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This paper is devoted to a study of the global trans-
formation of two-dimensional regular and strongly regular
spaces of continuous functions from a geometrical point of
view. Here the so-called canonical space of continuous
functions is of great importance, since it ehables us to
characterize the spaces of continuous functions under con-
sideration.

1. The set of real numbers will be denoted by R. If j de-
notes an open interval (a,b), a,b &R, where a may be -oo and
b may be +oo, then the symbol C(O)(j) will stand for a set
of continous real functions of the real variable t in the
interval j, while the symbol C(n)(j), where n is a natural
number, will stand for a set of real functions of the real
variable t in the interval j, having continuous derivatives
up to and including the order n.



Definition 1.1. Let y1,y26 C(O)(j). We say, the functions
are dependent on the interval j if there exist such numbers
|<1,k26R, kf + l<§>0 - that the identity

k1 y(t) + k2 yo(t) = 0
is valid in the interval j.

2 2
If for every two numbers kl,kzél?, ky + k5 >0 and for every
interval Jgr 34 €3

kj_ y(t) + k2 YZ(t) # 0 on Jq

holds, we say that the functions Yi. are independent of

Y2
the interval j.

Definition 1.2. Let y,,vY, eC(O)(j) be independent functions
of the interval j, and kl,kzé R be arbitrary numbers. By a
set S of all functions in the form

ki vy * Ky v

we mean a two-dimensional space of continuous functions in
the interval j or also a space generated by the functions
Y11 Yo with a definition interval j.

Any ordered pair (21,22) of independent functions
Zl'%zés will be called the basis of the space S.

Definition 1.3. Let t, €j, z€S. The point ty will be called
the zero of the function z if z(to) = 0.

If t, is a zero. of all functions of the space S, then
it is called the singular point of the definition interval j
of the space S. In the contrary case the point to will be
named the regular point of the definition interval j of the
space S. ’

The space S is called regular if the definition inter-
val j possesses regular points, only.

The above definitions are used by K.S t a ch in [5].
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Definition 1.4. Let j,J be open intervals in R. Further let
S, and $2 be spaces of continuous functions generated by the
functions Y1+ Y2 and Yi.Y, with the definition intervals j
and J, respectively. Say, the space S, is globally transfor-
med onto the space S, if there exist

a) a bijectionh : j =+3, h iC(O)(j),
b) a function féc(o)(j), f(t) #0 for t€&j,
c) amatrix A = lla, I, i,k = 1,2, a;| €R, det A # 0
to the vectors y = (yl'y2)T' Y = (Y1,Y2)T, so that for every
t €j the equality
y(t) = Af(t) Y[h(t) (1.1)

holds, where (.,.)T denotes the transposed vector to the
vector (.,.). The mapping (1.1) will be called the global
transformation and will be written as ¢ = <Af,h>.

The above definition of global transformation corres-
ponds to that used by F.N e uman in [4] for spaces of
linear n-th order differential equation solutions.

The equivalence of definitions of the global transforma-
tion used by O0.Bor & v k a in [1], F.Neuman in
[4] and K.S t a ch in [6] is discussed in [2].

Definition 1.5. Let yl,y2¢~c(0)(j) be independent functions
of the interval j. We say that the quotient yz(t)/yl(t) is

by parts increasing resp. decreasing in the interval j=(a,b)
provided the following two conditions A and B are satisfied.

Condition A. The quotient yz(t)/yl(t) is an increasing
resp. decreasing continuous function in the intervals des-
cribed by some of the following situations a) - d):

a) in the interval j if y,(t) # O for t€j;

b) in eve:y interval (ti'ti+1)' where oty for
i=0,-1,-2,... are the neighbouring zeros of the

function ye(t) in j and the endpoints a,b of the in-
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terval j are the only cluster points of zeros of the
function v (t)s

c) in every interval (t,,t; ,), where t,,t, , for
i=1,2,3,... are the neighbouring zeros of the func-
tion yl(t) in j and in the interval (a,t,), if b is
the only cluster point of zeros of the function y,(t),
or
in every interval (t_j,t_j,4), where t_,,t_, , for
i=1,2,3,... are the neighbouring zeros of the func-
tion y,(t) in j and in the interval (t_,b) if a is the
only cluster point of zeros of the function Yo (t)s

d) in every interval (ti'ti+1)' where tirtig for
i=1,2,...,n-1 are the neighbouring zeros of the func-
tion y,(t) in j and in the intervals (a,t,), (t,,b) in
case the function y,(t) in the .interval j has precisely
n zeros t.; for n=1 the interval (tl'tZ) is an empty
set.

Condition B. At the points t, there exist the following

limits
Yo(t) Yo(t)
lim 2 = -00 , lim 2 = +00 ,
tt + y, () t=t, - vy, (1)
resp.
Yo (t) yo(t)
lim 2 = +00 , lim 2 = -00 .
tt,+ yl(t) t-t - yl(t)

Definition 1.6. The regular space S of continuous functions
generated by the functions y,,y, with the definition inter-
val j is called strongly regular exactly if the quotient

Yo(t)/y,(t) is by parts increasing or decreasing on the in-

terval j.
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Lemma 1.1. Let S be the spaee of continuous functions gene-
rated by the functions y,,vy, with the definition interval j.
Let u,v€S be arbitrary functions, whereby

u

€11 Y1 * G2 Yo (1.2)

V=61 Y1t Cop Yoo

where Cike'R are convenient numbers, i,k = 1,2.
Then it holds: The functions u,v are dependent (independent)
on j if and only if

- cC =0

€11 %22 " C1p %21 (c11 S22 = €15 C31 # 0)-

Proof. Let u=ocyy vy, + Cyy Yo

+

V= C1 Y1 F Cpp Voo

where the numbers ciké R, i,k = 1,2, Two possibilities can

occur:
a) the determinant ’cikl =0 or

b) the determinant Icikl # O.

Ad a) It holds

-c = 0. (1.3)

€11 22 12 21
Now there can two cases arise: Either all numbers Cie

i,k = 1,2 are equal to zero or at least one of the numbers
Cik is different from zero. We will show that in both cases
the functions u,v are dependent on the interval j.

1) Let cyy = €4, = Cyy = Cyy = 0. Then u = 0, v = O.

Thus u,v are dependent on j.

2) Let f.i. c¢y4 # 0. It then follows from (1.2) on
taking account of (1.3) that
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0
[EN
[EN

<

I

= Cy1(C1Yq * Cpp¥p) = €14Cp1Yy * C11C0Yp =

€11%21Y1 * C12%1Y2 = C21(C13Yq * C1pYp) = Oyl

whence it follows that the functions u,v are dependent
since the identity

on j,

Coq U = Cqq V =0

on condition cgi + (—cll)2 >0 is satisfied.

Likewise we may proceed for ¢4, # O or Coq # 0 or
Coo # 0.

Ad b) Let c; # O. We will show that in this case the

functions u,v are independent ofﬁthe interval j We argue

by contradiction. If there were for every two numbers ky,k,,
2 2
ki + k5 >0,

klu(t) + kzv(t) =0
in the interval j,, j; Cj, then it would also be

ky(eqayy + c1pYp) *+ ky(cpgyy *+ C55Y5) = 0
or

(kgcqq * KpCpq)yg *+ (Kyogp *+ Kyep5)y, 50

2 2 .
whereby (kyjcyq + ky059)7 + (kgcy, + kyc,5)" >0, since there
cannot simultaneously be

k

111 * KpCpq =0

(1.4)
0 B

kiCip * kKyCp

because of the fact that Icikl # 0 and the system of equa-
tions (1.4) would possess a trivial solution k; = k, = 0,
only. This implies that the functions y,,y, would be de-
pendent on j, contrary to the assumption. Hence

116



kqu + kyv £0

in every interval j,, j; CJ and the functions u,v are inde-
pendent of j.

Lemma 1.2. Let 81 and 82 be spaces of continuous functions
generated by the functions yq,y, and Y,,Y, with the defini-

tion intervals j and J, respectively.

Let S, be globally transformed onto S,. If S, is a
regular space, then S, is also regular. If S, is a strongly
regular space, then S, is alsc strongly regular.

P roo f. We argue by contradiction. Let S, be a regular
space. If S, were not a regular space, there would exist a

singular point toé‘j and it would hold
kg ¥a(E5) + ky vp(ty) = 0

for every kl' kzé R.

Consequently, it would also hold
f(to)[ki(allYl(ho) + alez(ho)) + k2(a21Y1(h0) +

+ ayY,(h))] = 0 (1.5)

where ho = h(to). Since in consequence of Lemma 1.1 the

functions Yl'YZ’ where

¥
A

Y1 = allYi + 312Y2 y

¥

Y Y

2 82171 * 82272 ¢
are independent, then by condition (1.5) the point ho would

be a singular point of the space S because f(to) # O,

20
which contradicts our assumption.

Let S, be a strongly regular space. From equation ' (1.1)
we have
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ypt) F(t)(apyYq [N(0)] + ap ¥, [n(1)]) i ¥, [ht)
y () F(t)(ag Y, [()]+ a,v,[h(0)]) ¥ [hee)]

where ?1 = ay,Yy + 8;,Y5, 72 = a5 Y, + ay,Y, are independent
iung}ions of 82. Since 32 is strongly regular, the quotient
Yo/Y, is by parts increasing or decreasing. It follows from
the conditions for the bijection h = h(t) that the function
h either increases or decreases in j, consequently the com-
posite function vé(h)/?i(h) is by parts increasing or de-
creasing in j. Hence, the quotient y2/y1 is by parts in-
creasing or decreasing in j. So the space S, is strongly
regular.

2. We will apply the geometrical methods presented by
F.Neuman, f.i. in [3] and E4] to construct now a
canonical form of a strongly regular space of continuous

functions.

Lemma 2.1. Let S be a regular space of continuous functions
generated by the functions Yy = Yq(€), Yo = y2(t) with the
definition interval j. Let next

§1
§2
where t € j, is a parametrically defined curve X in a rectan-

gular coordinate system O§1'§2. Then the curve X is not going
through the origin of the coordinates.

Yi(t) ’
(2.1)
Yo(t) .

P r oo f. By the assumption the functions Y1:Yp are under-
stood to be independent in the interval j and every function
y€S is of the form y = kyy,(t) + kyy,(t), where kl,k2€l?
are convenient numbers. If the curve X were going through
the origin of the coordinates, then there would exist a
number t,€ J such that y,(t)) = y,(t,) = O. However, in such
a case there would hold y(to) kiyl(to) + k2y2(to) = 0 for
every pair kl'kzé R. The point t_ would thus be a singular

]
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point of the space S, which contradicts our assumption on
the regularity of the space S.

Lemma 2.2. Let S be a regular space of continuous functions
generated by the functions y,,y, with the definition inter-
val j. Let for y;€S be Yz = Kyyy + kyy,, where kl,kzé R
are convenient numbers. The point ty is a zero of the func-
tion yy exactly if the point P, = [yl(ti), yz(ti)] is the
intersection-of the curve X with the following straight line

k1f1+k2§'2=0

Proof. If the point t; is a zero of the function y3(t),
then klyl(ti) + I<2y2(ti) =0

Thus, the point Py with the coordinates [yl(ti)'y2(ti)] is
the intersection of the straight line klfl + k2§2 = 0 going
through the origin of the coordinates with the curve X
defined by the equations (2.1).

If the point P, = [yl(ti)'yz(ti)] is the intersection
of the straight line kifl + k2§2 = 0 going through the origin
of the coordinates with the curve X defined by the equations
(2.1), then k1y1(ti) + k2y2(ti) = 0 or ys(ti) = 0. Hence,
the point t; is a zero of the function yz(t).

Expressing the curve X defined by the equations of
(2.1) in polar coordinates P, sﬂ gives

p= Vo + o) (2.2)
t9@ = yp(t)/y (t) ‘ (2.3)
for t€j.

Theorem 2.1. Let S be a reguiar space of continuous functions
generated by the functions y,,y, with the definition interval

Jj = (a'b)'
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The function @ = ? (t) defined by (2.2) is continuous
and positive for t € j.

The function ¢ =@ (t) defined by (2.3) is an increas-
ing (decreasing) continuous function in j exactly if S is a

strongly regular space.

P r oo f. Because of the fact that yl.yzéic(o)(j) we have
pe C(O)(j). The positivity of the function F = (t) in j
follows from the fact that S is a regular space. Hence,
there cannot exist any t € j such that y;(t ) = vo(ty) = 0
would hold.

Suppose now that @ = ? (t) is an increasing (decreas-
ing) continuous function in j. Let us denote by J a set of
functional values of the function ? = @ (t) for t €j. Now
there may occur the following cases:

a) J does not contain any of the numbers - g'+ il ,

i being an integer,

b) 3 contains all numbers - g + i, i being an integer,

c) there exists such an integer k that J contains all
numbers - % + k¥ + i , i=1,2,..., or it contains all
numbers - % + K¥ - i¥ for i=1,2,...,

d) there exists such an integer k that J contains all
numbers - g v KT i¥ , i=1,...,n, where n is a natural
number.

In then follows from the equality tg ¢/(t) = Yo(t)/yy(t)
for t€j that the quotient y,(t)/y,(t) is in case of a) an
increasing (decreasing) continuous function in j and there-
fore yl(t) # 0 in j.

Denoting in case b) ty o= q’_l(— g’+ i% ), where i is an
integer, (?'1 is the inverse function to ?7. then the quotient
yz(t)/yl(t) is an increasing (decreasing) function in every
interve i=0,%1,*
interval (ti,ti+1), i=0,-1,-2,...

Denoting in case c¢) t, = ¢ (- & + k¥ + i%),



i=1,2,..., then the quotient y2(t)/y1(t) is an increasing
(decreasing) continuous function in every interval (ti'ti+1)'
i=1,2,... and in the interval (a,tl), the point b is a
cluster Hg}nt of the points ty, or if we denote ty =

= (?—1(— % + k¥ - i% ), i=1,2,..., then the quotient
y2(t)/y1(t) is an increasing (decreasing) continuous function
, t

in every interval (t_ -i+1)' i=1,2,..., and in the inter-

val (to,b), the pointla is a cluster point of the points t,.
Denoting in case d) t, = ?‘1(— g + kT« i¥) for
i=1,...,n, then the quotient y2(t)/y1(t) is an increasing
(decreasing) function in every interval (ti,ti+1), i=1,2,...
...,n=1 and in the intervals (a,tl). (tn,b), ng1,
Because of the fact that Yy:Yp are independent functions

having thus no zeros in common, it follows from the equality
tgcf(t) = y2(t)/y1(t) for t& j that

yo(t) yo(t)
lin —2—= = (-§)o , lim 22— = §.00 (2.4)
tﬁti"' yl(t) t"ti— Y1(t)
where § =1, or 5= -1 according as ¢ is increasing or

decreasing in j.
On the contrary. Ad a) Let the quotient yo(t)/y (t)
is an increasing (decreasing) continuous function in j.
Then the function
q(t) = arctg Zgiil
y ()

is in j an increasing (decreasing) continuous function.

Ad b) Let the quotient y2(t)/y1(t) be a function by
parts increasing (decreasing) in j and let (2.4) hold. Then
the function

YZ(t) .
arctg y1(t)-+$:Lﬂ for te(t ,t; 4)
50ty =
pee) ., i=0,%1,%2, ...,
1(\' N
S (-5 +a¥) for t = t,
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is an increasing (decreasing) continuous function in j,
where &=1, or &= -1 according as y,/vy, by parts in-
creases or decreases in j.

Ad c) Let the quotient Y5(t)/y,(t) be a function by
parts increasing (decreasing) in j and let (2.4) hold. Then
the function

Yol s
arctg L(6) +0i% for t €(t;,t,,4)
1 , i=1,2,...,
= - —T i =
P(r) O(- 30+ 1) for t = t;
o Y2l for te (ot
arctg or t a,t
'l
or va(t)
Yo(t) ~
arctg 1(t) + » for t e(t_i,t_i+1)
, i=1,2,...,
¢(t) = S (- %JT+ idr) for t = t;
Yo(t)
arctg 2 for te(to,b)
Yo (t)

is an increasing (decreasing) continuous function in j,

where 8§ =1, or §= -1 according as y,/y, by parts increases
or decreases in j.~

‘Ad d) Let the quotient yo(t)/y, (1) be a function by
parts increasing (decreasing) in j and let (2.4) hold. Then
the function

yo(t)
arctg 2 + 91T for té(ti,t.

)'
t i+l
v, (1) , i=1,2,...,n-1,
(- %Jh iF) for t = t;, i=1,2,...,n,
(f(t) =
g 25 te(a,ty)
arctg —=——— or '
9 Yl(t) 1
yo(t)
\ arctg 2! + 8 n¥ for t€ (t,,b)
Y, (t)
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is an increasing (decreasing) continuous function in j,
where & = 1, or §= -1 according as the y,/y; in parts
increases (decreases) in j.

Theorem 2.2. Let S be a strongly regular space of continuous
functions generated by the functions Yq1Yp With the defini-
tion interval j. Further let J(x be the projection of the
curve K defined by equations (2.1) on a unit circle from the
origin O defined as follows: For every t&j there is as-
signed to the point PtefK. with the coordinates [yl(t),yz(ti\
a point P’;é'K,x with the coordinates [ul(t),uz(t)] lying on
the half-line 5’51:. Then the curve X* is expressed by the
equations

= u(t),
f1 1 (2.5)
52 = uz(t).
Hereby it holds for the functions Uy .Uy
wB(t) + u3(t) =1 (2.6)
and
f(E) ug(t) = yy(t) (2.7)
£(t) uy(t) = y(t) ,

where f is given by the formula

f(t) = yy§<t) +ya(t). ’ ; (2.8)

P roof. From the definition of the curve :K,x then follows
its expression by equations (2.5). Relation (2.6) holds,
because for every t €j there are u,(t) and u,(t) the coordi-
nates of the point P’; which lizs on the unit circle.

Yo(t)  uy(t)
vo(t) g (1)
(2.7), whereby f(t)>o0.

Since , we obtain from this equations
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Squaring equations (2.7) and adding them together, we
obtain

2 2 2 2 2
o fule) « Bo] = vin + van
from which and with respect to (2.6) we get (2.8).

The image K’( of the curve K is thus given by equations
§1
§2

for t€ j, expressing with respect to (2.6) the arc of the

ug (t)

uy(t)

unit circle.

The arc X® of the unit circle with the center at the
origin O may be expressed by the following equations

Y, cos(s-s_) , Vé sin(s-s ) ,

or '(2.9)

Y1 = cos(s-so) , Y,

—sin(s—so) ,

where s € J, according as the curve revolves the origin in a
positive or negative sense, whereby the point {1,0] on the
unit circle corresponds to the value of the parameter s = So
Theorem 2.3. Let S be a strongly regular space of continuous
functions generated by the functions Y11Yo with the definit-
ion interval j. Let the quotient yz(t)/yl(t) be increasing
or decreasing in the interval j. Then there exists an in-
creasing or decreasing function 7’: qp(t), t €j satisfying
the equality

for every t€j

(2.10)

characterized by the fact that if ¢ increases there holds

ul[ﬁ (s)] = cos s, uz[ﬁ (sﬂ = sin s , - (2.11)
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whereby T (s) = ?_1(5), 90-1 denotes the inverse function

to lf , s€J, 3 = (p(j) and if @ decreases there holds
ul[ﬁ' (s)] = cos s, uz['ﬁ' (5)] = -sin s, (2.12)
whereby h(s) = @—1(—5), -s €3.

The functions u; are determined by the conditions
L 2 2 -
y;(t) = f(t)u;(t), t€j, i=1,2, uy(t) + us(t) =1, f(t)>o0.

Proof. Let us first remark that there exists the function

k= ({7—1(5) and it is a bijection for which

F: a3, hnecl®(g

holds, which follows on one hand from the monotonicity and
on the other hand from the continuity of the function @

yo(t)  f{1) up(r)  uy()

va(t) © Tty up(t)  u(n)

for t &€ j, we obtain from this
sin@(t)
cos ¢(t)

Because of tg ¢(t) =

p(t) uy(t),
p(t) ug(t) .

On squaring and adding together we obtain pz(t) = 1.
Consequently there is either

ug (t) = cos?(t), uy(t) sin @ (t) (2.13)

or

ug (1)

it

—cos{ﬂ(t), uz(t) ~sin€p(t). (2.14)

However, besides the function (ﬂ (t) thére are also the
functions ?(t) + k% , k being an integer, satisfying

(2.10), it suffices to take the function g’l(t) = (P(t) + W
to get (2.13).

If is an increasing or decreasing function, then
g
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equations (2.13) define the positively or negatively oriented
arc of the unit circle.

Setting in (2.13) in case“of the increasing function ®
the expression h = ¢-1(s), s €J, instead of t, we obtain

ul[ﬁ(s)] = cos s, uz[ﬁ(s)] = sin s ,

which is the formula of (2.11).

Setting in (2.13) in case of the decreasing function ¢
the expression h = ¢—1(-s), -s €3, instead of t, we obtain

ul[F(sﬂ = cos (-s) = cos s, uzﬁ?(sﬂ = sin (-s) = -sin s,
which is the formula of (2.12).

Theorem 2.4. Let S be a strongly regular space of continuous
functions generated by the functions Y1 Y2 with the defini-
tion interval j. Let the functions @, R, u;, i=1,2 have the
meaning stated in the foregoing theorem.

811 %12 v o
Let A = ( ). Let the functions Y,, Y, be defined as
a a 1 2
21 “22
follows N
2 uy [R(s)]
1 1
s ) =A ( . ~ (2.15)
%, u, [A(s)]

cos so sin s0 cos So sin s0
If A={_sins coss or A =1lsins_ -coss » (2.16)
) o o o

then the functions ?i, Vé are given by the formulas

¥, = cos (s-s.), Y, = sin (s-s.)

or N (2.17)
?i = cos (s-s,), Vé = -sin (s-s_)

for s €3.
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Proof. From (2.15) on taking account of (2.11) or (2.12)
and of (2.16) we get

71 =} asq ul[ﬁ(s)] +oag, uz[ﬁ(s)]

+ sin s, sin s = cos(s—so),

Yy = 8y Uy \—F(s)] + ay, uy[f(s)]

+ cos s_ sin s = sin (s—so),

cos So cos s +

<
]
[

-sin So cOos s +

o
or
Y, = a5, ul[F(s)] +ay, uz[ﬁ(s)] = cos s COS s +
+ sin s sin s = cos (s-so)..
Y, = ay uy [F(s)] + a,, uz[ﬁ(s)] = sin s cos s -
- cos s, sin s = - sin. (s—sov)

for s €3, which are the formulas of (2.17).

Theorem 2.5. Let S be a strongly regular space of continuous
functions generated by the functions y,,y, with the defini-
tion interval j. Let ? be an increasing or decreasing con-

tinuous function satisfying the functional equation

yo(t)
Y4 (t)

tgsﬂ(t) = for te€j.

Let J = ?(j). Then for

a) the bijection @: j »3, ¢ectO)(y),

b) the function f = yf + yg . féc(o)(j), f(t) #0
for t€j,

cos s, sin So cos s sin S,
c) the matrix A = -sin s cos s or A = sin —cos
o o %o %o
s,€3, there exists the global transformation T = <Af,(f>
of the space s* generated by the functions cos s, sin s
with the definition interval J onto the space S given by the
relation
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y(t) = af(t) v[q(n], tes,

where
) T T
Y = (cos s, sin s) , Y = (vq:Yp) -

P roof. Let us put z(s) = (ql(s), ?é(s)) and define i(sj
by the equation

¥(s) = AY (s).
cos s, sin s
We easily observe that for A = {__,, s, cos s we have
~ ~
Yy = cos (s-s ), Y, = sin (s-s,) and for
(COS Sq sin Sy ) ~ ~ .
A =1gin s, -cOS 5, we have Y, = cos (s—so) Y, = —31n(s—so)-

We are looking for s = h(t) such that i[h(t)] = u(t),
where u = (ul,uz), whereby the functions us, i=1,2, have the
meaning stated in Theorem 2.3.

Then
u(t) = Y[h(e)] =ax o)

and since Yi = f us, i=1,2, we have for y = (yl,yz) that
wt) = £ ¥ [hey] = ) ax [ho].

Since for the function (f?

yo(t) uy(t) sinf[h(t)-s ]
tgq’ = yl(t) - ul(t) = Cos[h(t)-so] = tg[h(t) - so]

holds, we have from this
?: h(t) - s, + kW, k being an integer.

~
In case of Sy = O we have A = E and ¥ = Y and che trans-
formation equation becomes the form
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y(t) = f(t) i[h(t):l, where @= h(t) + k¥ .

Definition 2.1. By a space of continuous functions s* ‘ge-

nerated by the functions cos s, sin s with the definition

interval J we mean the canonical form of a strongly regular
space S of continuous functions generated by the functions

Y9:Yp, Wwith the definition interval j, more briefly the ca-
nonical space of continuous functions.

It follows from Definition 2.1 and from Lemma 1.2 that
the canonical space of continuous functions s* is strongly
regular.

Let us remark that the elements of the space s® are the
functions k1 cos s + k2 sin s, sé€3J, k1,k2€ R, where
J = @(j), @ is a continuous function satisfying the func-

tional equation

Yo(t)
e = ey €l

First phase. Conformably to the definition of the first
phase of an ordered pair of solutions of a linear second-
order differential equation of the Jacobian form, introduced
by 0.Bor &vka in [1], we will express the followin-~

Definition 2.2. Let (ys,y,) be a basis of the strongly
regular space S with the definition interval j. Every func-
tion ™% GC(O)(j),o(: j = J satisfying in j the functional

equation

Y, (E)
7o) (2.18)

tgel (t) =

will be called the first phase, more briefly the phase of the

crdered pair of functipns yl,yze S.
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Theorem 2.6. If K is the phase of the ordered pair
(y,,¥5) €8, then any other phase ,, k being an integer,

is given by the formula

A (t) = K(t) + kT,

where

Thus (2.18) defines the countable system of phase X s

k being an integer.
P r oo f. This follows immediately from (2.18).

Theorem 2.7. Let (9&,?&) be the basis of the strongiy N
regular space S with the definition interval j and (Y1,Y2)
be the basis of the space ™ with the definition interval J.
Next let y = (V1Y) ¥ = (?1,$é). Let the space S™ be
globally transformed onto the space S as follows

Yty = af () Y] (2.19)

by means of the function f, of the parametrization h and of
the matrix A. Let X be the matrix given by the equation

-

~
¥ - 2y,
. T T
where Y = (cos s, sin s) . Let y = (yl,yz) , where y =
=2 1At Y . whereby % 71, A™" denote inverse matrices to

the matrix 2 or A. Let o = X (t) be a first phase of the
basis (yl,yz) €S.
Then

C(k(t) = h(t) + kW , k being an integer,

0(0 = X (t).

P r oo f. From equation (2.19) we obtain z(t) =
= AXf(t) l[h(t-)] , whence
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y o= Aty = f(r) x[h(o)]

f(t) cos h(t) ,

£(t) Yy [n(t)]
f(t) Y, [h(t)]

Y1

f(t) sin h(t)

Y2
From this we get

Yo (t)
¥, ()

tg h(t) = (2.20)

From the definition equation (2.18) we obtain the expression

for the phase oK of the basis (y2,y1)

y,(0)
tg X (t) = 7;(_?)- . (2.21)

Comparing (2.20) and (2.21) we observe that the parametriza-
tion h(t) represents the phase & (t) of the ordered pair

(Yoryq)- Thus

X (t) = h(t) + k%, k being an integer, x, = (t) = h(t).

‘The following theorem is a certain modification of the
Stach theorem [6] and presents a necessary and sufficient
condition of the global transformation of the space S, onto
the space S,

Theorem 2.8. Let Si’ i=1,2, be strongly regular spaces of
the continuous functions with definition intervals i Let
s® be a canonical space of contlnuous functions w1th the
definition 1nterva1 J. Let Y = (Y Y ) be a basis of S and
(ul,uz)ésl, (U:L'U JES
g

> be the space bases. Let the space

be globally transformed onto the space S, as follows

131



u(t) = Alf(t)z[h(t)], where h is a bijection h: j; -3,
hect (3, ¥ = (5.0)".
Suppose the space s® is globally transformed onto the space
S, by the equation

8ty = AF(TMT[H(T)] . where H-is a bijection, H: i, >3,

Hecl® (5, T= (0,07,

The necessary and sufficient condition for the existence
of a global transformation of the space S, onto the space Sy
transforming the basis (Gl,ﬁé) into the basis (Ui'uz) by

means of

a) the bijection k: j; = j, , ke'C(O)(jl).

b) the function gé€ C(O)(jl), g(t) # 0 for t&j, ,

c) the matrix B = A1A£1
by the formula
dv) = sa(o)ifk(e)] . teyy (2.22)

is the existence of

1) the bijection T = X(t), X: J; = o Xé-C(O)(jl):
2) the integer ¢ , for which h(t) = H[X(tﬂ + 47
for t€j,-

Proof. Let the matrix £ be given by the equation
E =X Y, where Y = (cos s, sin s)T.

Assume the space S, to be globally transformed onto the
space S;. Since F(t) = A F(t)¥[h(t)], T(T) = AéF(T)?Y_[H(T)]
we obtain from this on introducing the following relations

u=x A7ME, u=sxtaztil, (2.23)
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hat
Ay = AF(E)X vlheo)] . Ay = aF(maxy )

i.e.
u=fv[po]. U= v .
From this we have

up(*) ' oo H - Uy (T)
uy (t) Uy (T)

tg h =

It thus follows from (2.22) and (2.23) that

’

-1
Ak = AATTG(e) Ay F(Tx v k()]

u=g(t) F(T) x[k(t)] = g(e)y fk(e)]

So, we have

If we set X(t) = k(t), k(t) = H—l{h)r then X: j; = 3j, .
Xe(ﬁo)(jl) and we see that for t€ g, there exists an
integer € such that

h(t) = H[x(t)] + {5

Suppose conversely the existence of the function
X = X(t), X: ig *d. XE€ C(O)(jl) and of the integer ¢ .
for which h(t) = H[X(t)] + 05
Then

tg h(t) = tg H[X(t)],

uy(t) U, [x(t)
uy (t) = Uy [x(r)] (= tg H[.X(t)])

(tg h(t) =)
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Setting X(t) = k(t) vyields
2= 9(t) U (k) ,
where géC(O)(jl), 9(t) # 0 for t€j,, k: j, > Js, kéc(o)(j1)'

Since (2~23) holds, we obtain

“'1 -~ - — ~
A At ¥ = gryx ™t Azt Tk
l1.e.
~ o -1~
U= g(r) Ap A T(k) .
Hence
U= 8g(t) U (k) ,

where B = A, Al so that (2.22) holds.

3. As special cases of strongly regular spaces of conti-
nuous functions there may be named the spaces of solutions

of linear second-order differential equations of the general
form

(ab) y" + a(t)y” + b(t)y =0,
where a,b ¢ C(o)(j) and further of the Sturm form
(pa)  (p(t)y")” + q(t)y =0,

where p,q€c(®(3), py"ecl*)(3), p(t) # 0 iny

The space of solutions of the differential equation
(ab) will be denoted by Sab and the space of solutions of

the differential equation (pq) by Spq'

It can be easily seen that the spaces of-solutions Sab*
Spq are generated by the functions of the basis of the dif-
ferential equation (ab), or (pqg). The elements of the basis,
f.i. the solutions y,,y, are linearly independent, so that
. . 2 2 .
kyya(t) + kyy,(t) # 0 in j, where ki + k3 >0. We will now
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show that Yq1Yp are also independent functions of the inter-
val j, in other words that

kiyl(t) + k2y2(t) #o in 3, chj .

Indeed, there holds for k, # 0 or k; # 0

Y1 \/2
Y1 Y2

S
k2

vy kpyitkoys

L L 2 kKivitkoya Yo
vi Kgyprikoys

kevitkaya Yo

= L
k1

If the interval jlc j and the numbers kl'k2' ki + k; >0
existed such that klyi(t) + k2y2(t) £ 0 in j,, then the
Wronskian W would be equal to zero in iq and the functions

Yq:Yp would be linearly dependent, contrary to our assumption.

The spaces Sab and Spq are regular spaces of continuous
functions with the definition interval j.

Indeed, if y, = y,(t), Yo = yp(t) is the basis of Sab
or Spq' there cannot simultaneously be yl(to) = yy(ty) =0
for any t, €, for otherwise the functions Y11Y5 would be
linearly dependent.

The spaces Sab and S q are strongly regular spaces of
continuous functions with the definition interval j.

Indeed, if y, = y,(t), Yo = Yo(t) is the basis of Sab
or Spq' there cannot simultaneously be yl(to) = y2(t0) = 0
for any t € j, for otherwise the functions y,,y, would be
linearly dependent.

The spaces Sab and S are strongly regular spaces of

Pq
continuous functions, since the quotients of the independent

solutions-yz(t)/yl(t) are by parts monctonic functions in j.

In fact

( yz(t))' ) y1(t)yo(t) = yi(t)y,(t)

>
2
yq () ya(t)
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because the Wronskian W(y,,y,) = ylyé - yj'_y2 is different
from zero for independent functions Yy Yo+

Let us remark that the elements of the space S,p are
of the class C(Z)(j) and those of the space S q are of the
class C(l)(j) with the property that py € 0(1 (3)-

We will now show how our results on spaces of functions
obtained in this paper may be applied to solutions of spaces
Sab and Spq especially as regards the concepts of the global
transformation and the canonical space. In point of the
global transformation of spaces of linear differential equa-
tions (ab), (pq) solutions, we will introduce - conformably
with the definition of the global transformation of linear
n-th order equations in [4] - some simple conditions on the
coefficients of differential equations, such that the multi-
plicator f and the parametrization h may be the functions of
the class C(Z) and this at the transformation of the equation
(ab) or (pq) into the differential equation y" = -y, which
will be considered to be canonical.

With the above approach to the definition of global
transformation we may show that in the differential equation
(pq) it suffices besides p,qé c(©) o assume f.i. p€ c(),

In case we require in the definition of global transformation
f,hG,C(l), it suffices to assume p,q€ c(o).

The space of solutions of the linear differential equation

(ab)

We will now express the main results of this paper
applied to the space of solutions of the linear differential

equation (ab).

A modification of Theorem 2.1.:

Theorem 3.1. Let Sab be a space of solutions of the linear

differential equation (ab) with the definition interval j.
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Let (y;.y,), where y; = y,(t), vy, = y,(t), be a basis of
the space S ab and X be a curve defined by the equations
fl = Yl(t). §2 = y,(t), te&]. For the polar coordinates

P (t) (f= ?(t) of the curve K we have: (Je C(z)(J)
?EC( (3)s @ (t) # 0 in j.

P roof. Since vy, Y, € C( )(j), it follows from (2.2)

g = \/yl(t) + yz(t), t € j, the existence of the continuous

cderivative of the second order of the functlongo ,
eec®)y).

From formula (2.3) tgg = yz(t)/yl(t) we get sin¢g =
= ky,(t), cos@ = ky,(t), k =1/ yf + yg . By differentia-
ting thls formula we find that ?/coszy = -(yj:y2 -

- y1y2)/y1 whence by rearrangement

L4 L4 L4 2 2
@ = =(vyYy = YaYe) / (y1 * v3) .-

t€ j. We see that @7(t) # O for t€j and that there exists
a continuous ?J in j, i.e. ?60(2)(3‘)

Since the space of solutions of the differential
equation (ab) is strongly regular, we can express (conform-
ably with Theorem 2.3 and Theorem 2.4) the following theorems
for the space Sab'

Theorem 3.2. Let S, be the space of solutions of the dif-
ferential equation (ab) with the definition j. Let (y;,y,)
be the basis of Sopr Let s = @ (1) be the polar coordinate
of the curve X: §1 = vo(t), 62 = y,(t), t€j, defined bY
formula (2.3): tg F = v (£)/y(1), t& j

Then we have for the increasing or decreasing function
P= ¢t

u r'—:"(s)] = cos s, u [ _1(3)] = sin s, s€J, I = P (j)

L4 = Ul , . P,

or
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ui[(f-l(s)] = cos s, uz[(F'l(s)] = -sin s, -s€3J,
I = @3

-1 .
where ¢ denotes an inverse function to @ and the func-

tions u; are determined by the conditions yi(t) = f(t)u(t),
A 2 2 2 2
teyj, i=1,2, uj(t) + uy(t) =1, f(r) = Yy () + yo(t).
Theorem 3.3. Suppose the assumptions of Theorem 3.2 are sa-
. . . N2 1
tisfied. Let A = uaik“' i,k =1,2,Y A _t_J_[‘f (s)] .

If the matrix A is of the form (2.16), then the func-
tions Y,, Y, are given by formulas (2.17).

Theorem 3.4. Let S_g be a space of solutions of the differen-
tial equation (ab) with the definition interval j. Let
(v4:Y,) be a basis of the space sab' Let @ = @ (t) be an
increasing or decreasing function satisfying the functional
equation tg @ (t) = y,(t)/y,(t) for t€j. Let J =P (]).
Then for

a) the bijection ¢: j =3, 7’€C(2)(J) )

b) the function f =\’yf(t) + yanyec®l(y), f(r) # o

for t€j,

cos s, sin Sy cos s, sin So
c) the matrix A = : or A = . I
-sin s, cos s, sin s, -cos s

o
S, €3, s, = ¢ (tg), t €3,

there exists a global transformation of the space s* onto

the space Sab given by the relation

y(t) = AF(E) Y [p (0],

tey, Y

. T
(cos s, sin s) , y = (yl'yz)T .

P r oo f. The above theorem is a modification of Theorem

2.5. in case of the space S.be
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Definition 3.1. The differential equation
X" = -Y (_1)

with the definition interval J, 3 = @(j) will be called the
canonical form of the second order of the space sab of the
solution of the differential equation (ab), or briefly the
canonical differential equation of the second order of the
space Sab'

Let 'us remark that by the space of solutions of the
differential equation (-1) we mean the space s® with the
definition interval J. The elements of the space s* are the

functions of the form

Y = k1 cos s + k2 cos s, s¢€J, Kl,kzél?

Definition 3.2. Let (y;.,Y,) be a basis of the space S p With
the definition interval j. Every function °<€C(2)(j), XK :
j = J, satisfying in j the functional equation

Yl(t)
tgX (t) = W

will be named the first phase, briefly the phase of an
ordered pair of solutions yl'y2€'sab‘

Theorem 3.5. Let (?1,§é) be a basis of the space S_, with
the definition interval j. Let (?1,?5) be a basis of the
space 8™ with the definition interval J. Suppose the space

s® is globally transformed onto the space sab by the equation

() = are)ifaen)]

by means of the function f, the parametrization h and the
matrix A. Let JH be the matrix given by the equation z =

= 4 Y, where Y = (cos s, sin s)T. Let y = (yl,yz)T, where
y =& _1A'1x , whereby d4¢ .

matrices to the matrix 4 , or A. Let o« = o (t) be a first

denote the inverse
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phase of the basis (YprY¥1)E S p- Then

X (t) = h(t) + k%, k being an integer,

& (t) for t€j.

P r oo f. The above theorem is a modification of Theorem
2.7 in case of the space Sab.

Theorem 3.6. Let Sab and SAB be the spaces of solutions of
the differential equations (ab) and (AB) with the definition
intervals iq and Jps respectively. Let s* be the canon1ca1
space with the definition interval 3 Let Y = (Yl'Y ) be a

basis of S®. Let (ui,uz)és b (U g, 2)€S,g be the space
bases.

Suppose the space s* is globally transformed onto the
space S, by the equation u(t) = Alf(t)”_Y'_[h(t)] , where h:
ig >3, hec(z)(g), u (ul,uz)T. Suppose the space s* is
globally transformed onto the space SaB by the equatlon
U(T) = A F(T)Y[H(T)] where H: j, » 3, Hecl®)(y,), T =

= (U,,0, )( ).

The necessary and sufficient condition for the existence

of -the global transformation of the space SAB onto the space

Sab transforming the basis (ul,uz) into the basis (Ul,U )
by means of

a) the bijection k: Jg = o kéC(Z)(jl)
b) the function géC(Z)(jl), g(t) # 0 for t€j, ,
c) the matrix B = A A
oy the formula

U(t) = B g(t) Q[k(t)], tey,
is the existence of
1. a bijection T = X(t), X: ji -

xe ct?) (1)
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Al
2. an integer f, for which h(t) = H[X(t)] + O
for téjl .

P r oo f. The above theorem is a modification of Theorem

2.8 in case of the spaces sab' SAB .

The space of solutions of the linear differential

eguation ‘ pq)

We will now express the main results obtained in this
paper applied to the space of solutions of the linear diffe-
rential equation (pq).

A modification to Theorem 2.1.:

Theorem 3.7. Let Spq be a space of solutions of the linear
differential equation (pq) with the definition interval j.
Let (yy.Y,), where y; = y,(t), Yo = Yo(t), be a basis of the
space Spq and ¥C be a curve dAefined by the aquations §1 =
=y (t), §2 = Yz(t), t € j. For the polar coordinates e =
= @(t), ¢ = @ (t) of the curve X we have g€ C(l)(;j).

gecty), @7(v) F0 in .

Proof. Since pGC(O)(j), y1,y2,py£,pyé€C(1)(j),
p(t) # 0 in j, it follows from formula (2.2) @ =

A L
= ‘in(t) + yg(t) , €3, that

. 2 2. . . . .

@ = (yg * ¥p) 2 (ygyg *+ Yov,) = [yl(pyl') + yg(pyz“)}/

2 2
/del*’Yz

From this we see that Q' is a continuous function, i.e.
g€ c) (3. From 2.3): tg ¢ = y,(t)/y;(t) we obtain sin@ =

= ky,(t), cos @ = kyg(t), k = 1/ \,yi + yg . By differentiatin

and rearrangement we obtain

141



@ = ~(vavs - viw/ (Y * ¥3) = -[yl(pyé)
- (PYYp] /7 POYE + ¥E) . ted

and we can see that ¢ (t) # O for t€j and that 50' is
continuous in j, i.e. ?)éc(l)(j).

Assuming that the coefficient p of the differential
equation (pq) satisfies the condition p¢€ C(l)(j), then there
holds for the polar coordinates of the curve X from Theorem
3.7. that geo(z)(j). (pec(z)(j), @°(t) £#0 in j.

Since the space S is strongly regular we may express
(conformably with Theorems 2.3. and 2.4.) the following
theorems for the space Spq'
Theorem 3.8. Let S be a space of solutions of the differen-
tial equation (pq) with the definition interval j. Let
{Y1:Y5) be a basis of Spq' Let s = ,’P(t) be a polar coordinate
of the curve X: fl =y, (), §2 = y,(t), t€j, defined by
formula (2.3).

Then it holds for the increasing or decreasing function

¢=@ (r)
-1 -1
uy [c,a (s)] = cos s, U, [((J (s):l

sin s, s€3J,

3= @)

or

ug {({)"1(3)] = cos s, U, [('o'l(s)] -sin s, -s€ J,

3=$p(\])l

where ((_1 denotes the inverse function to ;0 and the func-
tions u, are determined by the conditions yi(t) =

flt)uy(t), t€3, i=1,2, uw2(t) + ui(t) = 1, f(r) =

\]yi(r) s ya(t) .
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Theorem 3.9. Suppose the assumptions of Theorem 3.8. are
fulfilled. Let A = |a; [, 1.k = 1,2, ¥ = a.u [¢7(s)].

If the matrix A is of the form (2.16) then the functions
71,7é are given by formulas (2.17).

Theorem 3.10. Let S be a space of solutions of the diffe-
rential equation (pqg) with the definition interval j. Let
(yg:Y,) be a basis of the space Spq' Let @ = @ (t) be an
increasing or decreasing function satisfying the functional
equation tgf (t) = yz(t)/yl(t) for t€j. Let J = ¢(]j). Then
for

a) the bijection ¢: j - 3J, <P€C(2)(J').

b) the function f = \}yf(t) a ya(t)yect®)(y), f(t) £ 0

for tej ,

cos s, sin So cos s, sin Sy
c) the matrix A = , or A = .
o

-sin s co sin -cos s
o s s So °

5,€3, s, =@ (t,), t €7,

there exists a global transformation S™ onto the space S
given by the relation

y(t) = Af(e) Y[n(o)] ,

Pq

t€j, Y =(cos s, sin s)T, Y = (yl,yz)T .

P r oo f. The above theorem is a modification of Theorem
2.5. in case of the space Sp .

Definition 3.3. The differential equation

(-1)

with the definition interval J, J = ¢ (3) will be called the
canonical form of the second order of the space S of the

solution of the differential equation (pq), more briefly the
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canonical differential equation of the second order of the

space S

P pq
Let us note that by the space of solutions of the

differential equation (-1) we mean the space s® with the

definition interval J. The elements of the space s* are the

functions
Y=k1 coss+k2 sin s , s€3J, kl,kZGR.

Definition 3.4. Let (y;.,Y,) be a basis of the space Spq with
the definition interval j. Every function &« €'C(2)(j),

K: j = J satisfying in j the functional equation

Yl(t)
Yo (t)

tgxX (t) =

will be called a first phase, more briefly a phase of an

ordered pair of solutions Y11Y5 € Spq'

Theorem 3.11. Let (yl,Qé) be a basis of the space Spq with

the definition interval j. Let (?i,?é) be a bhasis of the

space-S* with the definition interval J. Suppose the space

s* is globally transformed onto the space Spq by the equa-

tion.

ey = afce) Yo
by means of the function f, the parametrization h and the
matrix A. Let J be a matrix given by the equation Y = g¢ Y
_ T T -
v(cos s, sin szl. L?t y = (yi,yz) , where y =
y ., whereby &£ 7, A denote the inverse matrices
or A. Let X = & (t) a first phase of the

where
-1
=X
to the matrix & ,
basis ,¥.)E€S . Then
(Y2:¥1)€ 8,4

1—_-
A—l

X (t) = h(t) + k¥, k being an integer,

O(O =X (t) for t€j.
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P r oo f. The above theorem is a modification of Theorem
2.7. in case of the space S_ .

Pq
Theorem 3.12. Let S q be the space of solutions of the
differential equation (pq) with the definition interval iq
and SPQ be the space of solutions of the differential equa-
tion (PQ) with the definition interval Jp- Next let s™ be
a canonical space with the definition interval J. Let z =
= (¥,.7,) be a basis of s*. Let ({,,0,)€ Soq’ (G'l,ﬁ'z)equ
be a space basis. Suppose the space S° is globally transformed

onto the space S by the equation

Pq

Uty = A f(e) Y[h(e)], where h: 3, »3, hecl®)(y)),

I
~ ~ T
= (ul,uz)
Suppose the space s™ is globally transformed onto the
space SPQ by the equation

U(T) = AF(T) ¥[H(T)]. where H: 3, » 3, Hec(Z)(y,)

J2
0= (u.uU

The necessary and sufficient condition for the existence
of the global transformation of the space SPQ onto the space
qu transforming the basis (ul,uz) into the basis (Ul,U ) by

a) the bijection k: Jg * 3o ke C(Z)(jl)

b) the function g GC(Z)(j), g(t) # 0 for tej, ,

c) the matrix B = A1A51

by the formula
”~ ~ .
Gty = Bo(t) Ulk(ty], £ 4y

is the existence of

1. a bijection T = X(t), X: jq = Js XGC(Z)(jl) ,
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2. an integer 4, for which h(t) = H[x(t)] + LT

for t6J,

P roo f. The above theorem is a modification of Theorem

2.8. in case of the space S S

pa’ “PQ °
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KANONICKY PROSTOR SPOJITYCH FUNKCf DIMENZE 2

Souhrn .

Clének je v&novan studiu globdlni transformace dvouroz-
mé&rnych regularnich a silné reguléarnich prostord spojitych
funkci z geometrického hlediska. Vyzna&nou roli zde mé tzv.
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kanonicky prostor spojitych funkci, ktery umoZnuje charakte-
rizovat studované prostory spojitych funkeci.

Definuje se faze oL usporadané dvojice funkci Y1:Yo
v silné regularnim prostoru S s definiénim intervalem j jako
kazdéd spojita funkce v j, kterd v j vyhovuje funkéni rovnici
tgk (t) = yl(t)/yz(t). Hleda se vztah mezi prvni fazio
a parametrizaci h, kterou je zprostiredkovana globalni trans-
formace kanonického prostoru spojitych funkci na prostor S
a ukazuje se, Ze plati | (t) = h(t) + k%, k celé, & =oX(t).
Dokazuje se nutnd a postafujici podminka pro existenci glo-
balni transformace silné regulérnich prostord S, a S, dimen-
ze 2.

Ziskané vysledky jsou aplikovany na prostory feSeni li-
nearnich diferencialnich rovnic obecného a Sturmova tvaru.

HAHOHMUECKOE IIPOCTPAHCTBO HEIIPEPHBHHX $YHKIMHA
PASMEPHOCTH 2

Peapue

Hacrosmas craThd nOCBSmMeHa MBYUEeHHD raobaibHoro mpeobpa-
80BBHMS JBYXMEDHHX peryJAfpHHX M CHMJBHO peryJaspHHX NpPOCTpPaHCTp
HenpepHBHEX yHkuuit c reomerpuueckoit Touku speHuss. Ocolym
poJb 3Jlech MUrpaeT T.H, KAHOHMUYECKOE IIPOCTPBHCTBO HeNpepHB-
HEX (QyHknuit, koTopoe JaeT BOSMOXKHOCTHL X8PaKTEpMBKPOBATH
nsyuaeMHe NpPOCTPEB8HCTBA HenpepHBHWX (QyHknmi.

Onpeneasercs nepsas ¢asa oL yuopszoueHHo#t napu ¢yBruuil
Yi: Yo B CHJIBHO DEeryJspHOM NpoCTpaHCTBe S ¢ WHTEpBaIOM
onpexeJseHus j kek an6as HenpepwsBHas (yHknus B j , Koropasd
B J yZoBxaerBopsier (yHKuMOHa&AbHOMY ypeBHenun tgo (t) =
= y4(t)/y,(t). Mmercs coorHomerne Mexay mepeokt dasoht « u
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napeMerpusenuet h , ¢ noMome®d koTOpo# ocymecrBaseTcs rao-
6aanHes TpeHcopMenus KeHOHKMUECKOr'O NPOCTPEHCTBA HenpepHB-
HHX (yHxuuit Ha npocTpPaHCTBO S M NOKA8HBAETCH, UYTO UMEeT
wecro «, (t)=h(t)+kT, k nexoe, o = A(t).

JokasuBaercs Heo6xoluMoe M LOCTATOYHOE YCJIOBME IAsl Cy-
mecTBOBaHMS raofeabHoit TpeHcfopManuM CHABHO PEryJasipHHX
IpOCTPBHCTB S1 u S2 pasMepHOCTH 2.

lloxyueHHHEe peSyJabTaTH NPUMEHADTCH B TEOPHM NPOCTPAHCTB
pemeHuit auHetHux Aud¢dPepeHnMasbHHX ypeBHeHuit ofmero Tune u
THNA MTyﬁua.
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