Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Karel Beneš

Algebraical loops and transformation of variables

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 28 (1989), No. 1, 255--263

Persistent URL: http://dml.cz/dmlcz/120219

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1989
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS

FACULTAS RERUM NATURALIUM

Katedra kybernetiky a matematické informatiky přírodovědecké fakulty Univerzity Palackého v Olomouci

Vedoucí katedry: Doc.Ing. Karel Beneš, CSc.

ALGEBRAICAL LOOPS AND TRANSFORMATION OF VARIABLES

KAREL BENEŠ

(Received April 30th, 1988)

Algebraical loop is ment a closed loop, which contains inverters (adders) and potentionmeters only. E.g. the program diagram in the Fig. 1 for solving of the system of the linear

algebraical equations

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \tag{1}\\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{align*}
$$

programmed in the form

$$
\begin{aligned}
& x_{1}=\frac{b_{1}}{a_{11}}-\frac{a_{12}}{a_{11}} x_{2} \\
& x_{2}=\frac{b_{2}}{a_{22}}-\frac{a_{21}}{a_{22}} x_{1}
\end{aligned}
$$

contains the algebraical loop. These algebraical loops used to be very frequently unstable. The general gain S of disjoin loop is the decisive criterion for stability of loop, in the case of the Fig.1 the general gain is

$$
s=\frac{a_{21}}{a_{22}} \cdot \frac{a_{12}}{a_{11}}
$$

the gain of the loop in the Fig. 2 is $S=k_{1} k_{2} \alpha$. Two cases are

needed to distinguish for the first criticism of stability of an algebraical loop according to the number of inverters or adders in the loop. If even number of these units is included in the loop then the border of stability is $S_{\text {theor }}=1$ with maximum theoretical gain. Algebraical loops containing odd * number of inverters or adders would be stable in every case with using ideal computational units. The actually border of stability egg. for the computer MEDA 41 TA is following as to properties of real units.

The number of inverters in the loop

3
5
7
even
$S_{\text {real }}$
7
3
2
0,98

Algebraical loops are often occured during solving of differential equations. E.g. the system of the differential equations is given

$$
\begin{align*}
& a_{2} y_{1}^{\prime \prime}+a_{1} y_{1}^{\prime}+a_{0} y_{1}+b_{2} y_{2}^{\prime \prime}+b_{1} y_{2}^{\prime}+b_{0} y_{2}=0 \tag{2}\\
& c_{2} y_{1}^{\prime \prime}+c_{1} y_{1}^{\prime}+c_{0} y_{1}+d_{2} y_{2}^{\prime \prime}+d_{1} y_{2}^{\prime}+d_{0} y_{2}=0
\end{align*}
$$

with initial conditions $y_{1(0)}^{\prime}, y_{1(0)}, y_{2(0)}^{\prime}, y_{2(0)}$
The decesion which variable from which equation will be counted is not unambiguous. We will count e.g. the quantity y_{1} from the 1st equation of the system (2) and the quantity y_{2} from the 2nd one, i.e.

$$
\begin{align*}
& a_{2} y_{1}^{\prime \prime}=-a_{1} y_{1}^{\prime}-a_{0} y_{1}-b_{2} y_{2}^{\prime \prime}-b_{1} y_{2}^{\prime}-b_{0} y_{2}^{\prime} \tag{3}\\
& d_{2} y_{2}^{\prime \prime}=-d_{1} y_{2}^{\prime}-d_{0} y_{2}-c_{2} y_{1}^{\prime \prime}-c_{1} y_{1}^{\prime}-c_{0} y_{1} .
\end{align*}
$$

The program diagram for the solving of the system (3) is in the Fig.3. It contains the algebraical loop with even number of adders or inverters. Theoretical border of stability of this loop is given by maximum theoretical value of the gain of the loop, i.e.

$$
\begin{equation*}
s_{\text {theor }}=\frac{b_{2} c_{2}}{a_{2} d_{2}}=1 \tag{4}
\end{equation*}
$$

In the case that we will count the variable y_{2} from the 1 st equation of the system (2) and the variable y_{1} from the second equation, i.e.

$$
\begin{align*}
& b_{2} y_{2}^{\prime \prime}=-b_{1} y_{2}^{\prime}-b_{0} y_{2}-a_{2} y_{1}^{\prime \prime}-a_{1} y_{1}^{\prime}-a_{0} y_{1} \tag{5}\\
& c_{2} y_{1}^{\prime \prime}=-c_{1} y_{1}^{\prime}-c_{0} y_{1}-d_{2} y_{2}^{\prime \prime}-d_{1} y_{2}^{\prime}-d_{0} y_{2}
\end{align*}
$$

we will receive corresponding program diagram according to the Fig.4. Algebraical loop doesn't disappear, but it has the gain $S_{2}=\frac{a_{2} d_{2}}{b_{2} c_{2}}$. If in the first case the gain $S_{1}=\frac{b_{2} c_{2}}{a_{2} d_{2}}>1$, then $S_{2}=\frac{1}{S_{1}}<1$ and the algebraical loop is stable. If the system (3) is programmed with the scale ratios M_{1} respectively M_{2}, i.e. $Y_{1}^{(j)}=M_{1} Y^{(j)}, Y_{2}^{(j)}=M_{2} Y_{2}^{(j)}$ the system (3) has form

$$
\begin{align*}
& \frac{a_{2}}{M_{1}} Y_{1}^{\prime \prime}=-\frac{a_{1}}{M_{1}} Y_{1}^{\prime}-\frac{a_{0}}{M_{1}} Y_{1}-\frac{b_{2}}{M_{2}} Y_{2}^{\prime \prime}-\frac{b_{1}}{M_{2}} Y_{2}^{\prime}-\frac{b_{0}}{M_{2}} Y_{2} \tag{6}\\
& \frac{d_{2}}{M_{2}}=-\frac{d_{1}}{M_{2}} Y_{2}^{\prime}-\frac{d_{0}}{M_{2}} Y_{2}-\frac{c_{2}}{M_{1}} Y_{1}^{\prime \prime}-\frac{c_{1}}{M_{1}} Y_{1}^{\prime}-\frac{c_{0}}{M_{1}} Y_{1} .
\end{align*}
$$

Program diagram for system (6) is identical (except extent of the coefficients and initial conditions) as for the system (3) in the Fig.3. Extent of the gain of the algebraical loops is

$$
\begin{equation*}
s=-\frac{\frac{c_{2}}{M_{2}} \frac{c_{2}}{M_{1}}}{\frac{a_{2}}{M_{1}} \frac{d_{2}}{M_{2}}}=\frac{b_{2} c_{2}}{a_{2} d_{2}} \tag{7}
\end{equation*}
$$

The extent of the loop doesn't change by amplitude of the transformation.

If we program the system (3) with time scale change with coefficient M, i.e. $y_{1}^{(n)}=M^{n} Y_{1}^{(n)}, Y_{2}^{(n)}=M^{n} Y_{2}^{(n)}$, system (3) has form

$$
\begin{align*}
& a_{2} M^{2} Y_{1}^{\prime \prime}=-a_{1} M Y_{1}^{\prime}-a_{0} Y_{1}-b_{2} M^{2} Y_{2}^{\prime \prime}-b_{1} M Y_{2}^{\prime}-b_{0} Y_{2} \tag{8}\\
& d_{2} M^{2} Y_{2}^{\prime \prime}=-d_{1} M Y_{2}^{\prime}-d_{0} Y_{2}-c_{2} M^{2} Y_{1}^{\prime \prime}-c_{1} M Y_{1}^{\prime}-c_{0} Y_{1} .
\end{align*}
$$

Program diagram for the system (8) correspond to (except coefficients and initial conditions) the program diagram in the Fig.3. The gain of the algebraical loop is in this case

$$
\begin{equation*}
s=\frac{b_{2} M^{2} c_{2} M^{2}}{a_{2} M^{2} d_{2} M^{2}}=\frac{b_{2} c_{2}}{a_{2} d_{2}} \tag{9}
\end{equation*}
$$

The gain of the loop doesn't change by time scale change, too.
We can remove the algebraical loop by the following way: from the first equation of the system (2) we will compute quantity $y_{1}^{\prime \prime}$ and by substitution into the second equation we will get

$$
\begin{align*}
& a_{2} y_{1}^{\prime \prime}+a_{1} y_{1}^{\prime}+a_{0} y_{1}+b_{2} y_{2}^{\prime \prime}+b_{1} y_{2}^{\prime}+b_{0} y_{2}=0 \tag{10}\\
& c_{2} \frac{1}{a_{2}}\left(-a_{1} y_{1}^{\prime}-a_{0} y_{1}-b_{2} y_{2}^{\prime \prime}-b_{1} y_{2}^{\prime}-b_{0} y_{2}\right)+ \\
& +c_{1} y_{1}^{\prime}+c_{0} y_{1}+d_{2} y_{2}^{\prime \prime}+d_{1} y_{2}^{\prime}+d_{0} y_{2}=0
\end{align*}
$$

The program diagram for solution of the system (11) is in the Fig. 5 . The system is programmed in the form

$$
\begin{aligned}
a_{2} y_{1}^{\prime \prime}= & -a_{1} y_{1}^{\prime}-a_{0} y_{1}-b_{2} y_{2}^{\prime \prime}-b_{1} y_{2}^{\prime}-b_{0} y_{2} \\
\left(d_{2}-c_{2} \frac{b_{2}}{a_{2}}\right) y_{2}^{\prime \prime} & =-\left(d_{1}-c_{2} \frac{b_{1}}{a_{1}}\right) y_{2}^{\prime}-\left(d_{0}-c_{2} \frac{b_{0}}{a_{2}}\right) y_{2}- \\
& -\left(c_{1}-\frac{c_{2}}{a_{2}} a_{1}\right) y_{1}^{\prime}-\left(c_{0}-c_{2} \frac{a_{0}}{a_{2}}\right) y_{1},
\end{aligned}
$$

algebraical loop doesn't occur in the program diagram. We would reach to the similar result, if we computed for example the quantity $y_{1}^{\prime \prime}$ from the second equation of the system (2) and substituted into the 1 st equation of the system, we get

$$
\begin{array}{r}
a_{2} \frac{1}{c_{2}}\left(-c_{1} y_{1}^{\prime}-c_{0} y_{1}-d_{2} y_{2}^{\prime \prime}-d_{1} y_{2}^{\prime}-d_{0} y_{2}\right)+a_{1} y_{1}^{\prime}+ \\
+a_{0} y_{1}+b_{2} y_{2}^{\prime \prime}+b_{1} y_{2}^{\prime}+b_{0} y_{2}=0 \tag{12}\\
c_{2} y_{1}^{\prime \prime}+c_{1} y_{1}^{\prime}+c_{0} y_{1}+d_{2} y_{2}^{\prime \prime}+d_{1} y_{2}^{\prime}+4 d_{0} y_{2}=0
\end{array}
$$

after modification

$$
\begin{align*}
\left(a_{1}-\frac{a_{2} c_{1}}{c_{2}}\right) y_{1}^{\prime} & +\left(a_{0}-\frac{a_{2} c_{0}}{c_{2}}\right) y_{1}+\left(b_{2}-\frac{a_{2} d_{2}}{c_{2}}\right) y_{2}^{\prime \prime}+ \\
& +\left(b_{1}-\frac{a_{2} d_{1}}{c_{2}}\right) y_{2}^{\prime}+\left(b_{0}-\frac{a_{2} d_{0}}{c_{2}}\right) y_{2}=0 \tag{13}
\end{align*}
$$

$$
c_{2} y_{1}^{\prime \prime}+c_{1} y_{1}^{\prime}+c_{0} y_{1}+d_{2} y_{2}^{\prime \prime}+d_{1} y_{2}^{\prime}+d_{0} y_{2}=0 .
$$

The system (13) has except coefficients identical form as the system (11), its program diagram correspond to in an formal way the program diagram in the Fig.5, where algebraical loop doesn't occur.

Summary
In the work there is inquired into a possibility of removing of disadvantegenous amplification of loop with the transformation of variables.

Souhrn

ALGEBRAICKÉ SMYČKY A TRANSFORMACE PROMĚNNY゙CH
V práci je zkoumána možnost odstranění nevýhodného zesíleni smyčky transformací proměnných.
[1] $N o v$ á k, V.: Programováni pro analogové počítače I. CVUT Praha, 1970.

Pesmee

АЛГЕВРАИЧЕСКИЕ ЦИКЛН И ПРЕОВРАЗОВАНИЕ ПЕРЕМЕННЫХ

В работе исследованя вовмомность устраненмя невыгодного цикля преобрязований переменннх.

Doc.Ing. Karel Beneš, CSc.
přírodovědecká fakulta UP
Leninova 26
77146 Olomouc, ČSSR

AUPO, Fac.Rer.Nat. 94, Mathematica XXVIII (1989), 255-263.

