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QUASICOMPLEMENTED SEMILATTICES

IVAN CHAJDA

The aim of this paper is to show how the concept of lattice
complement can be modified for semilattices to satisfy well-known

lattice resulis, see e.g. [6]. These investigations are based on

concepts and results on ordered sets constructed in the lattice
style, see [2], (4], [5].

Let A be an ordered set. Denote by £ the ordering. If
M € A, denote by

U(M) = {xeA; x Zm  for each meM]
L(M) = {yel\; y £m  for each meM},
i.e. UM) (or L(M)) is the set

of all upper bounds (or lower
bounds, respectively) of M. If

M = {a,b}, we will write briefly
U(a,b) or L(a,b) for the U(M) or L(M), respectively. Clearly

3 €¢ €A implies U(B) 2 U(C) and L(B) 2 L(C), whence L(@)
= y(@g) = A. If A has the greatest element 1,

then L(1) = A and
U(A) = {15 ; in the opposite case U(A) = §.

If A has the least
element 0, then UCO) = A and L(A) = {0} ; in the opposite case
we have L(A) = @.



Throughout the paper, by a semilattice will be meant the
join-semilattice with the greatest element 1. If S is a semi-
latticg, then S need not have the least element, thus the usual
concept of the complement in a lattice cannot be used. However,
it can be reasonable to introduce rather slight modifid concept:

Definition 1. Let A be an ordered set with the greatest element
1. Elements a, b of A are (mutually) guasicomplementary, or a
is a quasicomplement of b, if U(a,b) = {1} and L(a,b) = @. If
each a €A, a # 1 has a quasicomplement in A, A is called a
quasicomplemented set.

Example 1. The ordered set A in Fig.l is quasicomplemented (A

is not a semilattice, since there does not exist the supremum

of the elements z, u). Clearly a is a quasicomplement of v as
well as of w, b is a quasicomplement of u, c is a quasicomplement
of z, d is a quasicomplement of x and of y, p is a quasicomple-
ment of s, q is a quasicomplement of r.

Fig. 1

Remark 1. If an ordered set A with 1 is quasicomplemented, then
clearly there does not exist a quasicomplement of the element 1.

Since here every semilattice is an ordered set with the
greatest element, the foregoing definition can be used also in
this case:

Elements a,b of a semilattice S are quasicomplementary if
avb =1 and L(a,b) = B; a semilattice S (without the
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least element)is quasicomplemented if each a € S, a # 1
has a quasicomplement.

1 1
a b a b c
Fig. 2 Fig. 3
1
a “? d
X y z v

Fig. &

Thus the semilattices in Fig.2, Fig.3 and Fig.4 are quasi-
complemented. The situation in Fig.2 and Fig.3 is clear. fFor
the semilattice S in Fig.4, an element a has quasicomplements
z,v,d ; b has quasicomplements y,v,q,c ; c has quasicomplements
x,z,p,b and d has quasicomplements x,y,a.

Evidently, the semilattice S in Fig.2 has the property
that each x €S, x # 1 has exactly one quasicomplement. It is
a natural question if there exist also ordered sets (which are
not semilattices) with this property. The following example
answers this question in the positive:
Example 2. The ordered set A in Fig.5 has exactly one quasi-
complement for each element of A different from 1. Moreover, A
is not a semilattice since there does not exist the supremum
of elements q and r. We can easilx verify that the following
pairs of elements are (uniquely) quasicomplemented:

a,s 3 b,r ; c,q; d,p; X,v; y,z.
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Fig. 5

With respect to the previous examples, call an ordered
set A uniquely gquasicomplemented if each x €A, x # 1 has
exactly one quasicomplement.

Remark 2. The case of uniquely quasicomplemented semilattices

is more interesting than the case of pseudocomplemented semi-
lattices (see e.g. [3]), since if a semilattice S is uniquely
pseudocomplemented, it is a lattice (see Theorem 4.6.1 in [3])
which fails for uniquely quasicomplemented semilattices as we
can see in Fig.2.

Notation. If A is a uniquely quasicomplemented set, denote by

a’ the quasicomplement of a€A. Clearly, (a")* = a.

It is well-known that every complemented distributive
lattice is uniquely complemented. The concept of distributi-

vity for ordered sets was introduced in [4] and characterized
by forbidden subsets in [2];

An ordered set A is distributive if for each a,b,c of A
the identity

LU (a,b),c) = L(U(L(a,c),L(b,c))) ) )

holds. Remark that if A is a lattice, A is distributive as a
lattice if and only if A is distributive as an ordered set,
see [4]. By the using of methods of [2], we can easily verify
that ordered sets in Fig.2 and Fig.5 are distributive and
ordered sets in Fig.l, Fig.3 and Fig.4 (which are not uniquely
quasicomplemented) are not distributive.
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Theorem 1. Let S be a distributive quasicomplemented set. Then
S is uniquely quasicomplemented.

Proof. Suppose S is a distributive quasicomplemented set,
ae€eS, a # 1 and b,c are quasicomplements of a. Then, by the

.

distributivity, we have

L(b)

1

L(1,b) = L(U(a,c),b) = L(U(L(a,b),L(b,c)))
L(U(L(c,b))) = L(c,b),
L(c) = L(1,c) = L(U(a,b),c) = L(U(L(a,c),L(b,c)))
L(u(L(b,e))) = L(b,e),

"

"

"

thus L(b) = L(c) which implies b = c.

Definition 2. Let A be a uniquely quasicomplemented set. Put
+

B = {b+;b 68} for # # BS A and 97 = {1{, {l}+ = . We say
that A satisfies De Morgan laws if

UG,y) ™ = LT,y and Lix,y)™ = uxT,y ™)
hold for each x,y &€A.

Theorem 2. Let A be a uniquely quasicomplemented set. The
following conditions are equivalent:

(1) x =y #1 implies x" 2 y* for each x,y €A ;
(2) A satisfies De Morgan laws.

Proof. (1) =>(2): If U(x,y) = {1}, i.e. U(x,y)* = @, the proot
is trivial. Suppose qé€ U(x,y)+. Then there exists an element

a€ U(x,y) such that q = a* (clearly a £ x, a 2 y). By (1), it

implies q = a” £ x" and q = at % y+, which is equivalent to
q€ L(x+,y+). Thus U(x,y)+ < L(x+,y+). Analogously we can prove
the converse inclusion. The second De Morgan law can be proved

dually.
(2) = (1): Let x,y be elements of S such that x Sy 41,

Then U(x,y) # {1} and, by (2), yeU(x,y) = L(x",y")* # @, thus

v e L(x",y"), whence y© = x*

Remark 3. Since every uniqhely quasicomplemented semilattice

is a uniquely quasicomplemented ordéred set, we can adopt De-
finition 2 also for semilattices (of course, U(x,y) can be re-
placed by U(x vy), which is not necessary). Thus Theorem 2 re-



mains true also for semilattices. In the case of Theorem 1,
the situation is a bit more complicated. A semilattice S is
distributive (see e.g. [1] or [3]) if the inequality a £b v c
(for a,b,c€ S) implies the existence of b1 < b and ¢, < ¢ such
that a = blvcl. Although for lattices the lattice distribut-
ivity coincides with the distributivity -for ordered sets, it
is not true for semilattices. It was proven in [5] that every
distributive (by the foregoing semilattice definition) semi-
lattice is also distributive as an ordered set but not vice
versa (see e.g. the semilattice in Fig.2 which is not distri-
butive in the semilattice meaning but it is distributive as

an ordered set). Moreover, see e.g. Ex.27, §5,II in [3]), every
distributive finite semilattice is a lattice. Hence, the usual
definition of semilattice distributivity is not suitable for
our investigations. Hencefore, we introduce:

Definition 3. A semilattice S is o-distributive if it is
distributive as an ordered set.

The o-distributive semilattices are characterized in [5].
Moreover, Theorem 1 is evidently valid also for o-distributive
semilattices. Other examples of o-distributive quasicomple-
mented (and hence uniquely quasicomplemented) semilattices
are in Fig.6 and Fig.7 below.

Fig. 6
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Fig. 7

Theorem 3. Let S be an o-distributive quasicomplemented se-
milattice. Then for each a,b of S,

a$b#1 implies a" Zp*
(thus S satisfies De Morgan laws).

Proof. Clearly, av(a*vb") = 1.

Now, suppose a b # 1. Then L(a,b’) S L(b,b") = @, thus
U(L(a,b™)) = S. By the o-distributivity, it implies
U(L(a,a*vb™)) = U(L(a,u(a*v b*))) = U(L(a,u(a",b"))) =
= U(L(U(L(a,a"),L(a,b%)))) = U(L(U(L(a,b*)))) = U(L(a,b™)) = s,
thus L(a,a*vb*) = @. Together with (x), it gives that elements
a and a*vb* are quasicomplementary. Since S is o-distributive,

it is uniquely quasicomplemented, thus a* = a'v b+, whence
+ 3 Lt
a b .

(%)

In the remaining part of the paper, we proceed to prove
that for finite semilattices, Theorem 1 can be converted.

Theorem 4. Let S be a finite semilattice without the least
element (i.e. 0 € S). Let L = {0] U S and put
x = y if and only if xvy =y or x = 0.
Then L is a lattice with respect to the order £.
Proof. Evidently, it suffices to prove that for any x,yé€L,
x # y there exists inf(x,y). Since L has the least element O,

we have L(x,y) # @. Suppose inf(x,y) does not exist. Since L
is finite, it means that there exist at least two different



maximal elements, say p, q, in L(x,y). Then x = pvg =y
which is a contradiction.

Remark 4. The assumption of finitenesss of S cannot be omitted.
Let e.g. S be infinite (but countable) semilattice

s = {1,a,b,cl,cz,...}
ordered by

a<l , b<1l , Ci< cj for i< j and c;<a, Ci< b

for all i,3 = 1,2,... . Then L = {D§ U S cannot be a lattice
since inf(a,b) does not exist.

Theorem 5. Let S be a semilattice without the least element
such that L = {0} US is a lattice. If L is distributive,
then S is o-distributive.
Proof. If L is distributive, then (aAc) v(aAb) = aA(bvec)
for each a,b,c€ S, thus the distributive identity (D) is sa-
tisfied in L. If we delete the element O from L, then:

If aAc # 0 and aAb # 0, then clearly aA(bvc) # 0
and (D) is satisfied in S.

If e.g. aAc = 0 and aAb # 0 in L, then aA(bvc) # 0
and we have in S :

U(L(a,c),L(a,b)) = U(P,L(a,b)) = U(L(a,b)) = U(aAb)

= U(aa(bve)) = U(L(a,U(b,e))),

thus (D) is satisfied in S.

If aAc = 0 and aAb = 0 in L, then also aA(bvc) = 0
and we have in S :

u(L(a,c),L(a,b)) = U(B) = U(L(a,U(b,c))),
thus (D) is also satisfied in S. -

i

Theorem 6. Let S be a finite semilattice without the least
element. The following conditions are equivalent:

(1) S is uniquely quasicomplemented;

(2) S is quasicomplemented and o-distributive.

Proof. (2) = (1) is a direct consequence of Theorem 1. Prove
(1) =(2): By Theorem 4, L = § L){O‘ is a lattice. Since L
is finite, it is atomic. Put 1" =0 in L. Then, evidently,

L is uniquely complemented lattice (with respect to ). By



the Birkhoff-Ward Theorem (see e.g. Theorem 13 in [6]), L i
distributive. By Theorem 5, S is o-distributive.



SOUHRN

KVAZIKOMPLEMENTARNI POLOSVAZY

IVAN CHAJDA

Pojem komplementace ve svazu je v prédci rozsifen na spo-
Jové polosvazy. Jsou studovdny polosvazy, pro které tento po-
jem splnuje podminku jednozna&nosti.
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PESKME

KBASVKCMIJIEMEETHEE IOJIYPELETKA

W. YARLA

NonsTHe KoMnaEMeHTAUHK B pelileTKe pecmupaerTcs B aToi
pafoTe LJAR NOJypemeToK. MsyuyekTCH NOXypemeTKH LAS KOTO-
PHX 3TC NOHATHe cbaelLaeT CECOACTBOM CIAHECBHEBYHOCTH.
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