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Introduction

L.Feldmann in [1] and I. Feny o in [2]
presented a theory of solving linear difference equations
with constant coefficients using other ways than the Miku-
sinski method of the operational calculus reffered to for
example by J.5. Zyp k in in [3].

Following on [1] and [2] we will show a certain gene-
ralization of assumptions under which the new theory may be
applied to solutions of a certain class of functional equa-
tions generalizing the classical difference equations. New
aspects and results are obtained through the methods of the
transformation theory for spaces of functions, the theory of
phases and the dispersion theory for the linear second-order
differential equations built up bv 0. Bo r & v k a [4].
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1. The cyclic group of functions

Let Z be a set of integers and N a set of non-negative
integers. We write Z = {...,-2,-1,0,1,2,...}, N = {0,1,2,3,..

Consider a linear on both sides oscillatory second-order
differential equation of infinite type in Jacobian form

y* = q(t) vy, (1.1)
where

qect® (00,00 ).
Let = p(t) be the fundamental central dispersion or
the first kind of the differential equation (1.1). Let
Qn B qk(t),rwéN, denote the n-th central dispersion of
the first kind, which is the n-times composite fundamental
central dispersion of the first kind. Thereby <?1(t) = @(t),
C(o(t) =t and q_n(t) is an inverse function to @)
Let us recall at this point that all central dispersions of
the first kind {?v(t)}::= - ® form an infinite cyclic group
which we will denote by gp. The fundamental central dispersion
o = q7(t) is the generating element of the group gﬁ, the
group operation is defined as the composition of functions.

Let the number t_ & (~oo, 0o ) be arbitrary. The set of
. o~ ° . .
p01nts{(f;‘,(to)}‘,:_” is a set of all conjugate points of the
first kind to the point t . Let us denote by

{Polty)r Praa(ty))

the interval closed on the left and open on the right, whose
end points are the neighbouring conjugate points of the first
kind.

Definition: The set of all intervals <hb(to), q7v+1(t0)),
Vv & Z, forming the decomposition of the interval (-oeo , oo )
will be called the basic decomposition of the interval

(-oo, o0 ) belonging to the function ¢ and to the number t,-
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As an example of such a basic decomposition is a decom-
position belonging to the point t, = 0. In that case we denote

the interval as
{Pol0), PL1(0)) = 5, . D€z

The basic decomposition of the interval (-oo, oo ) belonging
to the function @ and to the number O will be written as

oo
{j\’}-,m - ®© . If t & j, , then it is easy to see that

o =@u ()E Iy ,Q./ue z.

2. The ring of real functions

We will consider real functions defined in the interval
(o0 , 00 ) and the set of these functions denote by 97’ .

To every function fé& ?we construct a set of functions

f(\?)' Y& Z and define them thus

f =

f(t) for t €& jy
) {

0 for tdjy . vez

We say, the function f is defined by partse by means of
the functions f(;,), ¥ € 7 in the interval (-ee , oo ). There is
o
thus assigned a- set {f } - to the function f and con-
SRRV ERE
sequently f(t) = 2 f, . (t).
o ()

Instead of f

or [fj(\)).

(2) we will also write [f(t)](“.} or T'U,)(t)

Theorem. Let féxand pE %be the fundamental central
dispersion of the first kind. Then for the composite function

f[¢(t)] we have [f [(F(t)]] (o = f(v+1)[ﬁ0(t)] for te& jy

P r oo f. The composite function f[Cp(t)] takes thoce va-
lues in the interval jy which the function f(t) does in the

interval j Vit® Since @ (jy) = Jyyq We obtain the assertion.

More generally there holds the following
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Theorem. Let f€@ and(pdé %be the ¥ -th central dispersion
of the first kind. Then for the composite function f[({)l (t)]

we have {f[c(x(t)]] ) = f(9+X)[CIDJ{(t)] for tej, .

Operations with functions defined by parts in the interval
(-~ 00, 00).

We will consider a set of functions F. If we introduce
here the equality of functions with the addition and multi-
plication compositions of the two functions, then ¥ is a
commutative ring.

For our further reasoning it will be of sense to work
with the functions of F defined by parts in the interval
(=00 ,00 ). The definition of functions of ¥ by parts in
(=00, 00 ) enables us to define besides the equality and the
addition and multiplication compositions also the convolution

composition which will be of use later on.
fad oo

Let f,g&% and f =_§ flvyr 9 =§ 9(v) then we define:
Equality: f=g <=> f(v) = 9(v) for tej,, VveEz.

Addition: The sum of f + g is the function of F defined
by parts in the interval (- oo, o2 ) in the

form [f+g](v) = f(v)+g(v) for tejy, , vVE€Z.

Multiplication: The product of f . g is the function of
¥ defined by parts in the interval (-eoo , oo )

in the form [f.g](ﬁ,) = f(v).g(v) for t&€jy,
vez.

Remark. If f(t) = ¢ in the interval (-oo , o0 ), then
Ec.gl(v) = c.g(\,) for tej,, vE€Z

defined by parts in th\’e interval (-oe , o0 ) in

the form [f *g](\)) = 'ZO Fry -1y (1)).
i=

'g(i)(‘f-v+i(t)) for tej, , vez,
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n
Remark. If ¥= n, n€N, then the symbol Z_ is of usual sense.
i=0

v
If ¥Y= -n, n&N, then the symbol Z_ means the sum
i=0
fori=20,-1,-2,...,-n.

It is readily seen that the following assertion is true.

Theorem. The addition, multiplication and convolution compo-
sitions are commutative and associative.

P r oo f. The assertions for the addition and multiplica-
tion operations are clear. The assertion for the convolution
follows from the validity of the equalities below:

B*ﬂ(g)-ii flomi)(Poi(t)) 85y (P oy, (E)) =

- Z 9(9-k) Pkt F iy @y pic(£)) = E xf](v) for t\’éj,‘ ,
6z

.

Next we have:

i
[g*h](i) = kz=0 g(i-k)(cF-k(t»'h(k)(q’-nk(t)) and therefore

9
[(Fxarn] () = EO [f*g](v-i)(q’-i(t))‘h(i)(?-vu(t)) =

Y-
L (2= f(ys90k)) () *

<:
l-‘

) -1

= (Z.; Flv-k) 9(k)) "oy * (E) fo-1-k) 9(k)) Nyt oo *
v

+ f0):9(0y" Z=: Fv-1)+(905)P0) * 9(i-1)N(1) * .

+ g(o) (1)) Z 1’(\7 1)[g*h](l) [-fk(gx h](v)
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Theorem. Let f,g,h&¥. Then (f + g)¥h = (f¥ h) + (gxh).

P r oo f. We have

i

.)
[(Frormn] gy = 2 TF iy @i + S(v-1)(F-sl Sk

i=0

>

iy @opsi(t)) = 27:‘0 [f (-1)(P-:(0)) -
v
?:

Q(v 1)((}’9 t)) .

Sy @pes())]

TN CATC N (R FSEE EEL P
which is the assertion of the theorem.
Zero and unit functions

Definition. The function 0= O’(t) defined by parts in the
interval (- o0, 00 ) in the form

ozv)zo for t€jy, Ve€z

will be called a zero function.

Evidently 0’6?’, because ( is defined in the interval
(-c0,00); 0=0 for every t€(-oo,o00 ).

Theorem. Let f €% be arbitrary. Then f + 0 = 0+ f = f.

Proof. For t€j, we have [f +O/J(V) = f(v) + 0 = f(V) =

=0 + f(v) = [0'+ f],v), Y& 7z, which proves the assertion
(

of the theorem.

Definition. The function u = u(t) defined by parts in the

interval (-oo ,00 ) in the form

U(O)(t)=1 for te’;jo ,
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u(\))(t’) =0 for t€j, , vVE&Z VFO,
will be called the unit function.

Clearly ué&®, because u is constant by parts in the
interval (- oo, oo ).

Theorem. Let f& % be arbitrary. Then we have f xu = uxf = f,

»
P roof. For tej, we have [f‘*u]( Z (\’—1)(?1(”)'

-
Uiy (Papes)) = Fpy(e) = 22- Uiyaky (P ()

Flo (Pt = Luxel )

which proves the assertion of the theorem.

Corollary. u%u = u . The assertion follows from the fore-
going theorem for f = u.

Theorem. Let f, g, he¥F and ¢ be a fundamental central dis-
persion. Moreover let f[q?(t)] = f(t) for t& (-o0o, o0). Then

there holds (f.g)*h = f.(g=xh).

P roo f. We have

>
{_(f'g)*‘h}w) = iZ=O [f(v-i)(‘f’-i(t))'g(v-i)(‘P-i(t))]'

i MQ

h(i)(¢_y+i(t)) (\))\t) g(-p 1)((?- (t)).

v
. h(i)(¢—v+i(t)) = f(v)(t). E_O g(v"i)(¢—i(t))'

1]
..1.,

h(i)(?_p+i(t)) [Q*h](g) ’

which proves the assertion of the theorem.
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Corollary. (c.g)kh = c.(g#h), where c is a constant. The
assertion follows from the foregoing theorem if we set

f 2 c, since in that case the assumption f[Cf’(t)] s f(t)
for t&(- oo, 00) is satisfied.

Theorem. The set of functions F with the addition and convo-
lution compositions constitute a commutative ring. The
function 0 = 0/(1:) is a neutral element with respect to the
addition and the function u = u(t) is a neutral element with
respect to the convolution.

Proof. It follows from the foregoing theorems that for
arbitrary functions f,g,h €% we have

f+g=g+f fxg=gxf
f+ (g+h)y=(f+g)+h (fxg)xh = fx(g*xh)
(f + g)*h = (fxh) + (gxh)
f+ 0= 0+ f=f
f «xu=uxf-=*F

Theorem. To the function f €% there exists a function
-f = (-1).f, -fe¥F such that f + (-f) = (.

P r oo f. We have R

F+(-0] 5y = Foy* (=1).8] 5y = Frmy~F(vy = ©

for t&jy, YE€Z,

3. The set of functions F¥.

In the set § there occur functions characterized by the
t <0 fact that they are identically vanishing, for example
such functions are 0 = (f(t), u = u(t). The set of these
functions will be denoted by F*. Clearly ?*C'f’.

We observe easily that there holds the following

Theorem. The set of functions F* with the addition and

convolution compositions constitutes a commutative ring.
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The function ("= (7 (t) is a neutral element with respect to’
the addition and the function u =

with respect to the convolution.

u(t) is a neutral element

Convention. The functions of F* will
sequences. Letting fE€F¥* we set

f(t) = {f(n)}:';o . where{f(n)

)

be characterized by

f(t) for tejn, né€N,

0 for t#jn.

1]

Theorems of advance and retardation

Theorem. Let feF ¥ and Cpk the k-th central dispersion of
the first kind, k€& N. Then the composite function f[?k(t)]
is characterized by the sequence

(s 0]
t[ppce)] {f(n+k)} o
that is

£ [q)k(:)] = {f(k),f(k+1),...} .

Pro 0 f. If we set t” = @ (t), t€j , then t'€j .
We pay write f[crk(t)] = f(t"). Since f [(Pk(t)] for
t€j is equal to f(t") for t"€j ., we have

[fﬂq’k(ﬂ]] (n) = Fnekye

This theorem will be called the theurem on advance.

Theorem. Let fEF ¥ and C/ke (’?/be the k-th central disper-
sion of the first kind, k€ N. Then the composite function

f [C}’_k(t)] , where Cf__k is an inverse function to (fk, is
characterized by the sequence

FLeae) = {fno]

o0}

, where f = 0 for nck;
n=0 (n-k) < ’
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that is

t[g 0] = {00,000, f(o),f(i),...} .
Proof. settingt’ = ¢ (1), t €j, vyields t'e Jnok”

We may write f[q’_k(tﬂ = f(t"). Since f EV_k(t)] for t&j
is equal to f(t”) for t'€ Ik We have

E [?_k(t)]](n) = f(n—k)' whereby f(n—k) T 0 for n-k<oO.

4. The difference equation on %}’and its solution

Let k>0, k&N. Moreover let C,ER, i = 0,1,...,k;
cy # 0; q7€‘€fbe the fundamental central dispersion of the
first kind.

Definition. The functional equation for the function £

c-f Bm+k(tﬂ + ck_l‘f[7%+k-1(t)] LERRL N fE?n(t)] =
= o[¢(0)] e

will be called the linear difference equation of the k-th
order on the group %}’ of the first kind central dispersions

with constant coefficients CorCprenerlyn

Theorem. By the initial conditions f(i , i=0,1,...,k-1,
is the solution f(t) for which f(t) = f(i)' for t&j,,
i=0,1,...,k-1, determined uniquely.

Proof. The assertion will be proved by means of the

following simple method. We seek a solution f(t) = {f(ﬂ)}
I n=0

for which the functions f(i) are given from the initial con-

ditions for i = 0,1,...,k-1.
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Setting in (1) k = 0 and for t& j, the initial values
f(O)""'f(k-l) yields ckf(k) + Cl(—lf(k—1)+"'+ COf(O) = g(o).
Since ¢ # 0, we evaluate f(k\ uniquely.

Setting further in (1) k = 1 and for 'céj1 the values

f(l)""'f(k) yields Ckf(|<+1)+cl<—1f(k)+"'+C0f(1) = 9(1)'
Since ¢ # 0, we evaluate f(l<+1) uniquely.

Let us set in (1) k = 2 etc. By recursion we obtain the

values f n forn=k, k +1, ... . The function f sought
(the solution satisfying the initial conditions) is then
00
given by the sequence {f(n) .
n=0

However, this way of reasoning does not generally give

any formula for solutions of f or for f(n)'

In the sequel we will build up a method necessary to

derive the formula for f(n)'

Examples of functions of F¥* :

1. Let feF¥ and k Z 1, k€N. By the k-th power (iteration)
of the function f we mean the function fk = fk(t)
defined by recursion in the form

f1=f

s et for k= 2,3,... .

2. Translation function

By the letter p we denote the function of F* defined by

parts in the form

i),
p = p(n) n=0 ’
1 for téjn, n=1,
where =
P(n)
0 for tej,, 0 #1, neN.
This function p will be called the translation function.
Let k 2 1, k&€N. The k-th power (iteration) of the

function p will be written as pk and defined thus:
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[pk] ) {1 for tej , n=Kk

(n) A O for tejn, n#k, né&N.
3. By the letter ¢ we will denote the function of F* de-
fined by parts in the form
©

SIETOI I

where Z(n) =1 for té&j,, néEN.
Let k = 1,2,3,... . The powers of the function ¢ are
defined by.parts thus:

[ll(t)](n) = [/(t)](n) =1 for tej,, nen ;

\?z(t)](n) - [Z(t)xf(t)](n) = n+l for téj , n&N ;

[53(t)](n) = [Z(t):s(z(t):](n) = ("32) for tej,, nen .
Indeed, [63](n) =[(*€2](n) = 142+...+(n+l) = n+2 2""'1 =

= (nzz); Generally there holds: Let k

nw

1, k€N. Then

[(k(t)](n) - [l*fk'l](n) = (MR

Indeed, the formula is true for k = 1 (k = 2, k = 3). Assume
that the formula holds for an arbitrary number k, k £ 1., We

will show its correctness for k + 1. We have

[ ) (y = [0nl)(ny = T+ (KD o+ (e

+ (n;‘fil) - (kal) . (E) + (k;l) P
+ (T'H'E—l) = (g) + (II) + (kgl) P

. (n+l:'-1) - (n+lr:) - (n;k)' because

k-1, _ ,k k k k+1
Co) =) () = (1w () + (oia) = (1)

102



¢
Hence the formula is valid for any arbitrary natural number

k.

Theorem. Let the function fe'}f* be arbitrary. Then the
function €xf is given by parts in the form

[(xf](n) = f(o)[('fn(t)] + ey I-—ﬁ”.n+1(t)]+'-'+ Flny ()

for t€j .

Proof. It follows from the definition of the function €
and from the definition of the convolution that

[f*'f](n) =Zi=:OZ(n_1) [—ﬁ‘fi(t)] ’f(i)[?-mi(t)] -
=:'_Z::O f(i)Ef-mi(t)]

for t€j nE&N, whence we get the assertion of the theorenm.
nl

Theorem. Let the function fEF™* be arbitrary. Then

P % f(t) = tle ol

oo
where f[(P_k(t_)] = {f(n—k)} o0 and f(n—k) = 0 for n< k.

3 n
Proo f. Indeed, [pk*f(t)](n) =5 Plzn_i)[(f?_i(t)].

i=0

0 for téjn, n<k

- Fla [‘/’—mi(t)] - {

f(n_k)[('o_k(t)] for t€j , nz k,
y 21 for n-i = k, i.e. for i = n-k.

0. However f(n-k) [‘f—-k(t)]

in the interval j_ _, for n Zz k.

k
because py,_i)(t

e o [@.c0)]
In other cases is P pn_i) ll-i

for t€j, is equal to fin-k)
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Thus

pk *f(t) = {0,0,...,O, f(O)'f(l)""}' which proves the
k zeros

assertion of the theorem.

Theorem. Let the function f €F ¥ be arbitrary. Further let

%)
f(t) = {f(n)} and 4’6 %7be the fundamental central dispersion
of the first Rifld. Then

f(t) = pxfl@(1)] + flo) *
where f(O) = f(o).u .
P roof. We have f(t) := {f(O)'f(l)'f(Z)""}'
f [cp(t)]: {f(l)v,f(z),f(:,)),...},
pxt [@ee)] := {o, fay Frayeee- b
floy = froyv = {F(oy, 0 00t
pef [QCe)] + £ o) i= {F(0yrFayefayern-}o

or f(t)

1]

p*f[q(tﬂ +f(oy

In general there holds the following
Theorem. Let f(t)€ F¥* be an arbitrary function and q”<é %%
be the k-th central dispersion of the first kind, k&€N. Then

fr) = ol flgo] ¢ o TR gy BT gy o gy

where f(O) = f

u .

(0)°
Proof. We have
ft) = {f oy fray fray S
t lg (ol- {ftk),f(kﬂ),f("lﬂz),,,_}
pk*f[?k(t)] {o, 0,...,0, f(k),f(kﬂ),...}

k-1 _ .
P eyt PRy 0y = (P oy Frayreeenf(ieanys0i0ne - o}
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The sum of the two last functions gives the assertion of
the theorem.

5. Inverse function

Definition. Let f&F*. If there exists a function gé';F* such
that

f(t) » g(t) = u(t), (1)

then the function g is called the inverse function to the
function f written as f_l(t) or 1/f(t).

Theorem. The necessary and sufficient condition for that there
may exist the inverse function g in }fx to the function f,

f €F*, is that f 0.
Proof. It follows from the definition of convolution

and from the foregoing definition (1) that

f(O)'g(O) 1 for t€j,,

f(i)-g(o)(?;l)"‘f(o)(?_l)-9(1) = 0 for téjll
f(2)"9(0)P-2)*F (1) ($1)-9(1) Pn)
* Fo)(#2)-9(2)

0 for téjz.

etc. In jO we have g(o) = 1:f(0), thus there necessarily must
be f(O) # 0 in io- If fo #0 in jg, then this is sufficient
for us to evaluate successively g(l) in Jg, 9y in j,, etc.

6. Rational functions in p

Theorem. The following rational functions in p are functions
of F#* defined by parts:

o k _
1 a(0)+ a(l)p +ooot a(k)P = {a(o)la(l)l'0‘:a(k)uolorot-"}
o 1 nn {n}oo
2 =1 . ce. = ,
T=5p +CP+...+C p + c -0
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0,0)
30 1 c = 1, 1 — = {(nilfll).cn}
(1-cp) l-cp (1-cp) n=0

c may be a complex number.
o - -
P roof. Ad 1 . We have a(o) = a(o).u = {a(o),o,o,...}

a(l).p = {O,a(l),o,...}

k
a(k).p = {O,... O,a(k),o...

On adding we get the formula ad 1°,
Formula 2° says that for the inverse function Tf%;
0o
there is to hold: u = (1.u-cp) x {cn} .
n=0

However (1.u-cp):= {1,—c.0,0,...} ’
00
{cn} {1, c, c2,...} .
n=0

Thus (1.u-cp) % {cn} = {1,0,0,...} = u.,

So, the formula ad 2° is true, because {cn} =1+ cop +...*

+ C.p tee. .

Formula 3° will be derived in this way:

n

e

1 . 2 n }
1—_—0—6.— 1,c,C7,e0e,C ,enn

1 1 1
* =

1-cp l-cp B (1-cp)

2 n
5= {1,20,3c oo, (n+l)c 'f'.}=

00
= {(n+1)cn}n_
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1, 1 _ 1
. 2 3
l-cp  (1-cp) (1-cp)

- {1,(1+2)c,(1+2+3)c2,...

...,(1+2+...+(n+1))cn,...} {(ngz)cn}

We now see that the formula 3° is valid for k = 1(2,3).
Let us assume that it holds for k 2 1. We will prove its
validity even for (k+l). We have

) 1 k+1, 2
N - ( ) ( )e, ( JeT, ..
. (1_cp) (1- cp) { k-1 k- 1 k-1

(o0
+ ({Z*i)\» +(”;k11)c }: {(”;k) c”} .
n=

By this is the formula proved for an arbitrary k€N, k Z 1.

7. Solution of a difference equation on the group @/

In the difference equation of the k-th order §4 (1)
e [P (0] + ceg FPnica (O] +oeor oo F[G(0)] =
= o[t (0]
we will apply the formula from page . We have
k k-1
f[%(t)] = p % f[-Q’m_k(t)] +p 'f(n+k—1)+'"+p'f(n+1)+f(n)'

k-1 k-2
f[?n+1(t)] TP ® f[¢n+k(t)] P 'f(n+k—1)+"’+f(n+1)'

. . .
. .« .

(0] = p % f[Fo,(0)] + flnek-1)7
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f[q]rwk(t)] = ux f[((mrk(t)] .

On inserting we obtain

ck.[u * f[(fm.k(t)] +ck_1.[p x f [‘fn+k(t)] +f(n—k+1)-,l+"'+ cge
[Pk * f[%%+k(tﬂ + pk-l'f(n'+k-1) Feeed p'f(“+1) *

+ oy = e[

From this we have, by rearrangement,
Ky x £ -p (p) = 9
(Cp * Cpq *eeet CP) X ?H+k(t) n+k-1\P (n)’
where
-p (p) = ¢ f )+ +C k-1 ¢ Yoo ot
nek-24P) = C_q- (n-k+1 /¥ -*CoP * T (n+k-1

* P Flney * % fFin)

is a polynomial in p of degree (k-1) at most.

For n = 0,1,2,... we obtain

P (p)+g
k-1 (n)
P - f ()] = n+
(n+k) [_(fm-k ] ck+ck_1.p+,,.+co.p

With the given initial conditions f 0 'f(l)'
obtain for the solution f(t) the expression

f(t) = {f(”)l:io

It should be noted here that with respect to the results

in the foregoing § 6 the fraction of (1) expresses a function
of F*.

coofgegy e
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PRfSPEVEK K TEORII LINEARNfCH DIFERENCNfCH ROVNIC
S KONSTANTNfMI KOEFICIENTY

Souhrn

V &lénku se studuje funkéni rovnice
S F [Praic 0] +ck_1.f[((n+k_1(t)]+...+co.f[((?n(t)] - g[(fn(t)] ,

kde k je dané prirozené ¢islo, koeficienty c.,j=0,1,...,k
jsou redlna cisla a je Cp # 0. Funkce (/n = (fn(t) pro
n=20,1,2,... znaéi n-tou centralni dispersi l.druhu prislu&-
nou k oboustranné oscilatorické diferencialni rovnici 2.Fadu
JACOBIHO tvaru na intervalu (-00, ©). Pro danou funkci g

a bod to &€(-00, ©) je hledanad funkce f, urdenad pocatecnimi
hodnotami f iy i=0,1,...,k-1, kde f(i) = f(t) pre
te<?i(to), (fi+1(to))' vyjadfena vzorcem (7.1).
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3AMEUAHME K TEOPMM JMHEMHHX PA3HOCTHHX YPABHEHMH
C NIOCTOAHHHMM KO9$$PUIVEHTAMN

Pesapue

B Hacrosme# crarpe usyuawrcs QyHKUMOHEOJBHHE ypaBHEHUS

ck.f[Yn+k(t)]fck_1.f[(n+k_1(tﬂ +...+co.f[qn(t)] = g[?n(t)],

rie K - onpelleJeHHoe HaTypaxbHoe uucao, kosdpdunmenTH c., j=0,1,..
«+s, K BelleCTBEHHHe uucra M cK#O. by KuMSA ?;:lg(t)ﬂlﬂ n=0,1,...
08HAy@eT nN-TyP LEHTpPaJbHYD Aucmepcu® l-oro poxa, npuHajIe-
Eamy®p ABYXCTODOHHeMY ocumxﬂupypmeuy‘nn®®epeﬂuuaAbnouy ypeB~-
HeHuD 2-ro nopsajfka Tuna fkobu Ha uHTepBaxe (- ® , oo). las

LeHHO# QyHKUMM g M TOUKY toe(-a),aa) uckomas Gymkuusa f
onpeleseHHas HauaJbHHMU sHaueHusaMu f iy’ i=0,1,...,k-1,

rie f(i)=f(t) st té(gi(to),goiﬂ(to))

umeer BuA (7.1).-
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