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1. Dynamical systems driven by a unit pulse (by the Dirac

function)

In investigating pulse characteristics we often meet with the
necessity of generating a unit pulse (the Dirac function).
This unit pulse, as such, cannot be directly generated either
by a digital or by an analog computer. For this reason we
are seeking another equivalent mathematical description of a

system wherein the until pulse does not occur.

Given a differential equation
-1
v wa Y e ey = 5 (0, (1.1)

where § (t) is a unit pulse. For simplicity we assume that

the initial conditions

y("™)(0) = ... = y7(0) = y(0) = 0 .



The Laplace image of equation (1.1) has the form

s™(s) % ... + ag¥(s) =1 (1.2)
Let us next have a homogeneous differential equation
(n) (n-1) |

Y1

tan gy T 2 0 (1.3)

and seek such initial conditions under which the solution of
equation (1.3) would be analogous to that of equation (1.1).
The Laplace image of equation (1.3) has the form

n-1
s (s) -2 _ "ty B0y +
i=0
n-2 ) ]
*an (37Tvi(e) -2 STy (W) oy
1=
+oe.. * al(sYl(s) - y,(0)) + aoYl(s) =0 . (1.4)

If

~<
[l

=y, is to be true, then also

Y(s) = Y (s) (1.5)

must be true. By comparing the coefficients consisting of the
initial conditions at the individual powers s (see Table 1),
we get

y1(0)+a 11772V (0148, Ly, ("3 (0) +.iv ayyi(0)+ ayy, (0)=1
y1 "BV 0)+a, 1y, ("2 (0) 4.k agyi(0)+ayy, (0) =0

y1 ("3 (0) +.uik a,y(0)+ agy,(0)=0

- y1(0)+a_ _4y,(0)=0
3 3
©
= y,(0)=0
v "0y = 1
yl(n_z)(O) = ... =.y1(0) =0 (1.6)
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for the fulfilment of relation (1.5). Let us have a different-
ial equation

y(n) + an_ly(n_l) + see * aoy = 8 (t) (1.7)

with initial conditions y(0), y'(O),...,y(n_i)(O) #0
and a differential equation

(n) (n-1) ,

Y1 +ag Y, ce. *agy; = 0. . (1.8)

We seek such initial conditions that y = y, may be true
again. The Laplace image of equation (1.7) is now of the form

n-1
s™Y(s) - Z:: sn_l'iy(i)(O) +
i=0

n-2
+any (s"7M(s) - Z:g s"271y (1) (o)) +
l=

+ .o + @ (sY(s) - y(0)) + agY(s) = 1. (1.9)
By comparing the coefficients consisting of the initial con-

ditions at the individual powers s ih (1.4) and (1.9) (see
table 2)

% v, "0y + ap v, (MB(0)+. ok ayy (0)vayyy(0) =

= 1+y(" ) (0) + & y("E)(0)+.. .+ a,y7(0)+a,y(0)
s+ v, ("2)0) a4y, ("3)(0)+.. .+ 8 y (0)+a,y, (0) =

= y(n—Z)(o) + an-ly(n—S)(O)+':'+ asy'(0)+62Y(0)

n-2 . . =
s : y;(0) + a _4y,(0) = y (0) + a,_,v¥(0) 2
[
o

-1
s"77 : v (0) = y(0) N
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we obtain

y(0) (1.10)

y1(0)

y1(0) = y“(0)

y, (") 0) = y("2)(0)

v ") = 1+ y(M(0)

The solution of the equation (1.1) may thus be carried over
to that of the homogeneous equation (1.3) with initial con-

ditions according to (1.10).

2. Applying the Laplace images of functions in generating

functional dependences
Generating the functions of the form

f(e) = Ath e*F cos (wt +g) (2.1)
we can unilize the tables of correspondences in the Laplace
transform by the following reasoning: Given a differential

equations with constant coefficients

-1 .
(n . a, 1y(n ) 4 cee t By +oagy = blz'. (2.2)

any

Rewriting this equation by means of the differential operator

n d"
= =, yields
dt
y = 1P z (2.3)
- n -1 . .
a P + an_lpn ...+ ap + oag

which is merely another writing of equation (2.2).

Equation (2.3) can be extended by

k-1 .
ckpk + ck—-lp * oeo. cy P + CO

3290



to the form

k+1 k
dep” "+ dy_gp + ... ¥ dgp

y = n+k n+k-1 zZ . (2.4)
9n+kP * 9nik-1P *oeee v Qg

Let us solve equation (2.2) with zero initial conditions and
let z be a unit function. Then the Laplace image of the so-
lution of (2.2) has the form

bls 1
Y(S) ) a Sn + a Sn-i + + a,s + a ) -;=
n n-1 ot 1 0
b
=1 . (2.5)
a_s + eee * ao

This equation can be modified analogous to (2.3) and becomes
the form

Y(s) = . (2.6)

In+k® * 9n4k-18 °tt 9

Comparing equations (2.4) and (2.6) we find that we may
directly obtain a differential equation from the Laplace
image of the function, whose solution is this function so
that the Laplace operator s in the Laplace image of this
function will be replaced by the operator p and this expres-
sion will be multiplied out by p, whereby the function z is

a unit function.

To apply this approach in generating functional depen-

dences, it is necessary that the Laplace image of the
function generated be a strictly broken rational function,

i.e. the degree of the denominator must be less than that

of the numerator. On changing the Laplace operator s for the
operator p and multiplying out the denominator of p, we obtain
a differential equation in the form (2.14), where the highest
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order of the derivative at z. Equations of this type may
then be programmed without any knowledge of the derivatives
of the function z either by the method of successive inte-
grations or by the method of decreasing the order of the
derivate with introducing a new variable.

The Laplace images of the functions t" Mt (m = the non-
-negative integer, A = a complex number) and the linear com-
binations of these functions possess this property as shown
below.

The image of the function t" is given by the relation
L[Fm] _ _ml!
";m_-n-f

L[eM f(t)] = j.?f(t) et oSt gt =
°

[0 0]
- f f(t) e (5N gt - F(s -2,
[e]

so that

L[tm e“] - —t (2.7)

- (s-h)m+

At

The linear combinations of the functions t" . e are the

multiples and the sums of the multiples, of these functions.

Since

Lfe f(t)] c F(s)

L[clfl(t) + cafz(t) + ..o cnfn(tﬂ =

c1F(s) + oo.e + an(s) (2.8)

and (2.7) is a strictly broken rational function, then (2.8)
is also a strictly broken rationa function. If we are to
write-a program schema using the tables of the Laplace trans-
form for generaling the function
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f(t) = e?t sin ot (2.9)
we proceed as follows:
The Laplace image of the function (2.9) is

F(s) = : (2.10)
(s +A)" +&

Expression (2.10) is the image of the differential equation

in the operator form by means of the operator p = at

’

<p . Y
2 2 2
p + 2pfB+ AT + X z

where z means a unit function. We rewrite the equation to
the form

y' + 208y + (B2 +a?) y = xz° (2.11)
and will solve it by the method of successive integration

y' = ®kz" - 2fBy" - (/}2 +0t2) Y .

y = xz-2f3y -y

]

where
2 2
Y1 =J(/"’ +o()ydt 1
Y = Yo

and

Y, = f(o(z -2fy - yq) dt .

The respective program scheme is given in figure 1.
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Figure 1

Y _w

(s) /‘
<

The correctness of this procedure is demonstrated as
follows: The program scheme in figure 1 is described by the
following system of equations

t
-J'(ogz +p%) vy dr
o

1=
t
Y2=-f(-o(+2/5Y2+Y1) dt ,
[e] -
Yz = - Yo
i1.e.
. 2,2 2,2
Yy = - (xZp2) vy = (xP pP)y, (2.12)
YS = - 2BY, + Y, .

The system of equations (2.12) will be carried over to a
second order equation for Yy, i.e.

Y3 = - 2pY; s Y] = - 28Y] (x?+p2) v, ,

so that the respective differential equation of the second
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order for Y, is of the form
Yy + 2pY) - (% +pZ) v, =0 (2.13)
2 ﬂ 2 2 ¢ :
By figure 1 and by latter system of equations (2.12) we find

that Y,(0) = Y,(0) = 0, so that Y;(0) = . The function

Y, = et sint is the solution of (2.13) with initial
&

conditions Y,(0) = 0, Y;(0) = .

3. Programming integral equations with the kerner k(t - x).

With the help of the Laplace transform we may (without
any additional device) solve the integral equations of the

type
t -
A u(t) + sf k(t - x) u(x) dx = C f(t) (3.1)
0

where u(t) is the function sought, f(t) and k(t) are the
functions given, A,B,C are the constants, B,C # O. In cases
of A = 0 and A # O the integral equations of the 1st and of
the 2nd kind are involved, respectively. Let

Luce)] = ues), L[k(n)] = k(s), L[f(e)] = Fes)
Because

t
L[.£ k(t - x) u(x) dx] = K(s) U(s) ,

the Laplace image of (3.1) is of the form
A U(s) + B K(s) U(s) = C F(s) .
Then the Laplace image of the function u(t) is

u(s) = C F(s . (3.2)
A + B K(s)

For the 1st kind integral equation, where A = 0, the Laplace
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image of the function sought is

u(ey = SEG)
B K(s)

This problem may be carried over to generating a function
given by its Laplace image, as described in part 2. If we are
write a program scheme for the solution of the equation

t
u(t) + I sin (t=-x) u(x) dx = £2 (3.3)
0

then, in this case, k(t) = sin t, f(t) = t2, so that

1 2
2 F(S) = _3— .
s + 1 s

K(s)

]
N

Thus
U(s) + K(s) U(s) = F(s) ,
2

2
U(s) = F(s) - S
1 + K(s) 1+

- gisz + 1)
53(32+ 2)

52+1

is the image of equation (3.3). This expression is the image
of the differential equation
3 .
u(t) _ 2p- +20p .
= 5 ,

z p5 + 2 p

where z is a unit function. We rewrite this equation into
the form

W ey« 2 0Bty =2 27 + 2 2(3) (3.4)

which will be programmed by the method of decreasing the

order of the derivative with new variable being introduced.
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The equation will be split into two equations

v(®) 2 v(3) =z

2 v(3) + 2 v’

n
c

The program scheme for the solution of this system is given
in figure 2.

Figure 2

pd
N

By the program scheme in figure 2 we have

E.
n

-1 -2w ,

w' + 2w = -1, w(0)=w(0)=0. (3.5)

The roots of the characteristic equation of (3.5) nz +2=0

are A4 , = t ivz . The solution of (3.5) may be written in
L]
the form

w = Cl sin VE t o+ 02 cos VE t + C3 R

where C5 = a constant, wchich we determine on substituting
in (3.5), i.e.



X 1
W = C1 sin VE t o+ C2 cos VE t - > .

The coefficients Cy and 02 with be determined from the
initial conditions w(0) = w'(0) = O. i.e.

1 -
C2—5=0, VECi-O,

w = % (cos VE t -1) . (3.6)

is the solution of equation (3.5).

Moreover we see in figure 2 that
. 1 1
Y = w dt = = sin |2 t - t + K ,
/ 2 V2 2

and because of Y'(0) = 0 also K = O.

Figure 2 shows that

. 1 1 .
Y = Ydt=—/— nj2 t - t) dt =
j. > (2 si v— )
1 1 1 .2
== (-= 2t -=t K .
> ( > cos V— > + 1)
Since Y(0) = 0, we have K i
- 1 - 2
Y = ~ ES cos VE t - 1 t2 + 1 .
4 4 4.

The output value at the summator is given by the relation
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1 1.2 1
U=-ZW+Y=-—cosVEt+—t + =, 3.7
(we+v)=-41 L2 (3.7)
1 1 2 1 -2 s%+2(s%+2)s%+2(s%+2)28*
L(u) = - > M i ) 3 =
s+ 2 2 s 2s 2(s+2)2ss
2
= 2(s7+ 1)
53(52+2)

which is also the Laplace image of the solution of (3.3). The
correctness may be verified by substituting (3.7) into
equation (3.3)

t
1 1.2 1 . 1
--é-cosvzt+-é-t +E+£sln(t—x)(-acos 2 x +
1.2 1 _ .2
X 2) dx = t (3.8)

t
[ sin(t-x)(- %) cos V_Z— x dx = - [sin(t-x) -—:lvg sin 2 x =~
0

t
1 1 1
- = cos(t-x cosVZx == 2t - = t
> ( ) ]O > cos > cos ,

NI
x
a
3
"

t

t
jsin(t—x) 12 [Zx sin(t-x) + (x2—2) cos(t—x)] =
0 0

(t2

-2+ 2 cos t) ,

NP NP

N

f 1 11

f sin(t-x) dx = E[cos(t-x)] = 5 - 5 cos t.
0

o]

Inserting the above expressions into equation (3.8), we find
that the following equation is satisfied

-£cosV§t+1‘-t2+£+-1—cosvzt—icost——t -
2 2 2 2 2 2

—1+cost+£—-1-c03t 2
2 2

]
"t
-
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4, Determination of the coefficients of a Fourier series

A periodic function satisfying further Dirichlet’s
conditions (the function is periodic, unique and finite; it
has only a finite number of maxima and minima and a finite
number of discontinuities on every interval of the periodici-
ty) may be expressed in the whole interval of the periodicity
T (except for the points at which it is not continuous) by
the Fourier series, i.e. by an infinite convergent series of
harmonic frequencies whose angular frequences are integral
multiplies of a certain fundamental frequency. Thus

es)
a
f(t) = el +E- (ak cos kwt + bk sin kwt) .

The coefficients ag, ay and b, are given by expressions

T
2
ag = 7 ff(t) dt (4.1)
o]
T
2
a, =7 ff(t) cos kot dt (4.2)
0 5
T
2 .
b = F J f(t) sin kwt dt (4.3)
0
2%

where T is the interval of the periodicity, w-= T -

The coefficients a, and b, could be determined directly
by relations (4.1) - (4.3) but in generating the products
f(t)ecos kwt and f(t).sin kwt there may arise a certain
impairment of accuracy since the analog multipliers work with
a somehow reduced accuracy than the linear computing units.
The coefficients of the Fourier series may be determined by
applying the Laplace transform as follows:
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We have a computing circuit with a carry H(s), 1.e.
with the Laplace images output quantity v(t) to the input
quantity f(t) ratio. Bringing the quantity f(t) to the input
of this circuit at the instant t = O, then the image V(s) of
the output quantity v(t) is given by

V(s) = H(s)*F(s) (4.4)

Bringing the unit pulse 5 (t) to the input of this circuit
at the instant t = O, then

Vy(s) = H(s) . 1 (4.5)

holds for the image Vl(s) of the output quantity ve(t).
Excluding H(s) from relations (4.4) and (4.5) yields

V(s) = Vy(s).F(s) (4.6)

for the output quantity v(t) we then obtain
t
v(t) = j (%) vq(t -T) d? . (4.7)
0

Thus, if we know the response v,(t) of the circuit to the
unit pulse, then the response v(t) to the input quantity
f(t) may be determined by relation (4.7). If we change the
variables t = T, T= t, then relation (4.7) takes the form

T :
v(T) =f f(t) vy (T - t) dt . (4.8)
0

Let us now use a circuit whose response to the unit pulse is
vo(t) = sin kawt, or vy(t) = cos kwt and let w= 3;: hold.
Bringing the input quantity % f(t) to the input of this
circuit at the time t = 0, then the value of the output
quantity at the time t = T by (4.8) is
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T
v(T) = %j f(t) cos kaw(T-t) dt =
[¢]
T n
2 2% o -
= T.»f f(t) cos [k - (T t)] dt
2 27 -
=T f(t) cos (k 27 - k =~ t) dt
2 ; = .9
=2 | f(t) cos kwt dt = ay (4.9)
v(T) sin kw (T-t) dt =

1
=N

]
—In
0%+ Oo%~—-+ 0——- O+ o~—- O
-
2
rt

f(t) sin [k g (T—t)] dt =

[
—AIN
-+
—
[ad
-

')
-
>3

—
~
N
2
]
=~
)V]
| B
t
-~
a
"t
]

f(t) sin kwt dt = - bk . (4.10)

"
1
=N
ov-—-+

Figure 3 illustrates the circuit with the required response

to the unit pulse. The circuit solves the differential
equation

Figure 3
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vi(t) + KB w2 v(t) = kw .§ (1) (4.11)

with the initial conditions v,(0) = v;(0) = O. This equation
is programmed in the form
vi(t)

kw

= 5(t) - kawvy(t) .

The Laplace image of equation (4.11) is

2 2 2
s” Vy(s) + kKTw”™ Vy(s) = ke ,
i.e.
kaw
Vq(s) =
1 2 4 k2w2

so that making the inverse transformation we obtain

vy(t) = sin kwt .

At the output of the first integrator we get

vy (t)

” = - cos kawt .

Bringing now the function % f(t) instead of the unit pulse
5 (t) to the input of the first integrator and letting the
circuit solve for the duration of the period T, then there
will be value of the coefficient - a, at the output of the
first integrator, and the value - b, at the output of the
second integrator (see equations (4.9) and (4.10)). On account
of the fact that in the analysed courses the amplitudes of
the individual harmonic frequences generally decrease with
the increasing k, it is better to compose the circuit with
a response to the unit pulse v,(t) = k sin kawt, or v,(t) =
= k cos kwt. If we program equation (4.11) in the form

vile) vy () + S(t)
aw

kw2
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as recorded in figure 4, then at the ocutput of the first
integrator we get the response to the unit pulse

v
;% = k cos kawt and at the output cf the 2nd integrator we

get - kv, = - ksin ke t. Bringing now the function % f(t)

instead of the unit pulse & (t) to the input of the summator

Figure 4

and letting the integrators integrate for the duration of T,
then there will be the value ka  at the output of the ist

integrator and kbk at the obutput of the 2nd integrator.
2

Z =
T

Sience 2

1 .
o 5~ » We may use the program scheme in

figure 5 to obtain the coefficients ay and bk'

Figure 5

The circuit in figure 3 anables us also to determine
the coefficient ay, which is impossible by the circuit in
figure 5. For instance, we have to determine the coefficients
of the Fourier expansion of a periodic function with the
period T = 27

f(t) = 0,5 for 0<t &%

f(t) = - 0,5 forT< t & 2%
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27 2F

In our case W= = = 55 = 1. The Fourier coefficients ao,

a, b, may be determinsd by (4.1) - (4.3), so that
T Ing 2
2
ag = 2 | f(t)dt=§-§7—([0,5dc+f—o,5dt)=o
"0 0 7 (4.12)
T ¥
2 ; _ 2
a, = ?‘f f(t) cos kwt dt = 55 {J‘O,S cos k.t dt +
0 (o}
2K
+ ( - 0,5 cos k.t dt) = 0 ,
Id
w
T W
2 : 2 R
bk = ?‘j f(t) sin kwt dt = 237 (JrO,S sin k.t dt +
¢} 0
b
g 4 2

= =~ for an odd k
2% k k7

25
+ - 0,5 sin k.t dt)
¥

= 0 for an even k .

By machine processing we determine ag, a and bk for
instance following the program schesme in figure 6. We bring
to the input circuit a rectangular function f(t) = 0,5 for
the duration of T =& and f(t) = - 0,5 for the duration of
T =% . The machine determined coefficients may be compared
with the theoretic coefficients of (4.12).

By placing the function f(t) there is aj = 0, for in-
creaving the accuracy in determining the coefficients a, and
bk (k- =1,2,...,n) we refer to the program scheme in figure 5.

Figure 6
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We let the circuit operate for the duration of t = 27,
after this time the computation is stopped.

5. Applying the Laplace transform in generating the time
delay.

In solving some problems it becomes necessary to delay
the given function u(t) by the prescribed time interval T,
i.e. we have to form a function u(t-T) from the function
u(t). If u(t) is the input signal of the computing block
generating the time delay, then

v(t) = u(t-T) (5.1)

holds for the output signal v(t). Let L[v(tﬂ = V(s),
L u(tf] = U(s). Then the Laplace image of equation (5.1) is
of the form

st

V(s) = e u(s) .

Thus, the image transfer function of the delayed circuit is

H(s) = %%E% = e ST

On account of the fact that a delayed circuit is concerned,

we have for the output signal v(0) = v'(0) = ... = v(n_l)(O) =
= 0. Under these conditions the Laplace operator s may be
replaced by the operator p = é%, so that the transfer function
H(p) of the delayed circuit

H(p) = -:—%% = e PT (5.2)

which may be taken as a writting of a certain differential
equation.

- pT .
The transfer function H(p) = € PT cannot be directly
simulated by a computer. Therefore this function must be

approximated by another transfer function which can be si-
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mulated so. One possibility of approximating the expression
- pT

e is to expand this expression in a Taylor’s series, i.e.
2 3 n
JRN S S s GO €-1.0 S €-1.0 Y I L
1 2! 3! n!
Then the output signal v(t) given by (5.2) is
= e~ PT
v(t) = e u(t) = u(t) - pTu(t) + ... +
n
o Lo pT)  u(r (5.3)
nit
. d . .
Since p = gt » the output signal is

2
V() = u(t) - T ¢ () e 1—1-}'1 o™ (1)

This approach is not generally used, because in applying
the analog technique the differentiation is always performed
with greater deviation. To approximate the function e~ pT
we use the so-called Padé expansion, where the approximating

function is a rational broken function of the argument p

-pT 1-n1(n)pT + nz(n)pzT2 - ees + (-1)nnn(n)pnTn
TS (n) 2.2 (n) _n-n (5.4)
ny pT + n, pPT + ... + n, pT

where the coefficients nk(n) are given by the relation

( ) v
n (M = ¥ (5.5)

The coefficients of this rational broken function are
determined so that Taylor’s expansion of the function e~ pT
and the approximating function may have the greatest number
of equal terms. For instance, the 1st Padé expansion of the

function e~ PT by (5.4) and (5.5) is of the form
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- pT 1 - nl(l)pT 1 - % pT 2 - pT :
e = (1) = T = ’ (5.6)
1+ ny pT 1 - 5 PT 2 + pT
because
1

Ly o)
= = 35 ’

: (2)ys 2

the 2nd order Padé expansion has the form

2 1 1 2.2
- oT 1 - nl( )pT 1 - 5 pT + 5 P T
e = = =
1 + nl(z)pT 1+ % pT + %E p2T2
12 - 6 pT + p°T°
= =5 (5.7)
12 + 6 pT + p° T
2
o L) 2
= = = = = ’
1 (4 1 4 2
2
2y t2) T2
2 - 4 h Ty
(5) 2 6.2 12

Taylor’s expansion of the function f(x) has the form
2 n
f(x) = £(0) + £7(0).x + £77(0) A v L 4 (") 0y X
! nt
(5.8)

Taylor’s expansion of the function e~ PT (setting x = pT) has
the form i

2.2 3.3 n.n
o pT:l-pT+P——2T SET L s ()" B (5.9)
i 31 n!
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For the 1st order Padé expansion (n=1) we have

-pT _ - X _ 2 - X
e = e =5 3
performing Taylor”s expansion of f(x) = 5 - i , then
f(o) = 1
£7(x) = = 1(2+x) -2(2-x) . - £7(0) = 1
(2+x) (2+x)
£7(x) = —(—4).2£2+x) - 3 . £77(0) = 1
(2+x) (2+x)~
2
£707(x) = = B.S(ZEx) = - 244 £7°°(0) = -
(2+x) (2+x)
We see that
2o X _ 1. x4 3 - N N cos '
2 + x 2 2.3

Relation (5.9) is true for Taylor’s ecxpansion of e~

(5.10)

z

nT

.

Comparing (5.9) and (5.11) we find that the first three terms
in expansions (5.9) and (5.11) are equal and that the expres-

sions begin to differ first at the fourth term. Taylor’s

expansion of the expression e PT giffers thus from Taylor”s

expansion beginning the third term. Setting again x =
the second order Padé expansion, then

2
F(x) = EE.:.Qémi_EE , £(0) = 1
12 + 6x + X

(2x-6) (12+6x+x%) - (2x+6)(12-5x+x2) _
(12+6x+x2)2

f(x) =

2
12x™ - 1;42 , £7(0) = - 1
(12+6x+x7)
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24x(12+6x+x2)2 - 2(12+6x+x7) (2x+6)(12x%-144) _

() =
(12+6x+x2)4
_ -24x> + 864x + 1728 fe0) - 1728 _
= 77 ' (0) = ===
(12+6x+x7) 1728
likewise
ces 72x* - 5184x° - 20736x - 20736 cer
£770(x) = 738 , f°°°(0) = -1
(12+6x+x7)
£(4) (x) = -288x°_+ 34660x>_+ 207960x> + 416920x + 248828
(12+6x+x°)°
£(4) (o) - 248828 _
248832
Then
12 - 6x + X2 _ x> x5 248828 x*
E—_— = [ VO T RPN A= L N
12 + 6x + X 21 31 248832 4!
12 - epT + p12 _ | _ o, p2T2 _ p°r®  2asses  pir?
12 + 6pT + p°T° 21 31 248832 4!

(5.12)

Comparing the last expression with that of (5.9) we see that
both expansions begin to differ at the fourth term (or with
a sufficient accuracy beginning the fifth term). Figure 7
shows the program scheme of a computing circuit using the
second order Padé expansion. The computing circuit solves in
fact the following equation

v(t) _ 12 - 6pT + p2T2 (5.13)

u(t) 12 + 6pT + p°T )

(see equation (5.7)). The equation in the form

6

viie) + vty + 2 v = un(e) u'(t) + 22 u(e)
T T T

el
T
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is solved by the method of successive integrator

vio= o un - &yt - & v E% u - 3% v o,
T T T T
vi = u -8 u-8y vy ,
T T
where
12 12
vy = ‘f ( S u-==V ) dt
T
v = u-v,
where
6 6
v, = J‘( T u + T Vo= vy ) dt .

Figure 7a illustrates a graph of the function v = sin (t-T),
where T = 1 obtained in the above mentioned way.

Figure 7

& ®
I - 3
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Figure 7a

Figure 7b shows the response of this delaying circuit
to the jump function u(t) = 1 for t=0, T = 1 second.

w Fiqure 7b
/\____’_,________\_____
N 2 3 4 ¢

. .gure 8 presents the program scheme using the third
order Padé expansion. The computing circuit solves the equa-

tion
1 i1 2.2 1 3.3
v(t) 1 - 5PT + 5P T -1355P T (5.14)
= T T 22 T 33 2

u(t) 1 + 5 pT + i5 P T + 150 P T

The equation in the form
- 1 - s -
v 22 e 9% v o 12? v = -u + 12 u" - ég u’ o+ 150 u
T T T T T
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is solved by the method of successive integration again.

veO e ottt a2 e D12 e ég u® - é% v o+ EE% u - lﬁ% v
T T T T T
v o= o-oum s 22 412 ég u - ég v+ vy
T T T T
where
4
Vl:f(ligu_f_z_%v)dt'
T T
vio= w22,
h T YT 2
where
60
v, ='[(--—2-u—-?v+v1)dt '
T
Vo= -uvg o,
where

> -7, ” -x,
<}

o
S
(V%)



Figure 8a shows the response of this circuit to the jump
function u(t) = 1 for T = 1 sec.

Figure 8a
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pOUZITI LAPLACEOVY TRANSFORMACE PRI SIMULACI SPOJITYCH
sysTEMO

Souhrn

Préace se zabyva pouzitim Laplaceovy transformace prFi
simulaci spojitych systéml, je uvedeno pouZiti této trans-
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formace p#i vySetiovani dynamickych systémd buzenych Diraco-
vou funkci, generovéni funké&nich zévislosti, reSeni integral-
nich rovnic s jédrem typu k(t - x), uréeni koeficientl Fou-
rierova rozvoje a pfi vytvareni &asového zpoZdéni. Je ukaza-

no praktické pouziti na prikladech.

ATIJIMKALIA NMPEOBPA3OBAHMA JIAIIJIACA B CHUMYJALNN

HE[IPEPHBHHX CUCTEM

Peabme

PaboTa saHuMaeTcsd McCHOJAb3OBaHMEM npeobpasoBaHus Janxaca
B CHMyJSilMM HENnpepHBHNX cucTeM, Hanp. QyHxuuu [upaka, peme-
HueM UHTerpaJbHNX ypaBHeHui, ONORAEHHMEeM M IADYTUMHM CAyYasMHM.
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