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OUASICOMPLEMENTED SEMILATT1CES 

IVAN CHAJDA 

The aim of this paper is to show how the concept of lattice 

complement can be modified for semiiattices to satisfy well-known 

lattice results, see e.g. [6], Ihese investigations are based on 

concepts and results on ordered sets constructed in the lattice 

style, see [2], [4], [5]. 

Let A be an ordered set. Denote by — the o r d e r i n g . If 
M - A, denote by 

U(M) = lx€A; x - m for each m € M ] 

L(M) = (y£A; y — m for each mGMj, 

i.e. U(M) (or L(M)) is the set of all upper bounds (or lower 

bounds, respectively) of M. If M = {a,bj, we will write briefly 

U(a,b) or L(a,b) for the U(M) or L(M), respectively. Clearly 

B c c c A impiies U(B) ~ U(C) and L(B) -* L(C), whence L(0) = 

= U(0) = A. If A has the greatest element 1, then L(l) = A and 

U(A) = {l^ ; iR ^ne opposite case U(A) = 0 . If A has the least 

element 0, then U(0) = A and L(A) = {0} ; in the opposite case 

we have L(A) = 0. 
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Throughout the paper, by a semilattice will be meant the 

join-semilattice with the greatest element 1. If S is a semi-

lattice, then S need not have the least element, thus the usual 

concept of the complement in a lattice cannot be used. However, 

it can be reasonable to introduce rather slight modifid concept: 

Definition 1. Let A be an ordered set with the greatest element 

1. Elements a, b of A are (mutually) quasicomplementary, or a 

is a quasicomplement of b, if U(a,b) = fl} and L(a,b) = 0. If 

each a£A, a i 1 has a quasicomplement in A, A is called a 
quasicomplemented set. 

Example 1. The ordered set A in Fig.l is quasicomplemented (A 

is not a semilattice, since there does not exist the supremum 

of the elements z, u). Clearly a is a quasicomplement of v as 

well as of w, b is a quasicomplement of u, c is a quasicomplement 

of z, d is a quasicomplement of x and of y, p is a quasicomple­

ment of s, q is a quasicomplement of r. 

Fig. 1 

Remark 1. If an ordered set A with 1 is quasicomplemented, then 

clearly there does not exist a quasicomplement of the element 1. 

Since here every semilattice is an ordered set with the 

greatest element, the foregoing definition can be used also in 

this case: 

Elements a,b of a semilattice S are quasicomplementary if 

a v b = 1 and L(a,b) = 0j a semilattice S (without the 
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least element)is quasicomplemented if each a € S, a i 1 

has a quasicomplement. 

Fig. 2 

Fig. 4 

Thus the semilattices in Fig.2, Fig.3 and Fig.4 are quasi-

complemented. The situation in Fig.2 and Fig.3 is clear. For 

the semilattice S in Fig.4, an element a has quasicomplements 

z,v,d ; b has quasicomplements y,v,q,c ; c has quasicomplements 

x,z,p,b and d has quasicomplements x,y,a. 

Evidently, the semilattice S in Fig.2 has the property 

that each x£S, x i 1 has exactly one quasicomplement. It is 

a natural question if there exist also ordered sets (which are 

not semilattices) with this property. The following example 

answers this question in the positive: 

Example 2. The ordered set A in Fig.5 has exactly one quasi­

complement for each element of A different from 1. Moreover, A 

is not a semilattice since there does not exist the supremum 

of elements q and r. We can easily verify that the following 

pairs of elements are (uniquely) quasicomplemented,: 

a,s ; b,r .; c,q .; d,p .; x,v j y,z . 
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F i g . 5 

With respect to the previous examples, call an ordered 

set A uniquely quasicomplemented if each x€A, x j- 1 has 

exactly one quasicomplement, 

Remark 2. The case of uniquely quasicomplemented semilattices 

is more interesting than the case of pseudocomplemented semi-

lattices (see e.g. [3]), since if a semilattice S is uniquely 

pseudocomplemented, it is a lattice (see Theorem 4.6.1 in [3]) 

which fails for uniquely quasicomplemented semilattices as we 

can see in Fig.2. 

Notation. If A is a uniquely quasicomplemented set, denote by 

a the quasicomplement of a€A. Clearly, (a ) = a. 

It is well-known that every complemented distributive 

lattice is uniquely complemented. The concept of distributi-

vity for ordered sets was introduced in [4] and characterized 

by forbidden subsets in [2]_: 

An ordered set A is distributive if for each a,b,c of A 

the identity 

L(U(a,b),c) = L(U(L(a,c),L(b,c))) (D) 

holds . Remark that if A is a lattice, A is distributive as a 

lattice if and only if A is distributive as an ordered set, 

see [4]. By the using of methods of [2], we can easily verify 

that ordered sets in Fig.2 and Fig.5 are distributive and 

ordered sets in Fig.l, Fig/3 and Fig.4 (which are not uniquely 

quasicomplemented) are not distributive. 
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Theorem 1. Let 5 be a distributive quasicomplemented set. Then 
S is uniquely quasicomplemented. 

Proof. Suppose S is a distributive quasicomplemented set, 

agS, a i 1 and b,c.are quasicomplements of a. Then, by the 

distributivity, we have 

L(b) = L(l,b) = L(U(a,c),b) = L(U(L(a,b),L(b,c))) = 

= L(U(L(c,b))) = L(c,b), 

L(c) = L(l,c) = L(U(a,b),c) = L(U(L(a,c),L(b,c))) = 

= L(U(L(b,c))) = L(b,c), 

thus L(b) = L(c) which implies b = c. 

Definition 2. Let A be a uniquely quasicomplemented set. Put 

B+ = {b+;b€B| for 0 t B ̂  A and 0+ = {lj, {l}+ = 0. We say 

that A satisfies De Morgan laws if 

U(x,y)+ = L(x+,y+) and L(x,y)+ = U(x+,y+) 

hold for each x,y6A. 

Theorem 2. Let A be a uniquely quasicomplemented set. The 

following conditions are equivalent: 

(1) x — y t 1 implies x — y for each x,y€A ; 

(2) A satisfies De Morgan laws. 

Proof. (1) =»(2)_: If U(x,y) = { l] , i.e. U(x,y)+ = 0, the proof 

is trivial. Suppose q€U(x,y) . Then there exists an element 

a€U(x,y) such that q = a+ (clearly a — x, a — y). By (1), it 

and q = a — y , which is equivalent to implies q = a — x 

q€L(x+,y+). Thus U(x,y)+ - L(x+,y+). Analogously we can prove 

the converse inclusion. The second De Morgan law can be proved 

dually. 

(2) => (1): Let x,y be elements of S such that x — y t 1. 

Then U(x,y) 1 [\\ and, by (2), y€U(x,y) = L(x+,y+)+ t 
+ . / + + \ y € L(x ,y ), whenc 

thus 
+ < -. 

e y — X 

Remark 3. Since every uniquely quasicomplemented semilattice 

is a uniquely quasicomplemented ordered set, we can adopt De­

finition 2 also for semilattices (of course, U(x, y) can be re­

placed by LI (x v y) , which is not necessary). Thus Theorem 2 re-
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mains true also for semilattices. In the case of Theorem 1, 

the situation is a bit more complicated. A semilattice S is 

distributive (see e.g. [l] or [3]) if the inequality a * b V c 

(for a,b,c« S) implies the existence of b, -» b and c, ~ c such 

that a = Di v c i - Although for lattices the lattice distribut-

ivity coincides with the distributivity for ordered sets, it 

is not true for semilattices. It was proven in [5] that every 

distributive (by the foregoing semilattice definition) semi-

lattice is also distributive as an ordered set but not vice 

versa (see e.g. the semilattice in Fig.2 which is not distri­

butive in the semilattice meaning but it is distributive as 

an ordered set). Moreover, see e.g. Ex.27, §5,11 in [3]), every 

distributive finite semilattice is a lattice. Hence, the usual 

definition of semilattice distributivity is not suitable for 

our investigations. Hencefore, we introduce: 

Definition 3. A semilattice S is o-distributive if it is 

distributive as an ordered set. 

The o-distributive semilattices are characterized in [5]. 

Moreover, Theorem 1 is evidently valid also for o-distributive 

semilattices. Other examples of o-distributive quasicomple-

mented (and hence uniquely quasicomplemented) semilattices 

are in Fig.6 and Fig.7 below. 

Fig. 
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Fig. 7 

Theorem 3. Let S be an o-distributive quasicomplemented se-

milattice. Then for each a,b of S, 

a — b ^ 1 implies a -* b 

(thus S satisfies De Morgan laws). 

Proof. Clearly, av(a vb ) = 1. (x) 

Now, suppose a -* b i 1. Then L(a,b+) *• L(b,b ) = 0, thus 

U(L(a,b )) = S. By the o-distributivity, it implies 

U(L(a,a+vb+)) = U(L(a,U(a+v b+))) = U(L(a,U(a+,b+))) = 

= U(L(U(L(a,a+),L(a,b+)))) = U(L(U(L(a,b+)))) = U(L(a,b+)) = S, 

thus L(a,a vb ) = 0. Together with (x), it gives that elements 

a and a vb are quasicomplementary. Since S is o-distributive, 

it is uniquely quasicomplemented, thus a a v b , whence 

In the remaining part of the paper, we proceed to prove 

that for finite semilattices, Theorem 1 can be converted. 

Theorem 4. Let S be a finite semilattice without the least 

element (i.e. 0 £ S). Let L = {o} U S and put 

x — y if and only if xvy = y or x = 0. 

Then L is a lattice with respect to the order *-. 

Proof. Evidently, it suffices to prove that for any x,y€.L, 

x i y there exists inf(x,y). Since L has the least element 0, 
we have L(x,y) t 0. Suppose inf(x,y) does not exist. Since L 
is finite, it means that there exist at least two different 
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maximal elements, say p, q, in L(x,y). Then x = pvq = y 

which is a contradiction. 

Remark 4. The assumption of finitenesss of S cannot be omitted. 

Let e.g. S be infinite (but countable) semilattice 

S = {l,a,b,c
1
,c

2
, . . . } 

ordered by : 

a < l , b < l , c . < c . f o r i < j and c . < a , c , < b 

for all i,j = 1,2,... . Then L = [ { ) \ U S cannot be a lattice 

since inf(a,b) does not exist. 

Theorem 5. Let S be a semilattice without the least element 

such that L = {oJ U S is a l a t t i c e . If L is distributive, 

then S is o-distributive, 

Proof. If L is distributive, then (aAc)v(aAb) = aA(bVc) 

for each a,b,c6S, thus the distributive identity (D) is sa­

tisfied in L. If we delete the element 0 from L, then: 

If a Ac i 0 and aAb i 0, then clearly aA(bvc) t 0 

and (D) is satisfied in S. 

If e.g. aAc = 0 and aAb t 0 in L, then aA(bvc) i 0 

and we have in S ; 

U(L(a,c),L(a,b)) = U(0,L(a,b)) = U(L(a,b)) = U(aAb) = 

= U(aA(bvc)) = U(L(a,U(b,c))), 

thus (D) is satisfied in S. 

If aAc = 0 and aAb = 0 in L, then also aA(bvc) = 0 

and we have in S : 

U(L(a,c),L(a,b)) = U(0) = U(L(a ,U(b,c))), 

thus (D) is also satisfied in S. 

Theorem 6. Let S be a finite semilattice without the least 

element. The following conditions are equivalent: 

(1) S is uniquely quasicomplemented; 

(2) S is quasicomplemented and o-distributive. 

Proof. (2) =>(1) is a direct consequence of Theorem 1. Prove 

(1) = M 2 ) : By Theorem 4, L = S U{oJ is a lattice. Since L 

is finite, it is atomic. Put 1 = 0 in L. Then, evidently, 

L is uniquely complemented lattice (with respect to ). By 
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the Birkhoff™Ward Theorem (see e . g . Theorem 13 in [6]), L is 

distributive. By Theorem 5, S is o - d i s t r i b u t i v e . 
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SOUHRN 

KVAZIKOMPLEMENTÁRNÍ POLOSVAZY 

IVAN CHAJDA 

Pojem komplementace ve svazu je v práci rozšířen na spo­

jové polosvazy. Jsou studovány polosvazy, pro které tento po­

jem splňuje podmínku jednoznačnosti. 
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РЕЗЮМЕ 

КВАЗИКСМПЛЕМЕНТНЫЕ П013УРЕШЕТКИ 

И. ХАЙДА 

Понятие комплементации в решетке расширяется в этой 

работе для полурешеток. Ивучеются полурешетки для кото­

рых это понятие обладает свойством однозначности» 
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