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1. Introduction

This paper deals with the problem of finding a minimal-
-cost path in a directed graph from a starting node to a set
of goal nodes. We will examine the relationship between two
well-known algorithms of the heuristic search - A¥ (Hart,
Nilsson and Raphael, 1968) and B” (Mero, 1982) both described
in [2} (see also [3}).

Let G be & directed graph with a starting node s, a set
of goal nodes T and a positive cost c(p,q) associated with
every arc (p,q). We shall 1ntroduce the functlons f(n), g(n),
h(n) together with their estimates f(n), g(n), h(n) in their
usual sense. Suppose the heuristic estimate h(n) to satisfy

the conditions

%(t) = 0 for every t€T (1)
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0 £ %(n) £ h(n) for every node n in the graph G (2)

sufficient for both A® and B° to be admissible.

B” comes from A®. It tries to improve the.heuristic

estimates for the nodes m,n where the consistency assumption
L) A <
h(m) - h(n) = c(m,n)

does not hold. This is done by the following formulas:

a) For each son m of the recently selected (expanded) node
n, if h(m)(lw(n) - ¢(n,m) holds, then set h(m) “— h(n) -
- ¢(n,m).

b) Let m be the son of n for which h(m) + c(n, m) h n(n)
is minimal. If h (n)>l1(n), then set h(n) <~ h (n)

It was shown in [2], that for every natural N there is
a graph GN with N nodes, at which A% requires O(ZN) node
expansions. However, B’ requires at most %Nz + O(N) node
expansions at every graph with N nodes.

On the other hand, there was made no analysis of the
graphs at which both A* and B” require a smaller number of
node expansions (say O(N)). We only know that at no graph
does B° require more expansions than A, This led to the
small notice formulated in paragraph 3.

2. Basic concepts

Definition 1. Let G be a directed graph. We shall say
that G is of the type Tr, if it is a tree, the starting node
being the root of this tree and the set of goal nodes being
equal to the set of the leaves of this tree.

Definition 2. Let G be of the type Tr. Denote the mi-
nimal-cost path from s to a goal node n* as an optimal path.
Indeed, there can be more optimal paths with the same length.

Definition 3. Let G be of the type Tr. Denote by a*(G)
the number of node expansions needed by A* to find the
optimal path in G. Similarly denote by b“(G) the number of
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node expansions needed by B” to find the optimal path in G.

Let N be the number of.nodes in G. Note that
b“(G) < ax(G) $N (if both A and B resolve ties in the
same way), because every node in a graph of the type Tr is
expanded at most once. Moreover, g(n) = g(n) for every node
n since there is perfectly one path from s to n.

Definition 4. Let G be of the type Tr. Let R be the
heuristic estimate satisfying (1), (2). Define the function
R in continuity to description of B”:

1) h(s) = a(s) for starting node s
2) for n # s let r be the father of n ; set

h(n) = max{ ﬂ(n), R(r) - c(r,n)} .

The number h(p) defined this way is equal to %(p) after
its (possible) modification according to a). We need not be
concerned with the modification in b), since it can influence
only the change of the heuristic estimate ﬂ(n) of the re-
cently expanded node n. Since G is a tree, none of its nodes
can be reopened and therefore the values ﬁ(n) and ?(n) are
no more significant. Furthermore, let us point out that
definition 4 is unambiguous since for every node n the mo-
dification a) is made by B at most once.

Definition 5. For every node u in the graph G of the
type Tr set T(u) = g(u) + A(u). Then the value T(u) is the
estimate of f(u) after the modification of the heuristic

estimate.

3. Results

Lemma 1. Let n be the son of r in the graph G of the
type Tr. Then T(n) = max {?(n), ?(r)} holds.

Proof. (Recall that g(n) = g(n).) According to defini-
tion 4 we have h(n) = max {%(n), h(r) - c(r,n)} .
Since g(r) = g(n) - c(r,n), then
F(n) = g(n) + R(n) = max {g(n) + h(n), g(n - c(r,n) +

+ F(r)} = max‘[?(n), ?(r)} .
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Lemma 2. Let G be a graph of the type Tr. For every
node m let (s = NgsMqseessny = m) be the path in G from the
starting node s to m. Then

T(n) = max {?(no), ?(nl), ?(nk)} (3)

holds.

Proof by induction:

1) k = 0 : Trivially T(s) = %(s) = ;(s) = max {;(s)] =
= max {f(no)} .

2) Let (3) be valid for a natural k. Let (s = NgeNgsrees
cees M=M= m’) be a path in G. According to
+1 ~
Lemma 1 we have T(m”) = max {T(m), f(m')} =
= max {Tax {f(go), f(ng). [ f(nk)} . f(nk+1)} =
= max f(no), f(nl), ceey f(nk+1)} and the induction
step is completed.

Theorem. Let G be a graph of the type Tr. If b"(G)<

< a*(G) holds, then on the optimal path found by A* in G

~
one can find a non-goal node r & t_such that h(r) = h(r).
(For the goal nodes t €T the equality h(t) = h(t) = O follows

from the properties of %.)

Proof. Recall that esvery node in G is expanded at most
once. If b"(G)<a"(G), then there are some nodes in G ex-
panded by A™ but not by B° - call them "A-nodes". There must
be some non-goal A-nodes, since both A® and B® expand per-
fectly one goal node. There are also nodes expanded by both
algorithms, e.g. the starting node s. Therefore on each path
from s to a non-goal A-node one can find a non-goal node m
such that m is expanded by A* but it is in the OPEN-list of
g° when a goal node is expandedbby B”. Let (s = Ngefgs oo

.e., n_ = m) be the path in G from s to this node. We know

k A ~
from Lemma 2 that T(m) = max {f(no), f(ng)seses ?(nk)} .
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Since all Ngr Ngs +eey Ny are expanded by A™, it holds (see
{4], chapter 2.4.):

A
f(n;) £ £(n") = f(s) for all i = 0,1,...,k .

Thus also T(m) - f(n®). On the other hand, T(m) z ?(n*) =
= f(nx) (otherwise m should be expanded by B instead of n*y.
Indeed,

T(m) = f(n%) . (4)

A ~ A
But T(m) = max {f(no), f(ng)s «ven f(nk)} .
and so there must be g €& {O,i,...,k} such that
~ .
f(ng) = f(n) . (5)
Let us now distingush two cases:

1) nq lies on the optimal path found by A¥. Then f(n*) =
= f(nq) and with respect to (5) we have

?(nq) = f(ng) . (6)

~
Hence g(nq) + h(nq) = g(nq) + h(nq) i.e. %(nq) = h(nq)
for a non-goal node g since there is a path
(nq, nq+1, ceey Myo= m) from nq to a non-goal A-node
ne = m.

2) n_ does 'not lie on the optimal path found by A¥. Then
let v be that node on the optimal path, which is in the
OPEN-list of A when'n_ is expanded by A%, It must be
?(v) 2 ?(nq) = f(nx), on the other hand ?(v) < f(v)

F(n®) (it is §(v) = g(v), h(v) £ h(v), i.e. F(v)

f(v) and so ?(nq) = ?(v) = f(v). Note that v is a

non-goal node on the optimal path - otherwise it should

be expanded by A instead of nq (it is ?(nq) = ?(v)
from the last equality).

[T ]
wA

In both cases we have shown the existence of a non-goal
node r (in 1 it was n_, in 2 the node y) which lies on the
optimal path found by A™ and ?(r) = f(r) i.e. %(r) = h(r).
The proof of Theorem is now completed.
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4. Conclusion

The only general information concerning b“(G) and ax(G)
we have is that b’(G) H ax(G) for an arbitrary graph G when
both algorithms resolve ties in the same way. It was shown
in [1],[2],[}] that for "complicated” graphs a*(G) can be

much higher than b“(G) (see paragraph 1).

Therefore it is somewhat interesting that b“(G) = a”(G)
for nearly all trees G. (This follows from our Theorem,

since the condition %(r) = h(r) for some non-goal node on
the optimal path is very restricting when ﬂ is only assumed
to be a non-negative lower bound of h.) It would be perhaps
useful for comnuter practice to examine the relationship
between ax(G) and b"(G) for some other general classes of
graphs.
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ALGORITMY HEURISTICKEHO HLEDANf NA ORIENTOVANYCH STROMECH

Souhrn

Clanek se vztahuje k problému nalezeni nejkrat3i cesty
v orientovaném grafu pomoci heuristickych algoritm@. Je stu-
dovan vztah mezi algoritmy A¥ aB” v pripadé jejich pouziti
na orientovanych stromech, Vysledkem prace je véta obsahujici
nutnou podminku pro to, aby B” vyZadoval k nalezeni optimal-
ni cesty v orientovaném stromu méné iteraci nez A%,

AJITOPUTMH SBPUCTUYECKOI'O NOMCKA HA OPMEHTHPOBAHHHX
LEPEBBAX

Peanme ,

CraTba OoTHOCUTCH K mpobaeMe DaCKPHTUS NYTHM MUHMMAIb-—
HO# CTOMMOCTNM B ODMEHTUPOBEAHHOM rpade MCHONBIOBEHMEM BBpUC-
TUUYECKUX 8JTOPUTMOB. B Heil UCCJAeLOBE&HO OTHOWIGHNE MEeXAy &aJro-
puTMaMu Ax u B’ B cayuase, korAa OHuM paboTaldT HA OPUEHTHDPO-
BAHHHX JepeBbfX. B npuBelleHHO#l Teopeme neeTcs HeoO6XoJuMoOe
ycJaoBue IJs TOro, uTOoOH B’ packpHJ ONTUMANbBHYR OYyTh B ODMEH-
TUPOBAGHHOM JepeBe 3a Mellnpllee YUCJO wrepauuﬁ ueM Ax.
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