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In this paper we are concerned with the existence of so-

lutions of the equation

u" = f(t,u”,u"), (0.1)
satisfying the conditions .
u(a) = u(ty)s u(ty) = u(ty), u(t,) = u(b), (0.2)

where ~—w<adt, < t2 < t3 < t4 & b < +00. For similar problems

for differential equations of the second order, we refer to
[7. ].

Since the linear operator d3/dt3 subjected to the condi-
tion (0.2) has the zero eigenvalue, we cannot use existence

theorems of the type of Conti (see Lemma 4). That is
why we prove the proposition which guarantees the existence of
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solutions of (0.1), (0.2) even for operators having the zero
eigenvalue. By means of it we prove Theorems 1 and 2.

Throughout the paper we use the following notations:
R = (-0, +m), R, = [0, +®), N is the set of all natural
numbers, D = [a,b]xR;, o, = [a,b]x Rf ;
¢, = max {ltz—al, lt4-t2|, lb-t4l}, c, = max “tz—al, ]b-tzll ;
C(i)(a,b) is the set of all real functions having the
continuous i-th derivatives on [a,b] ;

AC(i)(a,b) is the set of all real functions having the
absolutely continuous i-th derivatives on [a,b] 3

Li(a,b) is the set of all real functions f such that fo is
Lebesgue integrable on (a,b) ;

Car;,.(D) is the set of all real functions satisfying the
local Carathéodory conditions on D ;

a.e. = "almost every" ;

we say that some property is satisfied on D, if it is satis-

fied for a.e. t € [a,b] and for all (x,y,z)e RS,

In the following the function f is supposed to be of
Cary,.(D) and the nlflmber A‘{-l,l} .

By a solution to (0.1), (0.2), we mean a function
uGACZ(a,b), verifying (0.1) for a.e. t &[a,b] and satisfying
(0.2).

1. The existence results

Theorem 1. Let there exist r € (0,+ @) such that on the
set D there are satisfied the inequalities

A.f(t,x,y,z).sgn x 2 0 for |x| 2 r, (1.1)
If(t,x,y,2)] ¢ w(t,Ixl,lyl, lzl) , (1.2)

where a)GCarloc(D+) is a non-negative function non-decreasing
in its second, third and fourth arguments and

b
lim sup % fw (t, ? cl(b-a), ?cj_' e)dt <1.. (1'3)>
e-» ® a



Then the problem (0.1), (0.2) has at least one solution.

Corollary. Let there exist r € (0,+ ®) such that on the
set D there are satisfied the inequalities (1.1) and

lf(tlxlez)l H hi(t)’xl"‘ hz(t)‘Yl"' h3(t)lz|+w(t,lxl+ly|+lzl),
(1.4)

where hic Ll(a,b), i=1,2,3, are non-negative functions ful-

filling
b b b
fhs(t)dt + clf hy(t)dt + cl(b—a)f hy(t)dt < 1,
a a a (1.5)

and wecCary, ([a,b]xR,) is non-negative, non-decreasing in
its second argument and

b,
1
1i - t, dt = 0 . 1.6
913 P{w( ) (1.8)

Then the‘problem (0.1), (0.2) is solvable.

Theorem 2. Let there exist re€ (0,+ o) such that on the
set D there are satisfied the inequalities (1.1) and

[f(tixiyi2)] € aglxl+ aylyls aglzl+ w(t, Ixl+Iyl+lzl) |

(1.7)
where ai€ R_» i=1,2,3, are such that
3 ~ 2 -~
al(z/TL') €,Cq(b-a) + a,(2/W )%eycq + ag(2/W )y, L2
(1.8)
and W : [a,b]x R, — R, has the properties
2
w( . ¢ YE L (a,b) for any ge R,
(1.9) w(t,*)&C(R,) is non-decreasing for a.e. t€[a,b]

b
_ 1 2 1/2 _
Lin 3 (gw (t,@ )dt) 0.

? » @
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Then the problem (0.1), (0.2) is solvable.

Theorem 3. Let there exist a; € R+ and hii Ll(a,b), i=1,
2,3, such that

(b-a)[ai(Z/fi')sczcl + ay(b-a)/2 + 83] ¢1, (1.10)
0<1h1(t) s 84, lhz(t)l ] 85, lh3(t)l H 33
for a.e. ta»[a,b] ) (1.11)
If(t.x,y,2) = hg(t)x = hy(t)y - hs(t)zlg
= w(t,Ix|+lyl+fz]) on D, (1.12)

where w is the function from Corollary.
Then the problem (0.1), (0.2) has at least one solution.

2. Preliminary results

Lemma 1. ([3], Theorem 256, p.219). If f& AC(c,d),
f"€L%(c,d) and f(t ) = O, where ~w<c & t & d< +00, then

d d
2 _ ~ 12 .2
{ fo(t)dt § [2(d c)/% ] gf (t)dt .

N

Lemma 2. Let us suppose that a;€R, and h; € Ll(a,b),
i=1,2,3, satisfy (1.10) and (1.11). Then the equation

3
u =2 hy (t)ult=2) (2.1)
i=1
has only the trivial solution fulfilling (0.2).
Proof. Since (1.10),
2
ay(b-a)“/2 + a3(b-a) $1 . (2.2)
Therefore, by (1.11), any nontrivial solution of the equation

v o= hy(t)v’ o+ hg(t)v"



has not more than 2 zeros on [a,b] (see [11], p.157 or [5],
p.116). Therefore, in accordance to the Frobenius factori-
zation (see [4], p.87 or [2], p.91-94), the equation (2.1) can
be written in the form

1 ( 1 ( u’
Pz(t) = po(t) ~ py(t)

1) = hy(t)u, (2.3)

where p, & act(a,b), Po.P3 €AC(a,b) and p,(t) # O for a § t $ b,
i=1,2,3.
Now, admitting to the contrary that u is a nontrivial so-
lution of (2.1), (0.2), we get points 4‘-1, !(2, 0(3 such that
u’(dy) = 0, i=1,2,3, & &(a,ty), &, 6&(t,,ts),
€, €(t,,b) (2.4)

and points ﬂl' /-(2 such that
u"(f;) = 0, i=1,2, /’1‘(“1- <) fre(dy, %s). (2.5)

Let us suppose that u(t) # O for a € t § b. In accordance to
(2.5) the function ((t) = (1/p,(t))(u’/py(t))° has two zeros
on (a,b) and on the other hand from (2.3) it follows that §
is strictly monotonous on (a,b). This contradiction implies
the existence of ?C(a,b) such that

wt) =o0. ¢ (2.6)

e

b
Put @, = (/ u™ 2(t)dt)1/2-Since a </’1 < %, <ty and
a

t, < "2 < ﬂz < b, we get by Lemma 1

r'4
2

ur2(t)dt € [2(-(2-3)/2]2 /’ u*2(t)dt and
a

m\N&

‘ b
u?(t)dt § [Z(b- -Lz)/r]Z J um3(r)dr. Therefore
' o
2 2

&~

47



b
9t uw?(t)de)/2 5 (/% )c, P - (2.7)
a

Similarly, by (2.4) and Lemma 1,

t
u3(t)de § [2(:2-a)/a' ]2 fz ur2(t)de ,

a
t
u‘z(t)dt H [2(1:4-1:2)/1' ]2 f‘ u?(t)dt ,
t
2

— Ny ;‘&" n\ﬁNn

b
u'z(t)dt s [Z(b-t4)‘/3']2f u*?(t)dt . Hence
t

(24

4 4
(JP uw?(t)de)/2 § (2/9)%c 0, Po - (2.8)
a
Finally, 'by‘ (2.6) and Lemma 1,
(f W2(t)dt)1/2 s (2/2‘)3.c2c1(b-a)go . C(2.9)

a
Thus we can find from (2.1), (1.10), (2.7), (2.8), (2.9),

fo ¢ Po[al(zm)"’czci(b-a) + ay(2/8)%cyc, + ag(2/8)c,] -

Consequently, by (1.8), PO = 0. According to (2.9) we obtain

u(t) =0 for a$t&b,

Lemma 3 ([5], Lemma 2.2, p.12). Let 950 k€ L1(a,b),
i=1,2,3, and for any hiﬁ L"(a,b), i=1,2,3, satisfying

95(t) & hy(t) & ky(t), 1i=1,2,3, (2.10)

for a.e. te[a,b], the problem (2.1), (0.2) have only the tri-
vial solution.



Then there exists such J¢(0,+00), that for any
h; €L (a,b) satisfying (2.10), it holds

3 i1 g,
E —i—-l-‘_-{ﬁ-llé rd fora® t &b (2.11)

i=1 Jt

where G is the Green’s function for the problem (2.1), (0.2).

Lemna 4 (C o n t i). Let h, €L (a,b), i=1,2,3,
ge€cCary, (D) and let the problem (2.1), (0.2) have only the
trivial solution. If there exists g*ng(a,b) such that

la(t,x,y,2)| € g"(t) onbD,

then the equation

U = 2.5: hi(t)u(i'l) + g(t,u,u’,u")

i=1
has a solution satisfying (0.2).

Proof. See for example (5], Theorem 2.4, p.25.

3. Existence proposition

Let there exist r €(0,+ @) and a function heLl(a,b) such
tnat on the set D there are satisfied the conditions (1.1) and

Je(t,x,y,2)] & h(t) . (3.1)

Then the problem (0.1), (0.2) has at least one solution u such
‘that

v
oy

min{lu(t)l : aftsb]Sr. : (3.2)
Proof. Let us choose m &N such that

my 2 (2/%)%c,cq (b-a) (3.3)
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and consider the equations
u" = (A/m)u (3.4)

and

u™ = (A/m)u + F(t,u,u’,u") , (3.5)

where m&N, m 2 my.
Using Lemma 2 for hl = A/m, h, hg = 0, we can conclude that
the problem (3.4), (0.2) has only the trivial solution. The-
refore, by Lemma 3, there exists } = r(m) € (0,+ @) such that
for the Green’s function G, of the problem (3.4), (0.2) the

inequality (2.11) is valid.

Let us denote by B the Banach space of all functions of
Cz(a,b) with the norm

3
izl = max{glz(i"l)(t), : aétébf . zeCz(a,b)
1=

and for the fixed number m define a continuous operator

H:B — .73 by
b

H(z(t)) =f G, (t,s)f(s,2(s),2°(s),2"(s))ds .
a

From (2.10) and (3.1) it follows that H maps B into its com-
pact subset. (Really, the functions of H(B) are uniformly
bounded with their first and second derivatives on [a,b] by
h ( >fbh( )ds. Si foaltrn) | a g (t,s)
the constant m s)ds. nce ————m— = ——— t,s

r : g3 mo "
for a.e. t,s€ [a,b], the functions of H(f) are also equi-con-
tinuous with their first and second derivatives on [a,b].)
Consequently, by Schauder fixed-point theorem, there exists
up € 3 such that H(u ) = u
problem (3.5), (0.2).

me i.e. Un is a solution of the

According to (0.2), in the same way as in the proof of
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Lemma 2, we get the points ”1'“5"3'A1'Fé satisfying (2.4),
(2.5). Now, suppose that lum(t)l 2 r on [a,b]° Then, in view

of (1.1), Aur sgn ug =AZ uo sgn uy + Af(t,up,us,ut) sgn ug >0
for a.e. te[a,b], which contradicts to the fact, that u; has
two zeros /Jl,ﬁae(a,b). Thus there exists t € (a,b) such that

lum(tm)[ & r . (3.6)

By (3"1)' (3'3): (3'5)'

na

fume)] € h(t) + aglugl for ace. te [a,b], (3.7)

where

a, € (0, 3(b=a)"%) . (3.8)

b
Put @ = max{lum(t)‘: a‘=t§b} and hg =f h(s)ds. Then, by
a
integration (3.7) from ﬂi to t, we have
Iu&(t)l s hy + a;(b-a)@ , (3.9)
integrating (3.9) from &, to t, we get
Ld 2
lur(t)l € hy(b-a) + a;(b-a)“ @ , | (3.10)
and integrating (3.10) from t, to t, we obtain
$r+h (b-2a)% + a,(b-a)> ' (3.11)
g &r+h 1 - ¥ :
From (3.8), (3.11) it follows
£ 2(r + h_(b-2)?)
p 52+ n(-0)?)

and hence, by (3.9), (3.10),

3
zz.;lu(i'“(t)l

where p” = h (1+b-a) + (r+h°(b-a)2)(2+(b-a)-g + (b-a)-l) .

nn

p* for adtéb , (3.12)
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Since (-3.12), the functions (um):;m are uniformly bounded and
o

equi-continuous with their first and second derivatives on
[a,b], we can suppose without loss of generality, by the

s N QO s ,00
Arzela-Ascoli lemma, that the sequences (um)m=mo' (um)m=mo

and (u..m)?“c;mo are uniformly converging on [a,b] and a
function
u = lim u on [a,b
meco " [ ) ]

is a solution of the problem (0.1), (0.2).

Finally, we prove that u satisfies (3.2). Let us suppose
the contrary and put v = min{[u(t)l: aét-‘-b} and § = v,-r > 0.
Since for any m€N, m 2 m  there exists t & (a,b) fulfilling
(3.6), it holds [u(ty)-u (t)] 2 Ju(e) | - [up(e)l>v-r = 4,

which contradicts to the uniform convergence of (um)(r)no—m on
o

[a,b]. Thus u satisfies (3.2). This completes the proof.

4, A priori estimates .

Lemma 5. Let w €Cary (D) satisfy the conditions of
Theorem 1 and r g (0,+ o).

Then there exists rxe(r,+co) such that for any function
ueACZ(a,b) from the conditions (0.2), (3.2) and

Ju* ()] & w(t,lul, Ju’l,lu"]) for a.e. te[a,b] (4.1)

it follows the estimate

i'u(i-l)(t)l < ™ for aStSb . (4.2)
i=1

Proof. Let ucACz(a,b) satisfy (0.2), (3.2) and (4.1).
According to (0.2), in the same way as in the proof of Lemma 2,
we get the points 0(1, <, 0(3, /fl, /52 satisfying (2.4), (2.5).
In view of (3.2) there exists T 6 (a,b) such that [u('i’)[ & r.

52 .




Let us put ((70 = max {lu“(t)(: aﬁtéb} and integrate the
inequality Iu"(t)l -] 90 by sequel from t to "i' i=1,2,3, We
get [u”(t)] ¢ o' C1 - Integrating the latter from t to T, we
have Ju(t)l & r + g)ocl(b—a).

Now, let txe[a,b] be such that lu"(t“)l = @, - Then, in-

o
tegrating (4.1) from t® to /31, we obtain

b
?o SJ‘ w(t,r+ gdocl(b-a), Pocl' ?o)dt . (4.3)
a
According to (1.3), there exists ;)0 such that
b
. 1
(1+4) limsup —Jw(t, ¢, (b-a), @c,,0)dt <1, Hence there
¢ v ¥ feq fci.@

exists ?x>0 such that for any @ > * it holds
(1+ 5)9c1(b—a) 2 r+@ci(b-a) and

b
1 j' w (t,(1+S)9c1(b-a),(1+J)fc1,(1+5)9 )ydt < 1,
f =
Therefore
b
Jw(t,r-n- 901(b—a), ’)cl,Q )dt < (0 . (4.4)
a

From (4.3) and (4.4) it follows that S"o s (D’( . Putting
s e ?x(1+c1+ci(b-a)) '
we get the estimate (4.2).
Lemma 6. Let w : [a,b].u-R+ —R, has the properties (1.9),

a; € R+, i=1,2,3, satisfy (1.8) and rgq (0,+m).

Then there exists rxs(‘r,+ ) such that for any function
v€Ac?(a,b) the conditions (0.2), (3.2) and
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3 3
Ju= (t)] gzailu(i_l)[ +w(t,Zlu(i—1)'). for (4.5)
1= i=1 a.e. te[a,b]
imply the estimate (4.2).

Proof. Let u€AC3(a,b) satisfy (0.2), (3.2) and (4.5)
According to (0.2), in the same way as in the proof of Lemma 2,
we get the points 0‘1, "y 6(3, /51, Kz satisfying (2.4), (2.5).
In view of (3.2) there exists T € (a,b) such that Ju(t)le r.
Let us put

b
(fuBmant? - g, . (4.6)
a
Then, analogously as in the proof of Lemma 2, we obtain
b
wl 1
( J u"?(tydt)t/2 ¢ (2/% )ey0, (f t)de)/2 & (2/2) le’o'
a

According to Lemmg 1, we get from the latter inequality
~.12
(f[u(t)—u(t)] dt)l/2 £ (2/(/4\')3c201(b—a)€0. Now, substituting
a
the estimate obtgjpned above into (4.5), we have

P ¢ g}o[as(z/ﬁ')c + a (2/5:\')20 5Cq * a1(2/i,“)302c1(b—a)] +
‘r + (\Y“’ (t, Z:[u(l yae)t/2 (4.7)

Let @, < max {lu(l~1)(t)| aftSb and Tié[a,b] be such that

l (i- 1) l - )
SO i=1,2,3. Then, by (4.6) and the Schwarz

1nequallty. we g

b
]f uw ¢ ydt] gf [um(efdt 2 0o Vo-a
Iol a

S4



P2

7é b
]f u(t)dt| ng [ur(t)fae £ (2/}7)02? Vo-a ,
4 A °

"

--rl;'\.!—"‘9

0 ¢

Therefore

%i; ?i y lPO' where 1=VE:;(1*(2/r)°2+(2/ﬁ)20201)+r.

Inserting (4.8) into (4.7), we have

nAa

[33(2/23c2+a2(2/?)20201+a1(2/?)3czclﬂb—a)] +

(4.9)
1

b
1 2 1/2
—?; r¥b-a a, + —?; (£ o (t, 1fo)dt) /2,

+

Since (1.8), (1.9), there exists ?*) 0 such that for any ? >9ﬂ
the inequality

1> [a3(2/77)c2+a2(2/5}')2c201+al(2/3’)3czc1(b-a)] +

b .
+ % rfo-a a, + % (J'wz(t, 1q)dt)1/2 . (4.10)
a

Therefore, by (4.9), (4.10), Qo H ?x. Thus the estimate (4.2)
is valid for r® = 1 ?*, where 1 is determined by (4.8).

Lemma 7. Let us suppose that a; €R_ and hie Ll(a,b), i=1,
2,3, satisfy (1.10) and (1.11) and w be the function from
Corollary.

Then there exists r €(r,+®) such that for any function
u GACZ(a,b) the conditions (0.2) and

55
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s

Iu"‘ - Z}hi(t)u(i'l) I

3
w(e, ) ult-py (4.11)
i=1 ;:1
for a.e. te&fa,b]

imply the estimate (4.2).

Proof. Let us put ho(t) = u™(t) - z : hi(t)u(i-l)(t)mnd
i=1
consider the equation

3
u™(t) =Z£ hy(6)ulE 1) (e) + h (t) on [a,b]. (4.12)
i=

Since hi' a4, i=1,2,3, satisfy the conditions of Lemma 2, the
problem (2.1), (0.2) has only the trivial solution. Consequent-
ly, by Lemma 3, there exists 9'€(0,+ @) such that for the
Green’s function G for the problem (2.1), (0.2) the estimate
(2.11) is valid. Therefore the solution

b
u(t) = jG(t,s)ho(s)ds

of the problem (4.12), (0.2) satisfies
b .

ilu(l-l)(t)l £ ?’I w(s, ilu(l—i)l)ds for a%t&b., Putting
i=1 i=1

: a

3 . :
?6 = max {Z“l lu(l'l)(t)l: aétéb} , we get from the last

1=

b
inequality @, s I’j w(s,P,)ds . From (1.6) it follows that
a

b
there exists r>0 such that for any 9>rx, T‘Iw(s,e)ds< §’ .
a

Therefore ?o S r™ which proves Lemma 7.
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5. Proofs of Theorems

Proof of Theorem 1, Let r* g (r,+ ) be the constant con-
structed by Lemma 5. Let us put

1 for 0Ss&r¥

X(r¥,s) = 4 2 ~ s/r™ for r*¢scar® (5.1)
0 for s & 2r™ .

g(tlx.‘YlZ) = ’X(T‘K:,X"’,Y'*‘lzl) f(t,X,y,Z) on D' (5'2)

and consider the equation

u" = g(t,u,u’,u") . (5.3)
Then |[g(t,x,y,z)| $ h(t) on D, where

h(t) = sup {If(t,x,y,z)l: Ix|+lyl+lz] & er}sLl(a,b) .
Since g satisfiesr (1.1), by the Existence proposition, the
problem (5.3), (0.2) has a solution u with the property (3.2).
Further, by (1.2), (5.2), we get lue(e)l & |g(t,u,u”,u")] £
S |f(t,u,u’un)| & wt,lul, lu’l,fu*l) for a.e. t€ [a,b] and
so we can conclude, by Lemma 5, that the estimate (4.2) is

valid. Thus, in view of (5.1) - (5.3), u is a solution of the
problem (0.1), (0.2). Theorem is proved.

Proof of Corollary. Let us put

w ot Ixlu 1yl 120) = hy(e)lx] + hy(e)lyl™ hy(e)lzl +
+ w(t, Ixt + Iyl + 121) .

Then |f(t,x,y,2)| & wy(t,Ixl,lyl,lz[) on D and
b
(e %L Wo(t: § oy (b-adi@ ey Q1o & 2+
b
+ lim % J‘w(t,g[1+c1+c1(b-a)] dt ¢ 1. Consequently,
¢+00 § a

f satisfies all conditions from Theorem 1.
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Proof of Theorem 2. Theorem 2 can be proved in the same
way as Theorem 1, only we use Lemma 6 instead od Lemma 5,

3

Proof of Theorem 3. Let r” be the constant found by Lemma
7, and X be the function defined by (5.1). Let us put

g(tfxnylz) = X(rx.|X|+lYl+lZ|)(f(t.X.Y.Z) =

- hy ()% = hy(t)y = hy(t)z) (5.4)

and consider the equation

U = Ei; hi(t)u(i'l) + g(t,u,u’,u") . (5.5)
il=

Since hi, as, i=1,2,3, satisfy the conditions of Lemma 2, the
problem (2.1), (0.2) has only the trivial solution. Further
]g(t,x,y,z)l H g”(t) on D, where g"(t) = sup{lf(t,x,y,z) -

- hy(t)x = hy(t)y - h3(t)zj:lx|+1y|+lz| £ 2r"§e |_1.(a,b)°
Therefore, by Lemma 4, the problem (5.5), (0.2) has a solution
u. According to (1.12), (5.4) and (5.5), it holds

[ue - i__: h, (t)ult=)]

g lg(t,u,u',u")[ - lf(t,u,u',u") -
i=1
3 ) 3 .
—zz: hi(t)u(l'l)l £ (u(t,}ijlu(l_l)l) for a.e.
i=1 i=1

tgl?,b] and so, by Lemma 7, u satisfies the estimate (4.2).
Consequently, in view of (5.4), (5.5), u is also.a solution of
the problem (0.1), (0.2), This completes the proof.

Summary

The paper deals with the question of existence of solutions
of the equation

u* = f(t,u,u’,u")

satisfying the conditions

u(a) = u(tl), u(tz) = u(ts), u(t4) = u(b),

where—oo<a<t1§t2<t §t4<b<+oo°

3
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Souhrn

'0 J1sTYCH VICEBODOVYCH OKRAJOVYCH PROBLEMECH

V préci je reSena otazka existence FeSeni rovnice
u" = f(t,u,u’,u"),
které splnuje podminky

u(a) = u(ty), u(ty) = u(ty), u(t,) =-u(b),

- & s
kde oo<a<t1-t2<t-t4<b<+oo=

3

Peswvue

O MHOI'OTOYEUHHX KPAEBHX 3AIAYAX

B pafoTe pemeeTcs 88xeYea 06 OTHCKOHMYM pDEmMEHMS ypPABHEHKS

n
u'=f (t, u, u’, u" )

YEOBXETBOPADIMEr0 YyCAOBUAM

ufa) = u(ty), u(ty) = u(t3), u(t4) = u(b),
rie

St, < b < +o00.

- 00 { a { ty St 3 4

s <t
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