f (h'2 - phd)dt.
a

Lemma 4. It holds that

b
3h;a,b] = [hn'10 -J h(h" + ph)dt. (8)
a
-2 b B
Proof. We have [ h'“dt = [hh ]a - f hh"dt. Therefore

a

I[hsa,b] = [nh’]g -

RO 0O

b 2 .1b b
hh"dt -J‘ phedt = [hh7]7 - f h(h" + ph)dt.
a a
Lemma 5. Let 3[h;a,b) = 0 for all he "41[3"’]’ i-=1,2,
3,4. Then the point b is an i-conjugate point to a re-
lative to the equation (p) in the interval Ja,b].
Proof. By the assumption and the formula (8) we get for
any he A [a,0], 1 = 1,2,3,4,
b

[hn1® -j' h(h" + ph)dt = 0. (9)
a

Let h = u, where ue(p), ue qu[a,b], i =1,2,3,4. Then
b

fu(u" + pu)dt = 0 and the condition (9) yields that [uu']g = 0.
a

We apply Lemma 1 and (4) with t = b and arrive at the desired
conclusion.
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Lemma 6. Let J[h_;a,t] > 0 for any te]a,b] and any
he.)%i[a,b], i =1,2,3,4. Then there is no i-conjugate point to
a relative to (p) in Ja,b].

Proof. By the assumption and (8) we get for any te ]a,b]
and any he ﬁi[a,b], i=1,2,3,4, that

b
thn1f -f h(h" + ph)dt > 0. (10)
a

Let h = u, where ue (p), ue ./%i[a,b], i =1,2,3,4. Then
b

j u(u" + pu)dt = 0 and the condition (10) yields that
a

[hh']: >0 for t€]a,b). We apply Lemma 2 and (4) and arrive
at the desired conclusion.

Lemma 7. Let J[h;a,b] < 0 for all he./ﬁi[a,b], i=1,2,
3,4. Then there exists an i-conjugate point c of a relative to
(p) such that cela,bl.

Proof. By the assumption and (8) we get for all
he i la,b], i = 1,2,3,4, that
b
[hn 12 -f h(h" + ph)dt < 0. an
a
Let h = u, where ue (p), ueﬁi[a,b], i=1,7,3,4. Then
b
J u(u" + pu)dt = 0 and the condition (11) yields that
a
[hh']g < 0. We apply Lemma 3 and (10), and arrive at the
desired conclusion.

Theorem 1. Consider two second-order linear differential
equations in the Jacobian form

y" + p(t)y = 0 (€:D)

and

z" + q(t)z = 0, (q)
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2

where pe€ CD[a,b], p(t) # 0, ge Co[a,b]. Assume that q(t) % p(t)
for te [a,b]. Further, assume that q(t) > p(%) for some
Tela,b[. If the equation (p) has a non trivial sclution y(t)
such that ye J%i[a,b], i = 1,2,3 or 4, then the eguation (q)
has a nontrivial solution z(t) such that z(a) = z(c) = 0,
z(a) = z°(c) =0, z(a) = z (c) =0, z (a) = z(c) = 0O
respectively, where a < c < b.

Proof. First we assume that b is the first i-conjugate
point of a relative to (p), i = 1,2,23,4. Then there exists a
nontrivial solution ue€ (p) such that u(a) = u(b) = 0, u'(a) =
= u'(b) = 0, u(a) = u'(b) = 0, u(a) = u(b) = 0 respectively,
and u(t) > 0, u'(t) >0, u(t) >0, u'(t) > 0 on la,b(

respectively.

Let
b

3lnsanel - [ 2 - pndat
a

and
b
N .
3lh;a,b) f (h'2 - gn?)dt
a
sver the set ﬁé[a,b], i =1,2,3,4, of i-admissible functions.
Tnen
b b
A I3 . .
Jlusa,b] - J (u'? - quz)dt < j(u z puz)dt = J{u;a,b],
a a (12)

The strict inequality is implied by the fact that p(T) < q(T)
for some t € Ja,b[ .

By Lemma 1 we have J[uja,b] = 0. Therefore
A
J[u_;a,b]( J[u_;a,b] = 0.

By Lemma 6 a has an i-conjugate point c relative to the
equation (g), such that ce Ja,b[ .
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Now let us assume that b is not the first i-conjugate
point of a relative to (p). Let a be the first i-conjugate
point of a relative to (p), and let ve (p), ve jqi[a,b], i=1,
2,3,4. Then a < %a < b. The same argument that we gave to
establish (12), shows that

A s <
J[v;a,ta] N J[[;a,ﬁa],
since the strict inequality may not be valid when T'é &h Ya].
We have

:]\[_v;a,"za] < J[v_;a,%a] = 0.

By Lemma 5 and Lemma 6 there exists an i-conjugate point [

of a relative to (gq), where © e]a,’%a]cl]a,b[ , and the proof
is complete.

Remark. The assumption p(t) # 0 can be relaxed in the
case of 1- and 3-conjugate numbers.
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SOUHRN

STURMOVA SROVNAVACE VETA PRO i-KONJUGOVANA CISLA

JITKA LAITOCHOVA

Sturmova srovndvaci véta je rozsifena na konjugované body
1. - 4. druhu definované v [2]. K diikazu této véty pouzivame
metodu uZitou v [1], kde je srovndvaci véta zobecn€&na pro li-
nedrni systémy 2.fddu.
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PE3DME

WITYPMOBA TEOPEMA CPABHEHMA 1Jf i -CONPAREHHHX UACEN

. JANTOXOBA

llrypMoBa Teopeme CpaBHEHMS pBCUMDEHE LJS CONpAXeH-
HHX yucex ¢ l-oro mxo 4-oro BuAa, KOTODHE ONpeleaslTCH
B /2/. Laa JoKesaTeabCTBE 3TO# TeopeMH MH MOJbLSYEMCHS Me-
TOHOM uB /1/, rae TeopeMa cCpaBHEHUS ecTpr oboOmeHa Jas
AuHefHHX cucTeM 2-0ro mopAJAKa.
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