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Let us consider the equation
x 7T+ et x,x ,x"Ix" + £(t,x,x,x")x " + g(t,x,x ,x") = 0, (1)

where e,f,g are continuous real functions of rcal variables and
w-periodic (w >0) in the variable t. Furthermore we assume that
both function e,f are bounded with respect to all their variab-
les, i.e. there exist positive constants E,F such that

ua

leCt,x,x ,x")| E (2)

and

na

J£Ct,x,x ,x")| = F . (3)

The existence of w-periodic solutions x(t) of (1) will be dis-
cussed successively under certain restrictions imposed on .the

function g with regard to their variables.

In [l], the authors investigate, by means of the Leray-
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-Schauder alternative, the special case g = h(x) - q, where -
besides the corresponding assumptions related to h(x) - the
function q = q(t,x,x ,x") is bounded, i.e.

laCt,x,x ,x")| £ Q, where Q@ >0 . (4)

Using the same methode, we distinguish the following forms of
the function g:

I. h(t,x) - q, II. hl(x') + h(x) - g, III. hy(x") + h(x) - g,

IV. hy(x") + hl(x') + h(x) - q, together with the condition re-
lated to q:

laCt,x,x",x")| £ Qx| + qx"| +a, 4y

where 02 z o, Ql Z g, Q>0 are the arbitrary given constants,
instead (4) [Note, that (4) is a special case of (40) if 02 =

= Ql = 0]. Let us remind that the technique of the Leray-Schau-
der fixed point Theorem consists of the investigation of the
one-parametric system

x 7T« m{e(t,x,x',x")x“ + £0t,x,x ,x")x " + glt,x,x ,x") -
2 2
- Z a.x(z_j)} + Z a x(Z73) < g (s)
3=0 J 350 J

with a homotopical parameter m € <0,1> , where the constants
a.€R (j - 0,1,2) are chosen in order the linear homogeneous
differential equation

2

x 7T+ EE: a.x(z'j) =0, (5)

30 J

obtained from (S) for m = 0, not to have any nontrivial w-pe-
riodic solution. Thus, the sufficient condition of the existence
of a w-periodic solution x(t) to (1) - belonging to (S) for

m =1 - is, that all w-periodic solutions x(t) related to (S),
together with their derivatives x (t) and x"(t), are bounded by
the same constant, independent of the parameter m.
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Taking into account the following procedure, we note: con-
cerning the notation of composed functions e,f,g, obtained after
the substitution of a w-periodic solution x(t) in the (S) and
depending thus of the variable t only, we use the following
symbols, e.g. e(t,x,x ,x") = e[t,x(t),x (t),x"(t)] or e(t,...)
only, etc.

Similarly, integrating the identity, obtained by the sub-
stitution x(t), x (t), x"(t) into (S), we restrict ourselves
(for the brevity) to the interval <O,w >, in view of the fact
that the obtained results are valid on any interval {t,t+w)>,
where t € (-o0,+00).

At the same time we assume that
Dy = xPDw)  for 3 - 0,1,2. (6)

For this purpose we use, besides the well-known Schwarz ine-
quality, the inequalities of the Wirtinger type (see [2])

t+w ( )2 t+w ( 2

3 < 2 j' 3+1) AN
f p (s)ds = wg p (s)ds, 3=1,2, w =5z (1)
t t

holding for arbitrary continuous w-periodic function p(t) with

2
the square integrable derivatives p(J) (t), 3 = 1,2,0n the in-
terval <t,t+w ) for all t&(-o0,+o00), on the interval {0,w) .

PART I.

Theorem 1. Let (2), (3) and (40) hold in the differential
equation

..

x 77w e(t,x,x ,x"Ix" + £(t,x,x ,x")x  + h(t,x) =
= q(t,x,x ,x") . (1.1)

Let there exist a constant a&€R - (0) and a constant H >0 such
that the inequality

|h(t,x) - ax| & H (A)
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is satisfied for all t€(-oo,+o0) and all x € (-oo,+00). If

(E+ Qu, + (F+ Qw2 <1, (R)

then the equation (1.1) has a w-periodic solution.

Proof : Substituting x(j)(t) on behalf of x(j),

= 0,1,2,3, into

j =

x T+ m { e(t,x,x x")x" + £(t,x,x ,x")x " + h(t,x) -

- ax - q(t,x,x ,x" } +ax =0 , (s,

where m € <0,1)> is a parameter and a€R, a # 0, a suitable
fixed constant, multiplying the obtained identity by the
function x ~'(t) and integrating, we get

W W
f <t = n - j e(t,...x"(1)x" " (t)dt -
o ¢]

w w
_jf(n.“){(wx”'u>m ~J{hh,utﬂ -
‘o 0

w
_ ax(t)} x(t)dt + j q(t,...)x”’(t)dt} ,
o]

W
because of i x(t)x " T(t)dt = 0.

Using (2), (3), (40) together with (A), the Schwarz ine-
quality and (7), we receive successively

A
m
=

Oz 0tz o=

elt,...)x"(t)x " "(t)dt|

£Ct, .. % (Dx " (Dat] £ Ful

{hlt,x(0 - ax(Ox""(Drdt] £ Hw
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W
15 alt,...0x ~"(t)dt| é(u2 + QW
[s]

then

<

x2(t)dt

[l

o&—=

+

Denoting
K=1- [(E+apu, + (F+awl]

and taking into account (R), we arrive at

<

w
5 x"2(1)dt T (H+ QW := D3>0, (8)
[e]

from which
w
j xZtyat ¢ 0l
o]

and with respect to (7) also

w
5 2(t)at € wlnd = 02, D, = w Dy > 0 (9)
[e]

and
w
j x2(tyat £ ¥l =02, 0y = w D, wing) > 0 . (10)
[s]
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According to the Rolle Theorem, applied on the w-periodic functi-
on x(t), t &« {0,w>, differentiable and satisfying (6), such
points t;€ (0,w), J = 1,2, exist that x(J)(tj) = 0. Then, in view
of the relations

t
j X(J+1)(5)d5 = x(j)(t) - x(j)(tj), j=1,2,

ty

where tj,t € (0,w), the following inequalities

t w
'] = 1] xr(oras] € [1xrce o ¢
tj 0
= WD, :=D">0 (11)
and
t w w
Ix"(t)| = IJ x " "(s)ds| £ J|x"’(t)|dt < w\j x " 2(t)dt =
tj 0 (]
o] 03 1= D" >0 (12)

hold for any w-periodic solution x(t) of (51).

Multiplying (Sl) by the function x(t)sgn(a) and integrating
the obtained identity, we go to

w w
|aljI x2(t)dt = m sgn(a){—f e(t,...)x"(t)x(t)dt -
o o
w w
-J' £Ct, .. )x (t)x(t)dt -J {nt,x()] -
(o] [s]

w
- ax(t)}x(t)dt +J' q(t,...)x(t)dt] ,
[+]

W
because of X x"7(t)x(t)dt = 0 again.
°
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Emploing (2), (3), (40), (A), the Schwarz inequality and
(7) and with respect to (9), (10), we have now

x2(t)dt,

nA

W
|j e(t,.. )x"(t)x(t)dt] & ED
o

x2(t)dt,

na

Ot—xE 0%—as=

£(t,...)x (t)x(t)dt]| = FD

O« ZE| O X

. w
HY W S x2(t)dt ,

o

na

| {h[t,x(t)] - ax(t)}x(t)dtl

w w
I act, . oxcoael £ @yp, « oy +am || [ Ceoae
o

]

sothat

w
2 <
|a|f x“(t)dt = [ED, + FD; + Q,0, + Q;0; +
o

w
v (H+ Q) VW] 5 x2(t)dt) ,
o]
from which
w

f x2(t)dt é-TLI|(E + 000, + (F + 000 + (H+ QW) :=
a
[s)

1= Do >0 (13)
and hence
w
I xZ(tyat € 02 .

0

Consequently, the point toe < 0,w) exists at which the inequa-
lity

D
|x(t0)| ¢ 2
W
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holds for any w-periodic solution x(t) of the system (Sl). If,
on the contrary, the opposite inequality

D
(t )] > =2
Ix(t) 1 > =2

be true for the same solution x(t) of (Sl), then from the cor-
responding integral inequality

w W DZ
2 -9 gt = p?
j X (to)dt > W =D,
0 0

we go to a contradiction with the inequality (13), which holds
for all solutions x(t),te0,w)>, of (5)).

Hence, according to relation

t
[ s = <o - xtrp
tO

we have for to,t €<0,w >
t

D ¢ D
[x(£)] = |x(t ) + | x"(s)ds] € 2+ | |x"(t)|dt ¢ 2+
2] e ¢
o

w

-2 Do

+{v7gx(t)dt=(—+{'v701):=D>U. (14)

2 Yw

From (11), (12) and (14) follows that for any w-periodic solution
x(t) of (Sl) is satisfied the inequality

Ixt) $m, 3 =0,1,2, (15)

on the interval (-oe,+90), where the positive constant M =
= max(D,D",D") is independent of the parameter me ¢ 0,15 . This

fact together with the assumption a&R, a # 0, prove our theorem.

In the following theorem the function h(t,x), belonging to
the equation (1.1), has a certain form. This concretization
makes possible to alter somewhat the process of the proof.
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Theorem 1.1. Let (2), (3), (40) hold in the differential

equation

X

+oe(t,x,x ,x")x" + £(t,x,x ,x")x " g(t)ho(x) +

+ h(x) = gq(t,x,x ,x") . (1.2)

Let there exist a constant aeR - (0) such that for all
x € (-e0,+00) holds the inequality

|h(x) - ax| % ﬂ|x| + H, (Al)

where ﬁ 2 0,H> 0. Let there exist a constant H0> 0 such that
<

lg(ton GOl = Hy (A))
holds for all t€ (-o0,+oc0) and for all x € (-oo,+e0).
If
»

2

(E + 02)w0 + (F + Ql)wo <1 (R)
and

A

H< lal (Ry)

then the equation (1.2) has a w-periodic solution.

Proof : Substituting x37(t) on behalf of x37, 3 = 0,

1,2’3’

into

T {e(t,x,x’,x“)x" + ECt,x,x ,x")« + g(t)ho(x) +

+ h(x) - ax - q(t,x,x',x")} + ax = 0 , (52)

where mg (0,1 is a parameter and a€R, a # 0, a suitable
fixed constant, multiplying the obtained identity by the
function x(t) and integrating, we get

w

[«

O

"2(g)dt

w
n1{5 e(t,. . )x"(t)x (t)dt +

o]

w
£(t,.. )% 2()dt + J g()h [x(£)]x (t)dt -
0

q(t,...)x’(t)dt}

0O e—ag 0=
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W w W
because of J xTT()x(t)dt = - J x"2(t)dt and J
0 0 0

W
=j h{x(t)]x " (t)dt = 0.
o]

Using (2), (3), (40) and relative to (A2) is

W w
j x"2(t)dt & (Ew, + Ful) J x"2(t)dt +
s} s}
w
+ Hoﬁ W \lj x"z(t)dt +
o
w
+ (Qywy + Qlwg) J x"2(t)dt +
[s]
w
+ QW Wy q; x"2(t)dt ,
0

{1 - [+ apwy + (F+ Ql)wg]} x"2(t)dt ¢

oS—=

w
(Hy + VW Wy S x"2(1)dt
o

|IA

If we denote

2
K =1- [(E + Qwy + (F + Ql)wo] s
then regarding to (R) yields

W
S x"2(£)dt
0

na

Z (Hy o+ QW Wy := D, > 0

from whence

\.
=}

w
j x"2(t)dt
[s]
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and

"
-2 < 12

f x “(t)dt # Dl , where D, := woDZ > 0 too. (Dl)

)

Consequently [cf.(ll)] holds
Ix ()] ¥ YWD, :=D" >0 )

for any w-periodic solution x(t) of (Sz).
Multiplying (S,) by the function x(t)sgn(a) and integrating.

the obtained identity, we go to

w w

|a|f x2(t)dt = m sgn(a){ - J e(t,...)x"(t)x(t)dt -
o o]}

(O, .. 0% (t)x(t)dt -

w
g(th [x(+)]x(t)dt -‘f {nix(v)] -

o

0%—=s o%—=

W
- ax(t)}x(t)dt + 5 q(t,...)x(t)dt}
)

According to (2), (3), (40), with regard to 'Al), (AZ) and
using (D,), (Dl) we get now

w
|a|S x2()dt ¢ (e0,+ FO | [ xP(trat +
0

O0S—=

w w w
+H W J x2(t)dt + ﬁj x2(t)dt + H{W j‘ x2(t)dt +
(8] 0 o
w
+ (Q,0, + 00 + QfW) J' x2(t)dt
o]
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w
(lal - ™ j x2(t)dt € [(E + 00D, + (F + Q)D; +
o]

w
+ (Q + H0 + H)fv_l] S Xz(t)dt .

o

A
If we denote K = lal - H, then regarding to (R ) yields

w
2 1
[ <cvat € & [+ a0, « 5+ a0, ¢
o ]
+ (@ + Hy + HWW] := D >0, (0y)
from whence
w
2 < n2
J x“(t)dt £ D
o

and consequently [cf.(14)] the inequality

0
Ix()] 2 (=% + D1yW) =D >0 G

holds for any w-periodic solution x(t) of (S,).

Now, multiplying (52) by the function x "7(t) and integrat-
ing the obtained identity, we have

W w
X X (t)dt = m{ - j e(t,.. )x"(£)x " (t)dt -
o] ]

£Ct,..)x (B)x” 7 (t)dt -

w
g(tn [x()]x"""(t)dt - j{h[x(t)] -

[e]

0%z 0=

w
- ax(t)}x"'(t)dt + j q(t,...)x"'(t)dt} s
o]
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from whence, using (2), (3), (40), (Ap, (Az), (0, (Dl) and

(D), we get o
w
5 x"Z(t)dt ¢ (€D,
o
W
+ HOW S X
0

+ (0202 + QlDl + QYw)

l1.e.
< A
= [(E + 0D, + (F+ 0D, + HO, +
+ (Hg + H+ O] := D3>0, (05)
sothat
w
S x“Z(t)dt € 03
o

and consequently [cf.(lZ)] the inequality

Ix"(t)| $ YW Dy := D" > 0 )
for any w-periodic solution x(t) of (S,) holds.

From (D"), (D) and (D") follows that for any w-periodic
solution x(t) of (82) is satisfied the inequality (15) on the

interval (-ee,+o0), what - together with the assumption ae€R,
a # 0 - prove this theorem.

Modification of Theorem 1.1 is

Theorem 1.2. Let (2), (3) and (40) hold in the different-
ial equation (1.2). Let there exist constants a€R - (0) and
H0> 0 such that the inequality

|g(t)h0(x) + h(x) - ax| ¢

[t
T

- 135 -



is satisfied for all t&€ (-oe,+ee) and for all x € (-e0,+e0).
If
2
(B + Dwy + (F + 0wy < 1,

then the equation (1.2) has a w-periodic solution.

The proof is quite analogical to that of the Theorem 1,
since in (1.2) is possible to note g(t)ho(x) + h(x) = H(t,x).

Note: In case g(t) = k, where k€R is a constant, we may
denote kho(x) + h(x) = H(x) and we obtain the form of the
differential equation investigated in [l].

Closing the part I. we present two more theorems concerning
the existence of a w-periodic solution to (1.1) with the special
form of the function g.

Theorem 1.3. Let (2), (3), (40) hold in the differential
equation

x 7T r e(t,x,x L, x")x" o+ F(t,x,x ,x")x  + h(x) + ax =

= qlt,x,x ,x") , (1.3)

where a€R - (0) is an arbitrary given constant. Let

Ih(x)] € H|x]| + Ho s (A)

where H % 0,H, >0, hold for all x € (-eo,+eo).

1f

(E+ @ w, + (F + Qw2 < 1 (R)
and

H< fal (R

then the equation (1.3) has a w-periodic solution.

Now the differential equation (1.3) is contained in the
system
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x T+ m{e(t,x,x',x")x” + f(t,x,x ,x")x + h(x) -

- q(t,x,x’,x")} +ax =0

with parameter me {0,1)> again, but the process of the proof
is the same as the Theorem 1.1 only with the exception that for
the estimate of integral

w
5 2(t)dt
o

wu use the inequality

w w w
_‘- hx()]x(t)dt| ¢ HS xZ(t)dt + Hoﬁ ‘f x2(t)dt
(s) o] 0

holding with regard to (AO) and for the estimate of integral

w
J x " 2(t)dt
[a]

we use the inequality or

w
|J' h[x(t)]x " "(t)dt| ¢ (HD, + H VW)
o]

where

—
‘J xZ(t)at S o, D, >0

o]

holds or

w
Ij' h[x(1)]x " "()at| ¢ Afm
o

where A = max lh(x)| for |x| % D,
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Modification of the foregoing theorem is

Theorem 1.3.1. Let (2), (3), (40) hold in the differential

equation (1.3), where a€R - (0) is an arbitrary given constant.
Let for all x € (-eo,+ o0) hold

0 if 0 % h(x)x
- h(x)x & H¥ = ~

(A
\H >0 if -H % h(x)x< 0.

If
(E + Quy + (F v Qwi <1, (R)

then the equation (1.3) has a w-periodic solution.

The proof is equal to the proof of Theorem 1.2; at the same
time, according to (Al)’ we use the inequality

W
- S Alx(D)]x(t)dt £ W
0

for the estimate of integral
W
j x2(t)dt.
0

Remark: Similar thecrems cn the existence of a w-periodic so-
lution may be presented of the differential equation (1) with
g = h(t,x) + ax - g(t,x,x ,x") or g = ho(t)h(x) + ax -

- gq(t,x,x ,x") etc., where a€R - (0).

PART II.

Theorem 2.

Let (2), (3), (&0) hold in the differential
equation

x 7T w e (t,x,x L, x")x" o+ £(t,x,x L, x")x o« hl(x') + h(x) =

= gt,x,x ,x") . (2.1)

Let there exists a constant a€R - (0) such that the inequality
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<

|h(x) - ax| = ﬁlxl + H, (Al)
where ﬁ 2 0,H>0, is satisfied for all x € (-o0,+0c0).

Let for all yé€ (-o0,+o) holds

: <
. ////D if hl(y)y =0
hl(y)y 2 H1 :=\\\\ (A2)
H)> 0 if 0<h (y)y  H)

If

(E + 0wy + (F+ Qw2 <1 (R)
and

fi<lal, (R

the the equation (2.1) has a w-periodic solution.

The process of the proof is the same as the Theorem 1.1.
Using, accordingly to (AZ)’ the inequality

W
j hl[x'(t)]x'(t)dt < Htw
o

and denoting
K=1- [(E+apu, + (F+apul

we go - in accord with (R) - to the estimate

w W *

Qfw w Hiw
j x"2(t)dt - ——2 J‘ x2(t)at ¢ k-
[s] o]
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from where

W
5 x"2(tyat ¥ 02
o
with agi(ﬂwo + “AH?K + szg) 1= D2 > 0 and consequently
W
-2 < 52 -
S x “(t)dt = 0] » where D1 2= w0, > 0.
0

On account of the estimate of integral

"
5 x2(t)dt
)

we use the inequality

w w w
|f{h[x<t>] - ax(D)] x()dt] ¢ ﬁszmut « HT f x2(t)dt
[s] [s] o

holding with regard to (Al) and

w
|§ hy [x ()] x(t)dt]

o]

nA
|

w
" Ve S x2(t)dt ,
8]

na

where ﬁl = maxlhl(x')lfor Ixl 0", 07 := {w 0, > 0. Then

w

2 < n2
J (ot € 02,
[s]

1 —
where D := K;[(E + 0,00, + (F + Q)0 + (Fj+ H + QyW] > 0 and

A
where K  := lal - H >0 under the assumption (R_).

Some modifications of Theorem 2.
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Theorem 2.1. Let (2), (3), (40) hold in the differential
equation (2.1). Let there exist a constant a€ R - (0) and
constants H 2 0,H>0 such that the ineguality

In(x) - ax| ¢ Hi|x| « H <)

is satisfied for all x € (-oo,+e0).

Let there exist the constants Hl 2 0,H0> 0 such that the
inequality

I GO1 2 H Tyl Hy (A3

is satisfied for all y€ (-oo,+02).

If

(B + Qwy + (F + H) + w2 < 1 (R))
and

A

H< fal (R,)

then the equation (2.1) has a w-periodic solution.
The proof may be performed analogicaly as the same of the

Theorem 2, whereby for the estimate of integral

w
S < “2(t)dt

o

we use - with respect to (A3) - the inequality

W w
lj hl[x’(t)]x'<t)dt| < Hy gx”z(t)dt +
[s] [s]
W
R j x 2(t)dt
0

A
Note: In the case H = 0 in (Al) we may start the proof
with the estimate of integral
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w
f x 72 (dt
0

as first.

Theorem 2.2. Let (2), (3), (40) hold in the differential
equation (2.1). Let there exist a constant a€ R - (0) such that
the inequality

Ih(x) - ax| € A|x| + H , (D

A
where H 2 0,H>0, is satisfied for all x € (-oeo,+e0) and the ine-
quality

3
lhy(y) - 3V aly| < Hylyl « Ho o (Ay)

where H, 2 0,H >0, is satisfied for all ye& (-es,+00).

If

(E + Qz)wO + (F + Qp + Hp + 3 j—;z)wg <1 (Rz)
and

A< fal : (R

then the equation (2.1) has a w-periodic solution.

The process of the proof is the same as the Theorem 1.1
A
or - if H = 0 in (Al) - as the Theorem 1. Now the differential
equation (2.1) is contained in the system

x T+ om {e(t,x,x',x")x” + F(t,x,x ,x"Ix - 3a”§x" +
. 3~2 - -
+h(x) - 37 %%+ h(x) - ax - gq(t,x,x ,x")t +
+ 3%r5x” + B{FEZXI +ax = 0, (53)

where the corresponding linear homogeneous differential equation
obtained from (5;) for m = 0 {cf.(5)] has a characteristic
equation with the triple root - % a .

For the estimate of integral
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w

S X"Z(t)dt

o

we use - besides (2), (3) and (40) - the inequality

w
|§{hl[x'(t)] - 3%r52x'(tﬂ x (t)dt| H
o
W w
< leg f x"2(6)dt & Ho f «"2(t)dt
o] 0

with regard to (AA) and for the estimate of integral
W
j x2(t)dt
0

we use - besides (2), (3) and (40) - the inequality

w

w
\E{h[x(t)] - ax(t)}x(t)dt :H j x2(t)dt +
0 0
w
- HYW j x2(t)dt
0

with regard to (Al).

Theorem 2.3. Let (2), (3), (4 ) hold in the differential
equation (2.1). Let there exist a constant a€ R - (0) such that
the inequality

[h(x) - ax| £ H, (A

where H>0, is satisfied for all X € (-o0,+e9).

Let hl(y)é Cl(-oe,+oo> and let
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0 if hi(y) fo

; =‘\\\\ (Ag)

. ) ; <
H >0 if 0<h (y) ¢ Hy

‘ <
hy(y) = H

hold for all y € (-o0,+00).
If

* 2
(E + 0wy + (F + Hl + apws< 1, (R5)
then the equation (2.1) has a w-periodic solution.
The process of the proof is the same as the Theorem 1. But
now, integrating by parts, we have )

w w
E h [x (D)x"(t)dt = - E hy [x " (H]x"2(t)dt
0 o]

and with regard to (AS) we use for the estimate of integral

W
g x"'z(t)dt
0

the inequality

W w
- S h [x (0O)x"7(t)dt = S hi[x'(t)]x"2<t>dt ¢
e] 1 (s]
w
< %
=H( xn2(t)at €

o—

w
¢ Wil f x " 2(t)dt
o]

together with (2), (3), (40), (AO), etc.

Proceeding as in the proof of Theorem 2 it is possible
analogicaly to prove
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Theorem 2.4. Let (2), (3), (4,) hold in the differential
equation ’
x T et x L x"IXT w E (X, x ,x")x + hy(t,x ) +
+ h(t,x) = alt,x,x ,x") . (2.2)

Let there exist a constant a€R - (0) and a constant H > 0
such that for all t €(-oo,+o0) and for all x€ (-oo0,+02) holds

[h(t,x) - ax| € H

and for all t€ (-ee,+es) and for all y€ (-o0,+) is satisfied

the inequality
<
by Gty = Hylyl « H

2
where H1 = 0, HO > 0. If

(B + Qwy + (F+H + 0wy <1,

then the equation (2.2) has a w-periodic solution.

Remark: In analogy to Theorem 2 and their modifications we
may to express the corresponding theorems on the existence of
a w-periodic solution to the differential equations

x T et x LxMIx" o+ £t x,x ,x")x + hl(xr) + h(t,x) =

= g(t,x,x " ,x")
or
x 7w e(t,x,x ,x")x" + fCt,x,x ,x")x "+ hl(t,x’) +

+ h(x) = q(t,x,x ,x")
with the assumptions on the functions h and hl analogical to
themselves in the Theorems 2 - 2.3.

Closing the part II. we present the theorems as a special

case of Theorem 2.

Theorem 2.5.1. Let (2), (3), (40) hold in the differential

equation
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x 7w e, x,x T, x")x" o+ £(t,x,x ,x")x o+ hl(x') + ax =

= q(t,x,x ,x"), (2.1.1)
where a€R - (0) is an arbitrary given constant.
Let there hold one of the following four assumptions:
1) for all y€ (-0 ,+00) holds
0 . <
< % ,/// if hl(y)y
hl(y)y = H” :=
0 \

: ¢
H,> 0 if D<hlw)y

1
o

I
=

as well as
(E + Qyu, + (F + Qw2 <1

2) for all y€ (-oo,+0e) holds

|h1(y)\ H Hzly| + H , where H, 20, H,>0
as well as

2
(B + Qw, + (F s Hy + Qpw, <1

3) for all y€ (-o0,+00) holds
lhl(y) - 3%r52y] $ H2|y| + H; , where H,
as well as

(E+ Quy + (F o+ Hy + 0 + 37302 < 1

nv

0, H,> 0,

4) hl(y)e Cl(—oa,wo) and for all y € (-ee,+e°) holds
/0 if hi(y) RN
hl(y) NI
1 1
\H’>0 if 0<h (y) € HY
1 1 1
as well as

(E v Quy + (F o+ HY vl 1

Then the equation (2.1.1) has a w-periodic solution.

Proving this theorem with the assumptions 1) or 2), it is
convenient to proceed equal as in the proof of Theorem 2. The

theorem with the assumptions 3) or 4) may be proved analogicaly
to Theorem 2.2.

Theorem 2.5.2.

Let (2), (3), (4,) hold in the differential
equation
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x T e (t,x,x L, x")x" 4 E(t,x,x ,x")x T+ hl(x') + h(x) +

+ ax = q(t,x,x',x") ’

where a€R - (0) is arbitrary given constant.

D

2)

3)

Let there hold one of the following four assumptions:

for all x € (-e0,+00) holds
0 if 0 % h(x)x

x .

- h(x)x £ H =
SH>0 if -H £ h(Ox < 0,
for all y € (-eo,+<e) holds
< 2
lhl(y)l : Hllyl + H, , where H) =0, Hy > 0,

as well as
(E + Qwy + (F + H + Qw2 <1

for all x &€ (-eo,+oe) holds
0 if 0 £ h(x)x

<

~h(x)x H* .=

~

TSHso0 if
for all y€ (-co,+oo) holds
.ot hy(y)y £ 0

hl(y)y < H1 :=

\H1>0 if 0<h (y)y £

H S h(x)x<& 0,

v
=

1
as well as
2
(E + QZ)wo + (F + Ql)wo <1
for all x € (-e0,+00) holds
[h(x)] & Hlx| + H, » where H 2 g, H,>0
for all y€ (-o0,+ o) holds
0 if h(y)y £0
hy(y)y € HY =
1 1
\Hl>0 if U<h1(y)y < Hl

as well as
(E+H+Qu, + (F+ Qw1

(2.1.2)



4) for all x € (-oo0,+ o0) holds
[h(x)| £ H|x| + H, » where H
for all y € (-e0,+e) holds

nv

0, H >0

nv

A A
lhl(y)| ] Hl‘y‘ +H where H, 0, H1> 0
as well as
a 2
(E + H + Qz)wo + (F + Hy + Ql)wD <1
Then the equation (2.1.2) has a w-periodic solution.

Theorem in any case of the assumptions 1) - 4) may be pro-
ved quite analogicaly as Theorem 2, i.e. with the proving pro-
cess of Theorem 1.1.

PART ITI.

Theorem 3. Let (2), (3), (40) hold in the differential
equation

x 7T e (L, x,x ,x")x" FCE,x,x ,x")x + hZ(X") +
+ h(x) = q(t,x,x ,x") . (3.1)

Let there exist a constant a€R - (0) and a constant H>0 such
that the inequality

Ih(x) - ax! $H (A)

is satisfied for all x€ (-ee,+ee). If
(E+ 0w, + (F + Qi< 1,

then the equation (3.1) has a w-periodic solution.

The process of the proof is the same of Theorem 1. Esti-
mating the integral

w

S x”'z(t)dt
o
we take account of

w w
Jh[x"(t)]x"’(t)dt = Sx(t)x"'(t)dt = 0.
8] o]
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For the estimate of integral
w
S xZ(t)dt
o

we use - besides (2), (3), (40) and (AO) - the inequality

w

W
|Sh2[x"(t)]x(t)dt| Ayl S «2(t)dt,
o [e]

"

where ﬁz = max|h2(x")|for Ix"] € 0">0 [ef.12)].
Modification of the foregoing theorem is

Theorem 3.1. Let (2), (3), (AD) hold in the differential
equation (3.1).

Let there exist a constant a€R - (0) and a constant H > O
such that the inequality

|h(x) - ax| ¢ H (AO)
holds for all x € (-co,+eo).

Let there exist constants H2 Z 0 and H0> 0 such that the
.inequality

|h2(2)| < H2|Z| + Hy )

1 (A
is satisfied for all z€ (-oo,+oo). If
2
(E + H2 + [Jz)w0 + (F + Ql)wO <1,
then the equation (3.1) has a w-periodic solution.

We may to proceed the proof with an estimate of integral
W
f X"z(t)dt
0
at first, using - besides (2), (3) and (40) - the inequality
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w W W
1[ h, [x () 1x (D)dt] $CH, j x2(t)dt + H_f f x"Z(t)dt)w

o ] o]

with regard to (Al). Or, starting the proof immediately with an
estimate of integral '

w
J' x2(t)dt,
o

we use - besides (2), (3), (&0), (AO) and regarding to (Al) -
the inequality or

w w
Ighz[x"(t)]x(t)dtl < (H,0, + HfW) j' x2(t)dt ,
[0} 0

where

w

w2 < 2
jx (t)dt = 05 , 02>0
[e]

holds [cf.(9)] or /as in the foregoing theorem/

w W
IJ hz[x“(t)]x(t)dtl < Hzm J x2(t)dt ,
0

8]

e

where ﬁz = maxlhz(x")|f0r | x"]
estimate of integral

D" > 0 [cf.(12)], for an

w
S x2(t)dt
o

Proceeding as in the proof of Theorem 3 it is possible
analogicaly to prove
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Theorem 3.2. Let (2), (3), (40) hold in the differential
equation

x 7T+ e(t,x,x ,x")x" o+ £(t,x,x ,x")x + hz(t,x”) +
+ h(t,x) = q(t,x,x ,x") . (3.2)

Let there exist a constant a€R - (0) and a constant H > 0 such
that

Ih(t,x) - ax] £ H

holds for all t€ (-ee,+0o0) and for all x € (-oeo,+02).
Let the inequality

IhyCt,2)] < Holzl + H

where H2 z 0, H0 > 0, is satisfied for all te€ (-ee,+00) and for
all z€ (-o=,+00). If

(E + a, + Hz)wD + (F + Q1>W§ <1,

then the equation (3.2) has a w-periodic solution.

Remark: Analogical theorems on the existence of w-periodic
solution to the differential equation (1) with g = hz(x") +
+ h(t,x) - gor g = hz(t,x") + h(x) - q, where q = q(t,x,x ,x"),
may be given as a special cases of the foregoing theorem.

Closing the part III. we present the theorems as a special
case of Theorem 3.

Theorem 3.3.1. Let (2), (3), (AD) hold in the differential
equation

x T et x L x "X o+ £(E,x,x L, x")x T+ hz(x") + ax =
= g(t,x,x ,x") (3.1.1)
where a€R - (0) is an arbitrary given constant. If
2
(B + Qwy + (F +Qqpwg< 1,

then the equation (3.1.1) has a w-periodic solution.
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Theorem 3.3.2. Let (2), (3), (40) hold in the differential
equation

x T e(t,x,x ,x")x" o+ £, x,x ,x")x T+ hz(x") +

+ h(x) + ax = g(t,x,x ,x") , (3.1.2)

‘where a€R - (0) is an arbitrary given constant.

Let there hold one of the following two assumptions:

1) for all x € (-oe,+00) holds
Ihn(x)| £H , where H> 0
as well as

(E+ Qw, + (F + Ql)wg <1

2) h(x)e Cl(—ao,+co) is such that
Ih"(x)] £H , where H > 0
and for all x € (-eo,+oeo) holds

<
0 if 0 = h(x)x
- h(x)x & H¥ :=<:::j
H>0 if -H 2 h(x)x< 0
as well as

(B + Qw, + (F+ 0wl + H'wl <1

Then the equation (3.1.2) has a w-periodic solution.

Process of the proof of both theorems is the same of
Theorem 3, i.e. we start with an estimate of integral
W

‘Y w T 2(t)dt

o

To the proof of the last theorem with the assumption 2): in-
tegrating by parts we get

w w
S hIx()]x " (t)dt = J' h [x(D)]x (D)x"(t)dt
[s]

o}
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sothat

w w
Ij hlx()]x " "(t)dt] ¢ H'wgs x T 2(tHdt.
[s] [e]

PART IV.

Theorem 4. Let (2), (3), (40) hold in the differential
equation

x 7T+ e(t,x,x ,x")x" o+ £(t,x,x ,x")x  + hz(x") + hl(x') +
+ h(x) = q(t,x,x ,x") . (4.1)

Let there exist a constant a€R - (0) and a constant H > 0 such
that the inequality

|h(x) - ax| € H (A

is satisfied for all X & (-eo,+oo).

Let there exist constants H; z g, Hy > 0 such that the
inequality

[hy T = H lyl + Hy (A)
holds for all ye€ (-e0,+00). If
2
(E + 02)wD + (F o+ Hp o+ QoW < 1,

then the equation (4.1) has a w-periodic solution.

Proving this theorem we proceed accordingly to the proof
of Theorem 3. For an estimate of integral

w
j x T 72(t)dt
o

we use besides (2), (3) and (40) the inequality

w
|S{h[x(t)] - ax(t)}x"'(tmﬂ <
o]
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holding with regard to (AO) and

w

Ijhl[x'(t)]x'”(t)dtl

0

na

holding with regard to (Al)'
Some modifications of the foregoing thecrem are

Theorem 4.1. Let (2), (3), (40) hold in the differential
equation (4.1). Let there exist a constant a€ R - (0) such that
the inequality

Ih(x) - a°x] € H ,

where H > 0, holds for all x€ (-e0,+ee) and the inequality
Ihy (D = 38| S R IxT] o Hy
where H, 2 0, H >0, holds for all x € (-eo,+se). If
(E + Qdw_ + (F + i+ Q, + 332)w2 <1
2’70 1 1 s} ’
then the equation (4.1) has a w-periodic solution.

Process of the proof is quite analogical to that of the

Theorem 2.2. The differential equation (4.1) belong now to the
system

x s m{e(t,x,x',x“)x" + P, x,x ,x")x hy(x") -

2x' + h(x) - a}x -
2 v @k =0 s (s

- 3ax" + hl(x') - 3a

- q(t,x,x’,x“)} + 3ax" + 3a )

4

which, similarly as (S}), contain for m = 0 the linear homo-
geneous differential equation [cf.(5)] with the triple root -a
of the corr<sponding characteristic equation.

When we start the proof with an estimate of integral
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w
j x " 2(t)dt
o

(see the proving process of Theorem 1) then for an estimate of
integral

W
j x2(t)dt
o

to bring to a close may be used both bounding constant

nn

H, = maxlhz(x")l for |x"|

) 0" >0 [ef.(12)]

and

<

D" >0 [cfr.(11)]

w
AL H x2(t)dt
o

Hy Vv

i

Hl = max]hl(x')l for [x”

in the inequalities

[[TaY

w
|f hy [x" ()] x(t)dt|
o]

and

un

w
|X hy [x (D ]x()dt| «2(t)dt
o]

o=

[the last instead the inequality

n

w w
Ij hy [x () Ix(t)rdt] E <Q1D1 + Hyvw) j x2(tHdt
o} o

where

«2at £02, 0 >0 [er.am] 1

o=
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Theorem 4.2. Let (2), (3), (&D) hold in the differential
equation (4.1). Let there exist a constant a€R - (0) such that
the inequality

[h(x) - ax| $H,

where H > 0, is satisfied for all x € (-o0,+92).

Let hy(y) € Cl( oo, +00) and let

hi(y) € W <
Hy >0 if 0<hl'(y)

hold for all y€ (-oo,+o00). If

0 if hi(y) £ 0

A
pu

(E + 0w, + (F + HX o+ Ql)wg <1,

then the equation (4.1) has a w-periodic solution.

The proof is quite analogical to that of the Theorem 2.3.

Special cases of Theorem 4 are

Theorem 4.3.1. Let (2), (3), (AD) hcld in the differential
equation

x 7T r e(t,x,x ,x"Ix" o+ £(t,x,x ,x")x  + hy (x") + hl(x') +

+ax = g(t,x,x ,x") , (4.2.1)

where a€ R - (0) is an arbitrary given constant.

Let there hold one of the following two assumptions:
1) for all y€ (-o0,+o0) is satisfied the inequality

< 2
lhl(y)| 2 H1|y| + H , where H} 0, H> 0,
as well as

(E + Dz)w0 + (F + H1 + Ql)w‘g( 1

2) hl(y)é Cl(-oc,+°°) is such that for all y € (-eeo,+es) holds
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0if h'(y) $o
1
hi(Y) § H* ::/

HY >0 if 0<hi(y)<=H

1
as well as

(€ + Qg + (F o+ W+ 0Dwg £ 1

Then the equation (4.2.1) has a w-periodic solution.

Theorem 4.3.2, Let (2), (3), (4.) hold in the differential

equation

t4
x 7T+ e(t,x,x ,x")x" + £, x,x ,x")x  + h2(x") +

+ hl(x') + h(x) + ax = q(t,x,x ,x") , (4.2.2)

where a€R - (0) is an arbitrary given constant.

D)

2)

Let there hold one of the following four assumptions:
for all X € (-oo,+ee) is satisfied the inequality
|[h(x)| € H, where H >0,

and for all y€ (-oo,+o0e) is satisfied the inequality
Ihy (| S H lyl + Hy , where H, 2 g, Hy > 0,

as well as

(E + Qwy + (F + H + Ql)wg< 1

h(x) € Cl(—ao,+°°) is such that for all x& (-eo,+00) holds

H* :=/
\H>0 if -H

0 if 0% h(x)x ~
- h(x)x

< h(x)x < 0

and
Ih (0|

for all y € (-oo,+ee) holds

A

H™ , where H >0,

<
lhy | = Hylyl + Hy , where H, z g, Ho> 0,
as well as

(E + Qywy + (F + Hy + Ql)wg + H‘wi( 1
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3)

4)

for all x€ (-o0,+o0) holds

[h(x)| £ H , where H> 0 ,

and hy(y) € Cl(-0o,+w) is such that for all ye (-oo,+o0)
holds

1
o

ot hi(y) £
S~ . <
SH >0 if 0<hi(y) £ H

hi(y) *H

- X

1
as well as

(E + Qw, + (F+ HY v aDwl < 1

h(x)€ Cl(—eo,+eo) is such that for all x€&€ (-oo,+ee) holds

0 if 0 £ h(x)x
~h(x)x £ H* :=/////
TNH >0t H S hGOX< 0
and
[h(x)| £H", where H > 0 ,

hl(y)ECl (-o00,+00) is such that for all y€&€ (-o0,+00)
holds

hy(y) £ H] e

TSH] > 00if 0K hy(y) &

0 if hi(y) 20
1 7%

|
x

as well as
(E + [Jz)w0 + (F + H; + Ql)wg + H'wz <1
Then the equation (4.2.2) has a w-periodic solution.

To prove the both theorems we may use the elements of the

proving procedure of the all foregoing theorems admissible with
regard to the corresponding assumptions.

Closing the part IV. we present the theorem with a more

generalized form of the function g in (1).

Theorem &4.4. Let (2), (3), (40) hold in the differential

equation

- 158 -



x T+ e(t,x,x L, x")x" F(t,x,x ,x")x  + hz(t,x") +
+ h (t,x ") + h(t,x) = a(t,x,x ,x") . (4.4)
Let there exist constants a€R - (0) and H > 0 such that for

all t€ (-eo,+9) and for all xe& (-oo,+00) is satisfied the ine-
quality

lh(t,x) - ax| € H
Let for all t€ (-oo,+o0) and for all y € (-oo,+00)
< ~ A >
|h1(t,y)l E H1|y| + Hy , where H =0, H > 0,
and for all t€(-oe,+ee) and for all ze (-o0,+o0)
< A ~ >
|h2(t,z)l < H2|z| + Hy , where H, =0, Hy> 0,
hold. If
A A 2
(B + Hy + Qlwy + (F + Hp « Qwy < 1,
then the equation (4.4) has a w-periodic solution.
Let us note that in the case of
g = hz(x") + hl(x') + h(t,x) - g
or g = hz(x") + hl(t,x') + h(x) - q

or g = hz(t,x”) + hl(x') + h(x) - q

occuring in the differential equation (1) it is possible to
modify the relevant theorem on existence of a periodic solution
in view of the appropriate assumptions of hl(x') or h(x) res-
pectively.

On existence of a periodic solution to (1) with a general
term g we may give the general

Theorem 4.5. Let (2) and (3) hold in the differential
equation (1). Let there exist constants a€R - (0) and G > 0
such that for all t,y,z€(-oo,+o0) and for all x & (-eo,+ o0)
holds the inequality

lg(t,x,y,z) - ax| £ G
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If
(E + Fwo)wG < 1,

then the equation (1) has a w-periodic solution.

Proving this theorem with respect to their assumptions, we
go under one s way of accustomed procedure to

na

2 GYw
K

w

P} ~
S X (t)dt D) , where Dy :=
0

with K = 1 - (E + Fu dw, > 0, so that

na

w
w2 2 L

S x"“(t)dt D, , where D, := wDD} >0

0

nn

w

.2 2 .
S x2(t)dt ¢ Df , where D, := w D, >0,
o

from whose [cf.(11) and (12)]

[x"(t)] € D" , where D" = W D2 >0

uA

Ix (1)) D", where D' := {w Dl >0

and further
1

W

fxz(t)dt ¢ Dg , where D0 1= o] (ED2 + FDl)fﬁ >0,
a

0

from whose [cf.(14)]
D
Ix(t)| £ 0, where 0 := [ 2 +VwD] >0
Vu

So that, with regard to the inequality lx(j)(t)l $ max (0,0°,0")
holding for j = 0,1,2 [cf.(15)] and to aeR - (0), a # 0, the
sufficient conditions on existence of a w-periodic solution to
(1) are fulfilled.
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SOUHRN

K EXISTENCI PERIODICKEHO RESENI NELINEARNT
DIFERENCIALNT ROVNICE TRETIHO RADU

VLADIMIR VLEEK

Existence periodického feSeni nelinedrni diferencidlni
rovnice 3.fddu (1) je postupné vySetfovédna s ohledem na rdzné
tvary jejiho posledniho &lenu, tj. funkce g. Ve vétdch jsou
uvedeny podminky k zajisténi stejnomérné ohraniéenosti v3ech
feseni (vEetn& jejich derivaci) jistého jednoparametrického
systému diferencidlnich rovnic, coZ vzhledem k uzité metodé
diikazu sta&i k existenci periodického Ffeseni uvaZované rovnice.
Soutasné je ukdzdno, nakolik a jakym zplsobem podminky kladené
na jednotlivé &leny v rovnici (1) ovlivnuji pfisludné ohrani-
tujici konstanty.
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PE3KOME

K CYIIECTBOBAHME NEPHOLMUECKOI'O PEIEHIA
HEJMHEAHOIO LVE®EPEHUMAIBHCIO YPABHEHUS 3-0I'C MOPALKA

B. BJYEK

CylrecTEOBEHUE NEPUOAMYECKOrs peWeHUs HeJuHeltHoro
anddepesnnasbHOTe ypaBHeHus (1) uayuseTcs nCcTeneHHo
NpUHUMES BO BHUMBHME DB3HHe (ODMHB €ro MOCAEeNHEero YJaeEe,
uMeHHO ¢YHKIMM g . B TeopeMaAX NpuBELeHH VCJACBKHA IapaH=-
TUDYRIME PEBHOMEPHYR OrDBHMUEHHOCTH BCeX [emeHui /u ux
NpouaBoJHHX/ COREpmeHHO} oLHOnepeMeTpuueckKo# cucTemH M-
¢epeHUMBN BHHEY ypeaBHeHu, uTo - uMes B BMAY NpHMEHEHHH}
MeTOJI AOKeS8&TEJLCTBE = LOCTETOUHO K CyMECTECOBEHUK Nejuo-
Luyeckorc pewenus (1), ONHOBpDEMEHHO MOK83HHEETCH KEK
TPeGOBRHMA K OTLEJbHHM uJeHaM ypaBHeHna (1) BAMRLET HA
COOTBETCTBEHHNE OrpazHnuMBapiine MoCTOSHHHE .
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